Publications by authors named "Katharina Dohm"

53 Publications

Which traits predict elevated distress during the Covid-19 pandemic? Results from a large, longitudinal cohort study with psychiatric patients and healthy controls.

J Affect Disord 2021 Oct 17;297:18-25. Epub 2021 Oct 17.

Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg and University Hospital Marburg, UKGM, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032 Marburg, Germany.

The Covid-19 pandemic resulted in repeated, prolonged restrictions in daily life. Social distancing policies as well as health anxiety are thought to lead to mental health impairment. However, there is lack of longitudinal data identifying at-risk populations particularly vulnerable for elevated Covid-19-related distress. We collected data of N = 1268 participants (n = 622 healthy controls (HC), and n = 646 patients with major depression, bipolar disorder, schizophrenia or schizoaffective disorder) at baseline before (2014-2018) and during (April-May 2020) the first lockdown in Germany. We obtained information on Covid-19 restrictions (number and subjective impact of Covid-19 events), and Covid-19-related distress (i.e., subjective fear and isolation). Using multiple linear regression models including trait variables and individual Covid-19 impact, we sought to predict Covid-19-related distress. HC and patients reported similar numbers of Covid-19-related events, and similar subjective impact rating. They did not differ in Covid-19-related subjective fear. Patients reported significantly higher subjective isolation. 30.5% of patients reported worsened self-rated symptoms since the pandemic. Subjective fear in all participants was associated with trait anxiety (STAI-T), conscientiousness (NEO-FFI), Covid-19 impact, and sex. Subjective isolation in HC was associated with social support (FSozu), Covid-19 impact, age, and sex; in patients, it was associated with social support and Covid-19 impact. Our data shed light on differential effects of the pandemic in psychiatric patients and HC. Low social support, high conscientiousness and high trait anxiety are associated with elevated distress during the pandemic. These variables might be valuable for the creation of risk profiles of Covid-19-related distress for direct translation into clinical practice.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jad.2021.10.017DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8520504PMC
October 2021

Neural processing of emotional facial stimuli in specific phobia: An fMRI study.

Depress Anxiety 2021 08 5;38(8):846-859. Epub 2021 Jul 5.

Institute for Translational Psychiatry, University of Münster, Münster, Germany.

Background: Patients with specific phobia (SP) show altered brain activation when confronted with phobia-specific stimuli. It is unclear whether this pathogenic activation pattern generalizes to other emotional stimuli. This study addresses this question by employing a well-powered sample while implementing an established paradigm using nonspecific aversive facial stimuli.

Methods: N = 111 patients with SP, spider subtype, and N = 111 healthy controls (HCs) performed a supraliminal emotional face-matching paradigm contrasting aversive faces versus shapes in a 3-T magnetic resonance imaging scanner. We performed region of interest (ROI) analyses for the amygdala, the insula, and the anterior cingulate cortex using univariate as well as machine-learning-based multivariate statistics based on this data. Additionally, we investigated functional connectivity by means of psychophysiological interaction (PPI).

Results: Although the presentation of emotional faces showed significant activation in all three ROIs across both groups, no group differences emerged in all ROIs. Across both groups and in the HC > SP contrast, PPI analyses showed significant task-related connectivity of brain areas typically linked to higher-order emotion processing with the amygdala. The machine learning approach based on whole-brain activity patterns could significantly differentiate the groups with 73% balanced accuracy.

Conclusions: Patients suffering from SP are characterized by differences in the connectivity of the amygdala and areas typically linked to emotional processing in response to aversive facial stimuli (inferior parietal cortex, fusiform gyrus, middle cingulate, postcentral cortex, and insula). This might implicate a subtle difference in the processing of nonspecific emotional stimuli and warrants more research furthering our understanding of neurofunctional alteration in patients with SP.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/da.23191DOI Listing
August 2021

The Course of Disease in Major Depressive Disorder Is Associated With Altered Activity of the Limbic System During Negative Emotion Processing.

Biol Psychiatry Cogn Neurosci Neuroimaging 2021 Jun 5. Epub 2021 Jun 5.

Institute for Translational Psychiatry, University of Münster, Münster, Germany. Electronic address:

Background: Brain functional alterations during emotion processing in patients with major depressive disorder (MDD) compared with healthy control subjects (HCs) are frequently reported. However, evidence for functional correlates of emotion processing with regard to MDD trajectories is scarce. This study investigates the role of lifetime disease course for limbic brain activation during negative emotional face processing in patients with MDD.

Methods: In a large sample of patients with MDD (n = 333; 58.55% female) and HCs (n = 333; 60.06% female), brain activation was investigated during a negative emotional face-processing task within a cross-sectional design. Differences between HC and MDD groups were analyzed. Previous disease course, characterized by 2 components, namely hospitalization and duration of illness, was regressed on brain activation of the amygdala, (para-)hippocampus, and insula in patients with MDD.

Results: Patients with MDD showed increased activation in the amygdala, insula, and hippocampus compared with HCs (all p values corrected for familywise error [p] < .045). The hospitalization component showed negative associations with brain activation in the bilateral insula (right: p = .026, left: p = .019) and (para-)hippocampus (right: p = .038, left: p = .031). No significant association was found for the duration of illness component (all p > .057).

