Publications by authors named "Katherine S Millen"

2 Publications

  • Page 1 of 1

Multiple Tyrosine Residues Contribute to GABA Binding in the GABA(C) Receptor Binding Pocket.

ACS Chem Neurosci 2012 Mar 15;3(3):186-192. Epub 2011 Dec 15.

The ligand binding site of Cys-loop receptors is dominated by aromatic amino acids. In GABA(C) receptors, these are predominantly tyrosine residues, with a number of other aromatic residues located in or close to the binding pocket. Here we examine the roles of these residues using substitution with both natural and unnatural amino acids followed by functional characterization. Tyr198 (loop B) has previously been shown to form a cation-π interaction with GABA; the current data indicate that none of the other aromatic residues form such an interaction, although the data indicate that both Tyr102 and Phe138 may contribute to stabilization of the positively charged amine of GABA. Tyr247 (loop C) was very sensitive to substitution and, combined with data from a model of the receptor, suggest a π-π interaction with Tyr241 (loop C); here again functional data show aromaticity is important. In addition the hydroxyl group of Tyr241 is important, supporting the presence of a hydrogen bond with Arg104 suggested by the model. At position Tyr102 (loop D) size and aromaticity are important; this residue may play a role in receptor gating and/or ligand binding. The data also suggest that Tyr167, Tyr200, and Tyr208 have a structural role while Tyr106, Trp246, and Tyr251 are not critical. Comparison of the agonist binding site "aromatic box" across the superfamily of Cys-loop receptors reveals some interesting parallels and divergences.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/cn200103nDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3309607PMC
March 2012

Transducing agonist binding to channel gating involves different interactions in 5-HT3 and GABAC receptors.

J Biol Chem 2007 Aug 2;282(35):25623-30. Epub 2007 Jul 2.

Department of Biochemistry, University of Cambridge and Neurobiology Division, MRC-LMB, Hills Rd., Cambridge CB2 2QH, United Kingdom.

5-hydroxytryptamine (5-HT)3 and gamma-aminobutyric acid, type C (GABAC) receptors are members of the Cys-loop superfamily of neurotransmitter receptors, which also includes nicotinic acetylcholine, GABAA, and glycine receptors. The details of how agonist binding to these receptors results in channel opening is not fully understood but is known to involve charged residues at the extracellular/transmembrane interface. Here we have examined the roles of such residues in 5-HT3 and GABAC receptors. Charge reversal experiments combined with data from activation by the partial agonist beta-alanine show that in GABAC receptors there is a salt bridge between Glu-92 (in loop 2) and Arg-258 (in the pre-M1 region), which is involved in receptor gating. The equivalent residues in the 5-HT3 receptor are important for receptor expression, but charge reversal experiments do not restore function, indicating that there is not a salt bridge here. There is, however, an interaction between Glu-215 (loop 9) and Arg-246 (pre-M1) in the 5-HT3 receptor, although the coupling energy determined from mutant cycle analysis is lower than might be expected for a salt bridge. Overall the data show that charged residues at the extracellular/transmembrane domain interfaces in 5-HT3 and GABAC receptors are important and that specific, but not equivalent, molecular interactions between them are involved in the gating process. Thus, we propose that the molecular details of interactions in the transduction pathway between the binding site and the pore can differ between different Cys-loop receptors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M702524200DOI Listing
August 2007