Publications by authors named "Kathleen R Mulka"

3 Publications

  • Page 1 of 1

Effect of an Adenovirus-Vectored Universal Influenza Virus Vaccine on Pulmonary Pathophysiology in a Mouse Model.

J Virol 2021 04 12;95(9). Epub 2021 Apr 12.

Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA

Current influenza vaccines, live attenuated or inactivated, do not protect against antigenically novel influenza A viruses (IAVs) of pandemic potential, which has driven interest in the development of universal influenza vaccines. Universal influenza vaccine candidates targeting highly conserved antigens of IAV nucleoprotein (NP) are promising as vaccines that induce T cell immunity, but concerns have been raised about the safety of inducing robust CD8 T cell responses in the lungs. Using a mouse model, we systematically evaluated effects of recombinant adenovirus vectors (rAd) expressing IAV NP (A/NP-rAd) or influenza B virus (IBV) NP (B/NP-rAd) on pulmonary inflammation and function after vaccination and following live IAV challenge. After A/NP-rAd or B/NP-rAd vaccination, female mice exhibited robust systemic and pulmonary vaccine-specific B cell and T cell responses and experienced no morbidity (e.g., body mass loss). Both pulmonary function testing and lung histopathology scoring revealed minimal adverse effects of intranasal rAd vaccination compared with unvaccinated mice. After IAV challenge, A/NP-rAd-vaccinated mice experienced significantly less morbidity, had lower pulmonary virus titers, and developed less pulmonary inflammation than unvaccinated or B/NP-rAd-vaccinated mice. Based on analysis of pulmonary physiology using detailed testing not previously applied to the question of T cell damage, mice protected by vaccination also had better lung function than controls. Results provide evidence that, in this model, adenoviral universal influenza vaccine does not damage pulmonary tissue. In addition, adaptive immunity, in particular, T cell immunity in the lungs, does not cause damage when restimulated but instead mitigates pulmonary damage following IAV infection. Respiratory viruses can emerge and spread rapidly before vaccines are available. It would be a tremendous advance to use vaccines that protect against whole categories of viruses, such as universal influenza vaccines, without the need to predict which virus will emerge. The nucleoprotein (NP) of influenza virus provides a target conserved among strains and is a dominant T cell target. In animals, vaccination to NP generates powerful T cell immunity and long-lasting protection against diverse influenza strains. Concerns have been raised, but not evaluated experimentally, that potent local T cell responses might damage the lungs. We analyzed lung function in detail in the setting of such a vaccination. Despite CD8 T cell responses in the lungs, lungs were not damaged and functioned normally after vaccination alone and were protected upon subsequent infection. This precedent provides important support for vaccines based on T cell-mediated protection, currently being considered for both influenza and SARS-CoV-2 vaccines.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
April 2021

Androgen receptor signaling in the lungs mitigates inflammation and improves the outcome of influenza in mice.

PLoS Pathog 2020 07 9;16(7):e1008506. Epub 2020 Jul 9.

W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America.

Circulating androgens can modulate immune cell activity, but the impact of androgens on viral pathogenesis remains unclear. Previous data demonstrate that testosterone reduces the severity of influenza A virus (IAV) infection in male mice by mitigating pulmonary inflammation rather than by affecting viral replication. To examine the immune responses mediated by testosterone to mitigate IAV-induced inflammation, adult male mice remained gonadally intact or were gonadectomized and treated with either placebo or androgen-filled (i.e., testosterone or dihydrotestosterone) capsules prior to sublethal IAV infection. Like intact males, treatment of gonadectomized males with androgens improved the outcome of IAV infection, which was not mediated by changes in the control of virus replication or pulmonary cytokine activity. Instead, androgens accelerated pulmonary leukocyte contraction to limit inflammation. To identify which immune cells were contracting in response to androgens, the composition of pulmonary cellular infiltrates was analyzed and revealed that androgens specifically accelerated the contraction of total pulmonary inflammatory monocytes during peak disease, as well as CD8+ T cells, IAV-specific CD8+ T numbers, cytokine production and degranulation by IAV-specific CD8+ T cells, and the influx of eosinophils into the lungs following clearance of IAV. Neither depletion of eosinophils nor adoptive transfer of CD8+ T cells could reverse the ability of testosterone to protect males against IAV suggesting these were secondary immunologic effects. The effects of testosterone on the contraction of immune cell numbers and activity were blocked by co-administration of the androgen receptor antagonist flutamide and mimicked by treatment with dihydrotestosterone, which was also able to reduce the severity of IAV in female mice. These data suggest that androgen receptor signaling creates a local pulmonary environment that promotes downregulation of detrimental inflammatory immune responses to protect against prolonged influenza disease.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
July 2020

Clinical Assessment of Urinary Tract Damage during Sustained-Release Estrogen Supplementation in Mice.

Comp Med 2017 02;67(1):11-21

Unit for Laboratory Animal Medicine (ULAM), University of Michigan, Ann Arbor, Michigan;, Email:

Estrogen supplementation is a key component of numerous mouse research models but can adversely affect the urinary system. The goal of this study was to develop a clinical scoring system and identify biomarkers of occult urinary tract lesions prior to the development of systemic illness in mice. Ovariectomized or sham-surgery SCID mice were implanted subcutaneously with a placebo pellet or one containing sustained-release estradiol (0.18 mg 60-d release 17β-estradiol). Mice were assessed twice weekly for 4 to 6 wk by using a clinical scoring system that included body condition, general activity, posture, hair coat, hydration, abdominal distension, urine staining of coat and skin, and ability to urinate. Samples were collected weekly for urinalysis, BUN, creatinine, and serum estradiol levels. Terminal samples were analyzed for histopathologic lesions. Compared with placebo controls, estradiolsupplemented mice had higher serum estradiol levels at weeks 2 and 3; significant differences in total clinical scores by the 3-wk time point; and in body condition, general activity, posture, hair coat, and urine staining scores by the 6-wk terminal time point. Urinary tract lesions included hydronephrosis, pyelonephritis, cystitis, and urolithiasis. All mice with urolithiasis had crystalluria, and 5 of the 6 mice with pyelonephritis or hydroureter had dilute urine (that is, specific gravity less than 1.030). However, these findings were not specific to mice with lesions. A total clinical score of 3.5 (maximum, 24) identified estradiol-supplemented mice with 83% specificity and 50% sensitivity, but no single clinical parameter, biomarker, or the total clinical score accurately predicted occult urinary tract lesions. Considering the lesions we observed, prudence is warranted when using pelleted sustained-release estradiol in mice, and important parameters to monitor for animal health include urine staining, body condition score, urine sediment, and urine specific gravity.
View Article and Find Full Text PDF

Download full-text PDF

February 2017