Conclusions: This study investigated negative emotion processing in a large sample of patients with MDD and HCs. Our results confirm limbic hyperactivation in patients with MDD during negative emotion processing; however, this hyperactivation may resolve with a more severe lifetime disease course in the insula and (para-)hippocampus-brain regions involved in emotion processing and regulation. These findings need further replication in longitudinal studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bpsc.2021.05.008DOI Listing
June 2021

Social support and hippocampal volume are negatively associated in adults with previous experience of childhood maltreatment.

J Psychiatry Neurosci 2021 Apr 27;46(3):E328-E336. Epub 2021 Apr 27.

From the Department of Psychiatry, University of Münster, Münster, Germany (Förster, Danzer, Redlich, Opel, Grotegerd, Leehr, Dohm, Enneking, Meinert, Goltermann, Lemke, Waltemate, Thiel, Behnert, Hahn, Repple, Dannlowski); the Clinical Psychology and Behavioral Neuroscience, Faculty of Psychology, TU Dresden, Dresden, Germany (Förster); the Department of Clinical Psychology, University of Halle, Halle, Germany (Redlich); the Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany (Brosch, Stein, Meller, Ringwald, Schmitt, Steinsträter, Jansen, Krug, Nenadic, Kircher); the Core-Unit Brain Imaging, Faculty of Medicine, University of Marburg, Marburg, Germany (Jansen); the Department of Psychiatry, University of Bonn, Bonn, Germany (Krug); and the University Clinic for Clinical Radiology, University of Münster, Münster, Germany (Kugel, Heindel).

Background: Childhood maltreatment has been associated with reduced hippocampal volume in healthy individuals, whereas social support, a protective factor, has been positively associated with hippocampal volumes. In this study, we investigated how social support is associated with hippocampal volume in healthy people with previous experience of childhood maltreatment.

Methods: We separated a sample of 446 healthy participants into 2 groups using the Childhood Trauma Questionnaire: 265 people without maltreatment and 181 people with maltreatment. We measured perceived social support using a short version of the Social Support Questionnaire. We examined hippocampal volume using automated segmentation (Freesurfer). We conducted a social support × group analysis of covariance on hippocampal volumes controlling for age, sex, total intracranial volume, site and verbal intelligence.

Results: Our analysis revealed significantly lower left hippocampal volume in people with maltreatment (left F1,432 = 5.686, p = 0.018; right F1,433 = 3.371, p = 0.07), but no main effect of social support emerged. However, we did find a significant social support × group interaction for left hippocampal volume (left F1,432 = 5.712, p = 0.017; right F1,433 = 3.480, p = 0.06). In people without maltreatment, we observed a trend toward a positive association between social support and hippocampal volume. In contrast, social support was negatively associated with hippocampal volume in people with maltreatment.

Limitations: Because of the correlative nature of our study, we could not infer causal relationships between social support, maltreatment and hippocampal volume.

Conclusion: Our results point to a complex dynamic between environmental risk, protective factors and brain structure - in line with previous evidence - suggesting a detrimental effect of maltreatment on hippocampal development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1503/jpn.200162DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8327979PMC
April 2021

DLPFC volume is a neural correlate of resilience in healthy high-risk individuals with both childhood maltreatment and familial risk for depression.

Psychol Med 2021 Apr 16:1-7. Epub 2021 Apr 16.

Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg and University Hospital Marburg, UKGM, Rudolf-Bultmann-Str. 8, 35039Marburg, Germany.

Background: Two prominent risk factors for major depressive disorder (MDD) are childhood maltreatment (CM) and familial risk for MDD. Despite having these risk factors, there are individuals who maintain mental health, i.e. are resilient, whereas others develop MDD. It is unclear which brain morphological alterations are associated with this kind of resilience. Interaction analyses of risk and diagnosis status are needed that can account for complex adaptation processes, to identify neural correlates of resilience.

Methods: We analyzed brain structural data (3T magnetic resonance imaging) by means of voxel-based morphometry (CAT12 toolbox), using a 2 × 2 design, comparing four groups (N = 804) that differed in diagnosis (healthy v. MDD) and risk profiles (low-risk, i.e. absence of CM and familial risk v. high-risk, i.e. presence of both CM and familial risk). Using regions of interest (ROIs) from the literature, we conducted an interaction analysis of risk and diagnosis status.

Results: Volume in the left middle frontal gyrus (MFG), part of the dorsolateral prefrontal cortex (DLPFC), was significantly higher in healthy high-risk individuals. There were no significant results for the bilateral superior frontal gyri, frontal poles, pars orbitalis of the inferior frontal gyri, and the right MFG.

Conclusions: The healthy high-risk group had significantly higher volumes in the left DLPFC compared to all other groups. The DLPFC is implicated in cognitive and emotional processes, and higher volume in this area might aid high-risk individuals in adaptive coping in order to maintain mental health. This increased volume might therefore constitute a neural correlate of resilience to MDD in high risk.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1017/S0033291721001094DOI Listing
April 2021

Effects of polygenic risk for major mental disorders and cross-disorder on cortical complexity.

Psychol Med 2021 Apr 8:1-12. Epub 2021 Apr 8.

Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35039Marburg, Germany.

Background: MRI-derived cortical folding measures are an indicator of largely genetically driven early developmental processes. However, the effects of genetic risk for major mental disorders on early brain development are not well understood.

