Publications by authors named "Katharine Valéria Saraiva Hodel"

4 Publications

  • Page 1 of 1

Potential application of novel technology developed for instant decontamination of personal protective equipment before the doffing step.

PLoS One 2021 4;16(6):e0250854. Epub 2021 Jun 4.

SENAI CIMATEC, SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, Bahia, Brazil.

The use of personal protective equipment (PPE) has been considered the most effective way to avoid the contamination of healthcare workers by different microorganisms, including SARS-CoV-2. A spray disinfection technology (chamber) was developed, and its efficacy in instant decontamination of previously contaminated surfaces was evaluated in two exposure times. Seven test microorganisms were prepared and inoculated on the surface of seven types of PPE (respirator mask, face shield, shoe, glove, cap, safety glasses and lab coat). The tests were performed on previously contaminated PPE using a manikin with a motion device for exposure to the chamber with biocidal agent (sodium hypochlorite) for 10 and 30s. In 96.93% of the experimental conditions analyzed, the percentage reduction was >99% (the number of viable cells found on the surface ranged from 4.3x106 to <10 CFU/mL). The samples of E. faecalis collected from the glove showed the lowest percentages reduction, with 86.000 and 86.500% for exposure times of 10 and 30 s, respectively. The log10 reduction values varied between 0.85 log10 (E. faecalis at 30 s in glove surface) and 9.69 log10 (E. coli at 10 and 30 s in lab coat surface). In general, E. coli, S. aureus, C. freundii, P. mirabilis, C. albicans and C. parapsilosis showed susceptibility to the biocidal agent under the tested conditions, with >99% reduction after 10 and 30s, while E. faecalis and P. aeruginosa showed a lower susceptibility. The 30s exposure time was more effective for the inactivation of the tested microorganisms. The results show that the spray disinfection technology has the potential for instant decontamination of PPE, which can contribute to an additional barrier for infection control of healthcare workers in the hospital environment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0250854PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8177472PMC
June 2021

Development of Bacterial Cellulose Biocomposites Combined with Starch and Collagen and Evaluation of Their Properties.

Materials (Basel) 2021 Jan 19;14(2). Epub 2021 Jan 19.

PPG GETEC, University Center SENAI CIMATEC, National Service of Industrial Learning, SENAI CIMATEC, Salvador 41650-010, Brazil.

One of the major benefits of biomedicine is the use of biocomposites as wound dressings to help improve the treatment of injuries. Therefore, the main objective of this study was to develop and characterize biocomposites based on bacterial cellulose (BC) with different concentrations of collagen and starch and characterize their thermal, morphological, mechanical, physical, and barrier properties. In total, nine samples were produced with fixed amounts of glycerol and BC and variations in the amount of collagen and starch. The water activity (0.400-0.480), water solubility (12.94-69.7%), moisture (10.75-20.60%), thickness (0.04-0.11 mm), water vapor permeability (5.59-14.06 × 10 g·mm/m·h·Pa), grammage (8.91-39.58 g·cm), opacity (8.37-36.67 Abs 600 nm·mm), elongation (4.81-169.54%), and tensile strength (0.99-16.32 MPa) were evaluated and defined. In addition, scanning electron microscopy showed that adding biopolymers in the cellulose matrix made the surface compact, which also influenced the visual appearance. Thus, the performance of the biocomposites was directly influenced by their composition. The performance of the different samples obtained resulted in them having different potentials for application considering the injury type. This provides a solution for the ineffectiveness of traditional dressings, which is one of the great problems of the biomedical sector.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ma14020458DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7833372PMC
January 2021

The Main Molecular and Serological Methods for Diagnosing COVID-19: An Overview Based on the Literature.

Viruses 2020 12 29;13(1). Epub 2020 Dec 29.

SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Bahia, Brazil.

Diagnostic tests have been considered as the main alternative for the control of coronavirus disease (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as a correct diagnosis allows for decision making when facing the disease, particularly as there is a lack of effective therapeutic protocols and vaccines. Thus, in this review, we summarized the main diagnostic approaches currently available for the diagnosis of SARS-CoV-2 infection in humans based on studies available in article databases. The tests can be organized into two main categories: nucleic acid-based tests, recommended for the initial detection of the virus, and serological tests, recommended for assessing the disease progression. The studies have shown that the performance of diagnostic methods depends on different factors, such as the type of samples and the characteristics of each assay. It was identified that the positivity of the tests is mainly related to the onset of symptoms. We also observed that point-of-care diagnoses are considered as one of the main trends in this area, due to the low-cost and simplicity of the assay; however, the analytical performance must be critically analyzed. Thus, the COVID-19 pandemic has highlighted the critical role of diagnostic technologies in the control of infectious diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/v13010040DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7823618PMC
December 2020

Evaluation of Different Methods for Cultivating for Bacterial Cellulose and Montmorillonite Biocomposite Production: Wound-Dressing Applications.

Polymers (Basel) 2020 Jan 26;12(2). Epub 2020 Jan 26.

University Center SENAI CIMATEC, National Service of Industrial Learning, Laboratory of Pharmaceutical's Formulations, Health Institute of Technologies (ITS CIMATEC), Salvador 41650-010, Brazil.

Bacterial cellulose (BC) has received considerable attention due to its unique properties, including an ultrafine network structure with high purity, mechanical strength, inherent biodegradability, biocompatibility, high water-holding capacity and high crystallinity. These properties allow BC to be used in biomedical and industrial applications, such as medical product. This research investigated the production of BC by ATCC 23769 using different carbon sources (glucose, mannitol, sucrose and xylose) at two different concentrations (25 and 50 g∙L). The BC produced was used to develop a biocomposite with montmorillonite (MMT), a clay mineral that possesses interesting characteristics for enhancing BC physical-chemical properties, at 0.5, 1, 2 and 3% concentrations. The resulting biocomposites were characterized in terms of their physical and barrier properties, morphologies, water-uptake capacities, and thermal stabilities. Our results show that bacteria presented higher BC yields in media with higher glucose concentrations (50 g∙L) after a 14-day incubation period. Additionally, the incorporation of MMT significantly improved the mechanical and thermal properties of the BC membranes. The degradation temperature of the composites was extended, and a decrease in the water holding capacity (WHC) and an improvement in the water release rate (WRR) were noted. Determining a cost-effective medium for the production of BC and the characterization of the produced composites are extremely important for the biomedical applications of BC, such as in wound dressing materials.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/polym12020267DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7077264PMC
January 2020
-->