Publications by authors named "Katherine D Bauman"

3 Publications

  • Page 1 of 1

Refactoring the Cryptic Streptophenazine Biosynthetic Gene Cluster Unites Phenazine, Polyketide, and Nonribosomal Peptide Biochemistry.

Cell Chem Biol 2019 05 7;26(5):724-736.e7. Epub 2019 Mar 7.

Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA, USA. Electronic address:

The disconnect between the genomic prediction of secondary metabolite biosynthetic potential and the observed laboratory production profile of microorganisms is well documented. While heterologous expression of biosynthetic gene clusters (BGCs) is often seen as a potential solution to bridge this gap, it is not immune to many challenges including impaired regulation, the inability to recruit essential building blocks, and transcriptional and/or translational silence of the biosynthetic genes. Here we report the discovery, cloning, refactoring, and heterologous expression of a cryptic hybrid phenazine-type BGC (spz) from the marine actinomycete Streptomyces sp. CNB-091. Overexpression of the engineered spz pathway resulted in increased production and chemical diversity of phenazine natural products belonging to the streptophenazine family, including bioactive members containing an unprecedented N-formylglycine attachment. An atypical discrete adenylation enzyme in the spz cluster is required to introduce the formylglycine moiety and represents a phylogenetically distinct class of adenylation proteins.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
May 2019

Maternal transfer and sublethal immune system effects of brevetoxin exposure in nesting loggerhead sea turtles (Caretta caretta) from western Florida.

Aquat Toxicol 2016 Nov 1;180:131-140. Epub 2016 Oct 1.

Marine Immunology Program, Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL 34236, USA. Electronic address:

Blooms of Karenia brevis (also called red tides) occur almost annually in the Gulf of Mexico. The health effects of the neurotoxins (i.e., brevetoxins) produced by this toxic dinoflagellate on marine turtles are poorly understood. Florida's Gulf Coast represents an important foraging and nesting area for a number of marine turtle species. Most studies investigating brevetoxin exposure in marine turtles thus far focus on dead and/or stranded individuals and rarely examine the effects in apparently "healthy" free-ranging individuals. From May-July 2014, one year after the last red tide bloom, we collected blood from nesting loggerhead sea turtles (Caretta caretta) on Casey Key, Florida USA. These organisms show both strong nesting and foraging site fidelity. The plasma was analyzed for brevetoxin concentrations in addition to a number of health and immune-related parameters in an effort to establish sublethal effects of this toxin. Lastly, from July-September 2014, we collected unhatched eggs and liver and yolk sacs from dead-in-nest hatchlings from nests laid by the sampled females and tested these samples for brevetoxin concentrations to determine maternal transfer and effects on reproductive success. Using a competitive enzyme-linked immunosorbent assay (ELISA), all plasma samples from nesting females tested positive for brevetoxin (reported as ng brevetoxin-3[PbTx-3] equivalents [eq]/mL) exposure (2.1-26.7ng PbTx-3eq/mL). Additionally, 100% of livers (1.4-13.3ng PbTx-3eq/mL) and yolk sacs (1.7-6.6ng PbTx-3eq/mL) from dead-in-nest hatchlings and 70% of eggs (<1.0-24.4ng PbTx-3eq/mL) tested positive for brevetoxin exposure with the ELISA. We found that plasma brevetoxin concentrations determined by an ELISA in nesting females positively correlated with gamma-globulins, indicating a potential for immunomodulation as a result of brevetoxin exposure. While the sample sizes were small, we also found that plasma brevetoxin concentrations determined by an ELISA in nesting females significantly correlated with liver brevetoxin concentrations of dead-in-nest hatchlings and that brevetoxins could be related to a decreased reproductive success in this species. This study suggests that brevetoxins can still elicit negative effects on marine life long after a bloom has dissipated. These results improve our understanding of maternal transfer and sublethal effects of brevetoxin exposure in marine turtles.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
November 2016