Methods: We extracted cortical complexity values from structural MRI data of 580 healthy participants using the CAT12 toolbox. Polygenic risk scores (PRS) for schizophrenia, bipolar disorder, major depression, and cross-disorder (incorporating cumulative genetic risk for depression, schizophrenia, bipolar disorder, autism spectrum disorder, and attention-deficit hyperactivity disorder) were computed and used in separate general linear models with cortical complexity as the regressand. In brain regions that showed a significant association between polygenic risk for mental disorders and cortical complexity, volume of interest (VOI)/region of interest (ROI) analyses were conducted to investigate additional changes in their volume and cortical thickness.

Results: The PRS for depression was associated with cortical complexity in the right orbitofrontal cortex (right hemisphere: p = 0.006). A subsequent VOI/ROI analysis showed no association between polygenic risk for depression and either grey matter volume or cortical thickness. We found no associations between cortical complexity and polygenic risk for either schizophrenia, bipolar disorder or psychiatric cross-disorder when correcting for multiple testing.

Conclusions: Changes in cortical complexity associated with polygenic risk for depression might facilitate well-established volume changes in orbitofrontal cortices in depression. Despite the absence of psychopathology, changed cortical complexity that parallels polygenic risk for depression might also change reward systems, which are also structurally affected in patients with depressive syndrome.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1017/S0033291721001082DOI Listing
April 2021

Association Between Genetic Risk for Type 2 Diabetes and Structural Brain Connectivity in Major Depressive Disorder.

Biol Psychiatry Cogn Neurosci Neuroimaging 2021 Mar 5. Epub 2021 Mar 5.

Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany.

Background: Major depressive disorder (MDD) and type 2 diabetes mellitus (T2D) are known to share clinical comorbidity and to have genetic overlap. Besides their shared genetics, both diseases seem to be associated with alterations in brain structural connectivity and impaired cognitive performance, but little is known about the mechanisms by which genetic risk of T2D might affect brain structure and function and if they do, how these effects could contribute to the disease course of MDD.

Methods: This study explores the association of polygenic risk for T2D with structural brain connectome topology and cognitive performance in 434 nondiabetic patients with MDD and 539 healthy control subjects.

Results: Polygenic risk score for T2D across MDD patients and healthy control subjects was found to be associated with reduced global fractional anisotropy, a marker of white matter microstructure, an effect found to be predominantly present in MDD-related fronto-temporo-parietal connections. A mediation analysis further suggests that this fractional anisotropy variation may mediate the association between polygenic risk score and cognitive performance.

Conclusions: Our findings provide preliminary evidence of a polygenic risk for T2D to be linked to brain structural connectivity and cognition in patients with MDD and healthy control subjects, even in the absence of a direct T2D diagnosis. This suggests an effect of T2D genetic risk on white matter integrity, which may mediate an association of genetic risk for diabetes and cognitive impairments.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bpsc.2021.02.010DOI Listing
March 2021

Apolipoprotein E homozygous ε4 allele status: Effects on cortical structure and white matter integrity in a young to mid-age sample.

Eur Neuropsychopharmacol 2021 May 27;46:93-104. Epub 2021 Feb 27.

Department of Psychiatry, University of Münster, Münster, Germany. Electronic address:

Apolipoprotein E (APOE) genotype is the strongest single gene predictor of Alzheimer's disease (AD) and has been frequently associated with AD-related brain structural alterations before the onset of dementia. While previous research has primarily focused on hippocampal morphometry in relation to APOE, sporadic recent findings have questioned the specificity of the hippocampus and instead suggested more global effects on the brain. With the present study we aimed to investigate associations between homozygous APOE ε4 status and cortical gray matter structure as well as white matter microstructure. In our study, we contrasted n = 31 homozygous APOE ε4 carriers (age=34.47 years, including a subsample of n = 12 subjects with depression) with a demographically matched sample without an ε4 allele (resulting total sample: N = 62). Morphometry analyses included a) Freesurfer based cortical segmentations of thickness and surface area measures and b) tract based spatial statistics of DTI measures. We found pronounced and widespread reductions in cortical surface area of ε4 homozygotes in 57 out of 68 cortical brain regions. In contrast, no differences in cortical thickness were observed. Furthermore, APOE ε4 homozygous carriers showed significantly lower fractional anisotropy in the corpus callosum, the right internal and external capsule, the left corona radiata and the right fornix. The present findings support a global rather than regionally specific effect of homozygous APOE ε4 allele status on cortical surface area and white matter microstructure. Future studies should aim to delineate the clinical implications of these findings.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.euroneuro.2021.02.006DOI Listing
May 2021

Smartphone-Based Self-Reports of Depressive Symptoms Using the Remote Monitoring Application in Psychiatry (ReMAP): Interformat Validation Study.

JMIR Ment Health 2021 Jan 12;8(1):e24333. Epub 2021 Jan 12.

Department of Psychiatry, University of Münster, Münster, Germany.

Background: Smartphone-based symptom monitoring has gained increased attention in psychiatric research as a cost-efficient tool for prospective and ecologically valid assessments based on participants' self-reports. However, a meaningful interpretation of smartphone-based assessments requires knowledge about their psychometric properties, especially their validity.

Objective: The goal of this study is to systematically investigate the validity of smartphone-administered assessments of self-reported affective symptoms using the Remote Monitoring Application in Psychiatry (ReMAP).

Methods: The ReMAP app was distributed to 173 adult participants of ongoing, longitudinal psychiatric phenotyping studies, including healthy control participants, as well as patients with affective disorders and anxiety disorders; the mean age of the sample was 30.14 years (SD 11.92). The Beck Depression Inventory (BDI) and single-item mood and sleep information were assessed via the ReMAP app and validated with non-smartphone-based BDI scores and clinician-rated depression severity using the Hamilton Depression Rating Scale (HDRS).

Results: We found overall high comparability between smartphone-based and non-smartphone-based BDI scores (intraclass correlation coefficient=0.921; P<.001). Smartphone-based BDI scores further correlated with non-smartphone-based HDRS ratings of depression severity in a subsample (r=0.783; P<.001; n=51). Higher agreement between smartphone-based and non-smartphone-based assessments was found among affective disorder patients as compared to healthy controls and anxiety disorder patients. Highly comparable agreement between delivery formats was found across age and gender groups. Similarly, smartphone-based single-item self-ratings of mood correlated with BDI sum scores (r=-0.538; P<.001; n=168), while smartphone-based single-item sleep duration correlated with the sleep item of the BDI (r=-0.310; P<.001; n=166).

Conclusions: These findings demonstrate that smartphone-based monitoring of depressive symptoms via the ReMAP app provides valid assessments of depressive symptomatology and, therefore, represents a useful tool for prospective digital phenotyping in affective disorder patients in clinical and research applications.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2196/24333DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7837996PMC
January 2021

Brain structural correlates of insomnia severity in 1053 individuals with major depressive disorder: results from the ENIGMA MDD Working Group.

Transl Psychiatry 2020 12 8;10(1):425. Epub 2020 Dec 8.

Department of Psychiatry, University of Münster, Münster, Germany.

It has been difficult to find robust brain structural correlates of the overall severity of major depressive disorder (MDD). We hypothesized that specific symptoms may better reveal correlates and investigated this for the severity of insomnia, both a key symptom and a modifiable major risk factor of MDD. Cortical thickness, surface area and subcortical volumes were assessed from T1-weighted brain magnetic resonance imaging (MRI) scans of 1053 MDD patients (age range 13-79 years) from 15 cohorts within the ENIGMA MDD Working Group. Insomnia severity was measured by summing the insomnia items of the Hamilton Depression Rating Scale (HDRS). Symptom specificity was evaluated with correlates of overall depression severity. Disease specificity was evaluated in two independent samples comprising 2108 healthy controls, and in 260 clinical controls with bipolar disorder. Results showed that MDD patients with more severe insomnia had a smaller cortical surface area, mostly driven by the right insula, left inferior frontal gyrus pars triangularis, left frontal pole, right superior parietal cortex, right medial orbitofrontal cortex, and right supramarginal gyrus. Associations were specific for insomnia severity, and were not found for overall depression severity. Associations were also specific to MDD; healthy controls and clinical controls showed differential insomnia severity association profiles. The findings indicate that MDD patients with more severe insomnia show smaller surfaces in several frontoparietal cortical areas. While explained variance remains small, symptom-specific associations could bring us closer to clues on underlying biological phenomena of MDD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41398-020-01109-5DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7723989PMC
December 2020

Virtual Histology of Cortical Thickness and Shared Neurobiology in 6 Psychiatric Disorders.

JAMA Psychiatry 2021 Jan;78(1):47-63

Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience, Maastricht University, the Netherlands.

Importance: Large-scale neuroimaging studies have revealed group differences in cortical thickness across many psychiatric disorders. The underlying neurobiology behind these differences is not well understood.

Objective: To determine neurobiologic correlates of group differences in cortical thickness between cases and controls in 6 disorders: attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), bipolar disorder (BD), major depressive disorder (MDD), obsessive-compulsive disorder (OCD), and schizophrenia.

Design, Setting, And Participants: Profiles of group differences in cortical thickness between cases and controls were generated using T1-weighted magnetic resonance images. Similarity between interregional profiles of cell-specific gene expression and those in the group differences in cortical thickness were investigated in each disorder. Next, principal component analysis was used to reveal a shared profile of group difference in thickness across the disorders. Analysis for gene coexpression, clustering, and enrichment for genes associated with these disorders were conducted. Data analysis was conducted between June and December 2019. The analysis included 145 cohorts across 6 psychiatric disorders drawn from the ENIGMA consortium. The numbers of cases and controls in each of the 6 disorders were as follows: ADHD: 1814 and 1602; ASD: 1748 and 1770; BD: 1547 and 3405; MDD: 2658 and 3572; OCD: 2266 and 2007; and schizophrenia: 2688 and 3244.

Main Outcomes And Measures: Interregional profiles of group difference in cortical thickness between cases and controls.

Results: A total of 12 721 cases and 15 600 controls, ranging from ages 2 to 89 years, were included in this study. Interregional profiles of group differences in cortical thickness for each of the 6 psychiatric disorders were associated with profiles of gene expression specific to pyramidal (CA1) cells, astrocytes (except for BD), and microglia (except for OCD); collectively, gene-expression profiles of the 3 cell types explain between 25% and 54% of variance in interregional profiles of group differences in cortical thickness. Principal component analysis revealed a shared profile of difference in cortical thickness across the 6 disorders (48% variance explained); interregional profile of this principal component 1 was associated with that of the pyramidal-cell gene expression (explaining 56% of interregional variation). Coexpression analyses of these genes revealed 2 clusters: (1) a prenatal cluster enriched with genes involved in neurodevelopmental (axon guidance) processes and (2) a postnatal cluster enriched with genes involved in synaptic activity and plasticity-related processes. These clusters were enriched with genes associated with all 6 psychiatric disorders.

Conclusions And Relevance: In this study, shared neurobiologic processes were associated with differences in cortical thickness across multiple psychiatric disorders. These processes implicate a common role of prenatal development and postnatal functioning of the cerebral cortex in these disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1001/jamapsychiatry.2020.2694DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7450410PMC
January 2021

Childhood maltreatment and cognitive functioning: the role of depression, parental education, and polygenic predisposition.

Neuropsychopharmacology 2021 04 14;46(5):891-899. Epub 2020 Aug 14.

Department of Psychiatry, University of Münster, Münster, Germany.

Childhood maltreatment is associated with cognitive deficits that in turn have been predictive for therapeutic outcome in psychiatric patients. However, previous studies have either investigated maltreatment associations with single cognitive domains or failed to adequately control for confounders such as depression, socioeconomic environment, and genetic predisposition. We aimed to isolate the relationship between childhood maltreatment and dysfunction in diverse cognitive domains, while estimating the contribution of potential confounders to this relationship, and to investigate gene-environment interactions. We included 547 depressive disorder and 670 healthy control participants (mean age: 34.7 years, SD = 13.2). Cognitive functioning was assessed for the domains of working memory, executive functioning, processing speed, attention, memory, and verbal intelligence using neuropsychological tests. Childhood maltreatment and parental education were assessed using self-reports, and psychiatric diagnosis was based on DSM-IV criteria. Polygenic scores for depression and for educational attainment were calculated. Multivariate analysis of cognitive domains yielded significant associations with childhood maltreatment (η² = 0.083, P < 0.001), depression (η² = 0.097, P < 0.001), parental education (η² = 0.085, P < 0.001), and polygenic scores for depression (η² = 0.021, P = 0.005) and educational attainment (η² = 0.031, P < 0.001). Each of these associations remained significant when including all of the predictors in one model. Univariate tests revealed that maltreatment was associated with poorer performance in all cognitive domains. Thus, environmental, psychopathological, and genetic risk factors each independently affect cognition. The insights of the current study may aid in estimating the potential impact of different loci of interventions for cognitive dysfunction. Future research should investigate if customized interventions, informed by individual risk profiles and related cognitive preconditions, might enhance response to therapeutic treatments.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41386-020-00794-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8115656PMC
April 2021

Brain structural correlates of schizotypal signs and subclinical schizophrenia nuclear symptoms in healthy individuals.

Psychol Med 2020 Jun 24:1-10. Epub 2020 Jun 24.

Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35039Marburg, Germany.

Background: Subclinical psychotic-like experiences (PLE), resembling key symptoms of psychotic disorders, are common throughout the general population and possibly associated with psychosis risk. There is evidence that such symptoms are also associated with structural brain changes.

Methods: In 672 healthy individuals, we assessed PLE and associated distress with the symptom-checklist-90R (SCL-90R) scales 'schizotypal signs' (STS) and 'schizophrenia nuclear symptoms' (SNS) and analysed associations with voxel- and surfaced-based brain structural parameters derived from structural magnetic resonance imaging at 3 T with CAT12.

Results: For SNS, we found a positive correlation with the volume in the left superior parietal lobule and the precuneus, and a negative correlation with the volume in the right inferior temporal gyrus [p < 0.05 cluster-level Family Wise Error (FWE-corrected]. For STS, we found a negative correlation with the volume of the left and right precentral gyrus (p < 0.05 cluster-level FWE-corrected). Surface-based analyses did not detect any significant clusters with the chosen statistical threshold of p < 0.05. However, in exploratory analyses (p < 0.001, uncorrected), we found a positive correlation of SNS with gyrification in the left insula and rostral middle frontal gyrus and of STS with the left precuneus and insula, as well as a negative correlation of STS with gyrification in the left temporal pole.

Conclusions: Our results show that brain structures in areas implicated in schizophrenia are also related to PLE and its associated distress in healthy individuals. This pattern supports a dimensional model of the neural correlates of symptoms of the psychotic spectrum.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1017/S0033291720002044DOI Listing
June 2020

Replication of a hippocampus specific effect of the tescalcin regulating variant rs7294919 on gray matter structure.

Eur Neuropsychopharmacol 2020 07 23;36:10-17. Epub 2020 May 23.

Department of Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany. Electronic address:

While the hippocampus remains a region of high interest for neuropsychiatric research, the precise contributors to hippocampal morphometry are still not well understood. We and others previously reported a hippocampus specific effect of a tescalcin gene (TESC) regulating single nucleotide polymorphism (rs7294919) on gray matter volume. Here we aimed to replicate and extend these findings. Two complementary morphometric approaches (voxel based morphometry (VBM) and automated volumetric segmentation) were applied in a well-powered cohort from the Marburg-Münster Affective Disorder Cohort Study (MACS) including N=1137 participants (n=636 healthy controls, n=501 depressed patients). rs7294919 homozygous T-allele genotype was significantly associated with lower hippocampal gray matter density as well as with reduced hippocampal volume. Exploratory whole brain VBM analyses revealed no further associations with gray matter volume outside the hippocampus. No interaction effects of rs7294919 with depression nor with childhood trauma on hippocampal morphometry could be detected. Hippocampal subfield analyses revealed similar effects of rs7294919 in all hippocampal subfields. In sum, our results replicate a hippocampus specific effect of rs7294919 on brain structure. Due to the robust evidence for a pronounced association between the reported polymorphism and hippocampal morphometry, future research should consider investigating the potential clinical and functional relevance of the reported association.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.euroneuro.2020.03.021DOI Listing
July 2020

Brain functional effects of electroconvulsive therapy during emotional processing in major depressive disorder.

Brain Stimul 2020 Jul - Aug;13(4):1051-1058. Epub 2020 Apr 7.

Department of Psychiatry, University of Münster, Germany. Electronic address:

Background: In treatment-resistant major depressive disorder (MDD), electroconvulsive therapy (ECT) is a treatment with high efficacy. While knowledge regarding changes in brain structure following ECT is growing, the effects of ECT on brain function during emotional processing are largely unknown.

Objective: We investigated the effects of ECT on the activity of the anterior cingulate cortex (ACC) and amygdala during negative emotional stimuli processing and its association with clinical response.

Methods: In this non-randomized longitudinal study, patients with MDD (n = 37) were assessed before and after treatment with ECT. Healthy controls (n = 37) were matched regarding age and gender. Functional magnetic resonance imaging (fMRI) was obtained twice, at baseline and after six weeks using a supraliminal face-matching paradigm. In order to evaluate effects of clinical response, additional post-hoc analyses were performed comparing responders to non-responders.

Results: After ECT, patients with MDD showed a statistically significant increase in ACC activity during processing of negative emotional stimuli (p = .039). This effect was driven by responders (p = .023), while non-responders showed no increase. Responders also had lower pre-treatment ACC activity compared to non-responders (p = .025). No significant effects in the amygdala could be observed.

Conclusions: ECT leads to brain functional changes in the ACC, a relevant region for emotional regulation during processing of negative stimuli. Furthermore, baseline ACC activity might serve as a biomarker for treatment response. Findings are in accordance with recent studies highlighting properties of pre-treatment ACC to be associated with general antidepressive treatment response.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brs.2020.03.018DOI Listing
December 2020

Biological sex classification with structural MRI data shows increased misclassification in transgender women.

Neuropsychopharmacology 2020 09 9;45(10):1758-1765. Epub 2020 Apr 9.

Department of Psychiatry, University of Münster, Albert Schweitzer-Campus 1, A9, 48149, Münster, Germany.

Transgender individuals (TIs) show brain-structural alterations that differ from their biological sex as well as their perceived gender. To substantiate evidence that the brain structure of TIs differs from male and female, we use a combined multivariate and univariate approach. Gray matter segments resulting from voxel-based morphometry preprocessing of N = 1753 cisgender (CG) healthy participants were used to train (N = 1402) and validate (20% holdout N = 351) a support-vector machine classifying the biological sex. As a second validation, we classified N = 1104 patients with depression. A third validation was performed using the matched CG sample of the transgender women (TW) application sample. Subsequently, the classifier was applied to N = 26 TW. Finally, we compared brain volumes of CG-men, women, and TW-pre/post treatment cross-sex hormone treatment (CHT) in a univariate analysis controlling for sexual orientation, age, and total brain volume. The application of our biological sex classifier to the transgender sample resulted in a significantly lower true positive rate (TPR-male = 56.0%). The TPR did not differ between CG-individuals with (TPR-male = 86.9%) and without depression (TPR-male = 88.5%). The univariate analysis of the transgender application-sample revealed that TW-pre/post treatment show brain-structural differences from CG-women and CG-men in the putamen and insula, as well as the whole-brain analysis. Our results support the hypothesis that brain structure in TW differs from brain structure of their biological sex (male) as well as their perceived gender (female). This finding substantiates evidence that TIs show specific brain-structural alterations leading to a different pattern of brain structure than CG-individuals.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41386-020-0666-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7419542PMC
September 2020

The genetic architecture of the human cerebral cortex.

Science 2020 03;367(6484)

The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.aay6690DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7295264PMC
March 2020

The role of BDNF methylation and Val Met in amygdala reactivity during emotion processing.

Hum Brain Mapp 2020 02 15;41(3):594-604. Epub 2019 Oct 15.

Department of Psychiatry, University of Münster, Münster, Germany.

Epigenetic alterations of the brain-derived neurotrophic factor (BDNF) gene have been associated with psychiatric disorders in humans and with differences in amygdala BDNF mRNA levels in rodents. This human study aimed to investigate the relationship between the functional BDNF-Val Met polymorphism, its surrounding DNA methylation in BDNF exon IX, amygdala reactivity to emotional faces, and personality traits. Healthy controls (HC, n = 189) underwent functional MRI during an emotional face-matching task. Harm avoidance, novelty seeking and reward dependence were measured using the Tridimensional Personality Questionnaire (TPQ). Individual BDNF methylation profiles were ascertained and associated with several BDNF single nucleotide polymorphisms surrounding the BDNF-Val Met, amygdala reactivity, novelty seeking and harm avoidance. Higher BDNF methylation was associated with higher amygdala reactivity (x = 34, y = 0, z = -26, t = 3.00, TFCE = 42.39, p = .045), whereby the BDNF-Val Met genotype per se did not show any significant association with brain function. Furthermore, novelty seeking was negatively associated with BDNF methylation (r = -.19, p = .015) and amygdala reactivity (r = -.17, p = .028), while harm avoidance showed a trend for a positive association with BDNF methylation (r = .14, p = .066). The study provides first insights into the relationship among BDNF methylation, BDNF genotype, amygdala reactivity and personality traits in humans, highlighting the multidimensional relations among genetics, epigenetics, and neuronal functions. The present study suggests a possible involvement of epigenetic BDNF modifications in psychiatric disorders and related brain functions, whereby high BDNF methylation might reduce BDNF mRNA expression and upregulate amygdala reactivity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/hbm.24825DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7268057PMC
February 2020

Brain structural correlates of alexithymia in patients with major depressive disorder

J Psychiatry Neurosci 2020 03;45(2):117-124

From the Department of Psychiatry, University of Münster, Münster, Germany (Förster, Enneking, Dohm, Redlich, Meinert, Geisler, Leehr, Baune, Arolt, Grotegerd, Dannlowski); the Institute of Clinical Radiology, University of Münster, Münster, Germany (Kugel); the Department of Psychiatry, University of Melbourne, Parkville, Australia (Baune); the Department of Psychology, University of Münster, Münster, Germany (Zwitserlood); and the Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Australia (Baune).

Background: Alexithymia is a risk factor for major depressive disorder (MDD) and has been associated with diminished treatment response. Neuroimaging studies have revealed structural aberrations of the anterior cingulate cortex and the fusiform gyrus in healthy controls with high levels of alexithymia. The present study tried to corroborate and extend these results to patients with MDD compared with healthy controls.

Methods: We investigated the relationship between alexithymia, depression and grey matter volume in 63 patients with MDD (mean age ± standard deviation = 42.43 yr ± 11.91; 33 female) and 46 healthy controls (45.35 yr ± 8.37; 22 female). We assessed alexithymia using the Toronto Alexithymia Scale. We conducted an alexithymia × group analysis of covariance; we used a region-of-interest approach, including the fusiform gyrus and anterior cingulate cortex, and conducted whole brain analysis using voxelbased morphometry.

Results: Our analysis revealed a significant alexithymia × group interaction in the fusiform gyrus (left, pFWE = 0.031; right, pFWE = 0.010). Higher alexithymia scores were associated with decreased grey matter volume in patients with MDD (pFWE = 0.009), but with increased grey matter volume of the fusiform gyrus in healthy controls (pFWE = 0.044). We found no significant main effects in the region-of-interest analysis.

Limitations: Owing to the naturalistic nature of our study, patients with MDD and healthy controls differed significantly in their alexithymia scores.

Conclusion: Our results showed the fusiform gyrus as a correlate of alexithymia. We also found differences related to alexithymia between patients with MDD and healthy controls in the fusiform gyrus. Our study encourages research related to the transition from risk to MDD in people with alexithymia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1503/jpn.190044DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7828911PMC
March 2020

Structural and functional neural correlates of vigilant and avoidant regulation style.

J Affect Disord 2019 11 3;258:96-101. Epub 2019 Aug 3.

Department of Psychiatry and Psychotherapy, University of Muenster, Albert Schweitzer-Campus 1, G 9A, 48149 Muenster, Germany.

Background: Regulation of emotional arousal is a relevant factor for mental health. The investigation of neural underpinnings of regulation styles in healthy individuals may provide important insights regarding potential risk factors. To fill the gap of structural correlates of regulation styles and to expand previous results, we focused on the association between brain structure, neural responsiveness and vigilant/avoidant regulation style.

Methods: In n = 302 healthy individuals regulation style was assessed with the Mainz Coping Inventory (MCI). Participants underwent structural and functional MRI during an emotion-processing paradigm. Structural MRI (voxel-based morphometry) and functional MRI were analysed in two regions of interest (amygdala and anterior cingulate cortex [ACC]).

Results: Regulation styles did not show an association with brain structure after correction for gender, age, trait anxiety, depressive symptoms. During emotion processing, a vigilant regulation style was negatively associated with ACC activation.

Limitations: The cross-sectional study in a non-pathological sample is not adequate to unveil causalities or draw conclusions regarding prevention interventions.

Conclusion: Regulation styles are associated with specific neural activation patterns. The association of a high-vigilant regulation style and low ACC activation during emotion processing in healthy participants might be a potential risk factor.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jad.2019.08.001DOI Listing
November 2019

Reduced fractional anisotropy in depressed patients due to childhood maltreatment rather than diagnosis.

Neuropsychopharmacology 2019 11 5;44(12):2065-2072. Epub 2019 Aug 5.

Department of Psychiatry, University of Münster, Münster, Germany.

Reduced fractional anisotropy (FA) associated with Major Depressive Disorder (MDD) overlaps anatomically with effects of childhood maltreatment experiences. The aim of this study was, therefore, to replicate the negative effect of childhood maltreatment on white matter fiber structure and to demonstrate, that alterations in MDD might be partially attributed to the higher occurrence of childhood maltreatment in MDD. Two independent cohorts (total N = 1 256) were investigated in a diffusion tensor imaging study: The Münster Neuroimaging Cohort (MNC, N = 186 MDD, N = 210 healthy controls, HC) as discovery sample and the Marburg-Münster Affective Disorders Cohort Study (MACS, N = 397 MDD, N = 462 HC) as replication sample. The effects of diagnosis (HC vs. MDD) and Childhood Trauma Questionnaire (CTQ) scores on FA were analyzed. A main effect of diagnosis with higher FA in MDD patients compared with HC was found in the MNC (p = 0.021), but not in the MACS (p = 0.52) before correcting for CTQ. A significant negative correlation of FA with CTQ emerged in both cohorts (MNC: p = 0.006, MACS: p = 0.012) in several tracts previously described in the literature. No CTQ × diagnosis interaction could be detected. Any main effect of diagnosis was abolished after correcting for CTQ (MNC: p = 0.562, MACS: p = 0.115). No differences in FA between MDD and HC could be found after correcting for childhood maltreatment, suggesting that previously reported group differences might be attributed partially to higher levels of maltreatment experiences in MDD rather than diagnosis itself. Furthermore, a well-established finding of reduced FA following childhood maltreatment experiences was replicated.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41386-019-0472-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6897978PMC
November 2019

No Alterations of Brain Structural Asymmetry in Major Depressive Disorder: An ENIGMA Consortium Analysis.

Am J Psychiatry 2019 12 29;176(12):1039-1049. Epub 2019 Jul 29.

The Department of Language and Genetics, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands (de Kovel, Francks); Orygen, the National Centre of Excellence in Youth Mental Health, Melbourne, Australia (Davey); the Department of Psychiatry, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam (Veltman); the Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Marina del Rey (Jahanshad, Thompson); the Laboratory of Affective, Cognitive, and Translational Neuroscience, Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russian Federation (Aftanas, Brack, Osipov); the Department of Neuroscience, Neuroimaging Center, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands (Aleman); the Department of Psychiatry, University of Melbourne, Melbourne (Baune); the Institute for Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany (Bülow); the Laboratory of Psychiatric Neuroimaging (LIM-21), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil (Busatto Filho, Rosa); the Department of Psychiatry, Trinity College Dublin (Carballedo, Frodl); the Department of Psychiatry and the Weill Institute for Neurosciences, Division of Child and Adolescent Psychiatry, University of California, San Francisco (Connolly, Ho, Yang); the Department of Psychiatry, University of Minnesota Medical School, Minneapolis (Cullen, Mueller, Ubani, Schreiner); the Department of Psychiatry, University of Münster, Münster, Germany (Dannlowski, Dohm, Grotegerd, Leehr, Sindermann, Winter, Zaremba); the Department of Psychology, School of Arts and Social Sciences, City, University of London, London (Dima); the Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany (Erwin-Grabner; Goya-Maldonado, Schnell, Singh); the Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Magdeburg, Germany (Frodl); the Centre for Affective Disorders, Institute of Psychiatry, Psychology, and Neuroscience, King's College London (Fu); the Department of Psychology, Neuroscience, and Behaviour, McMaster University, Hamilton, Canada (Hall); the Department of Psychiatry, Yale School of Medicine, New Haven, Conn. (Alexander-Bloch, Glahn); the Psychopharmacology Research Unit, Department of Psychiatry, University of Oxford, Oxford, U.K. (Godlewska); the Department of Psychology, Stanford University, Stanford, Calif. (Gotlib, Ho); the Department of Psychiatry and Psychotherapy, University Medicine Greifswald (Grabe, Wittfeld); the Department of Psychiatry, Interdisciplinary Center Psychopathology and Emotion regulation, University Medical Center Groningen (Groenewold); the Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany (Gruber, Krämer, Simulionyte); the Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, and Melbourne Health, Melbourne (Harrison); the Youth Mental Health Team, Brain and Mind Centre, University of Sydney, Sydney, Australia (Hatton, Hickie, Lagopoulos); the Department of Psychiatry and Psychotherapy, Philipps University Marburg, Marburg, Germany (Kircher, Krug, Nenadic, Yüksel); the Department of Neurology, University of Magdeburg, Magdeburg (Li); the Departments of Psychiatry and Paediatrics, University of Calgary, Calgary, Canada (MacMaster, McLellan); the Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary (MacQueen); the Division of Psychiatry, University of Edinburgh, Edinburgh (Harris, McIntosh, Papmeyer, Whalley); Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia (Medland); the Department. of Psychiatry, Institute of Biomedical Research Sant Pau, Barcelona, Spain (Portella); the Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Amsterdam (Reneman, Schrantee); the Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Sacchet); West Region and Research Division, Institute of Mental Health, Singapore (Sim); Medical Research Council Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry, University of Cape Town, Cape Town, South Africa (Groenewold, Stein); Brain Function and Dysfunction, Leids Universitair Medisch Centrum, Leiden, the Netherlands (Van der Wee); the Department of Psychiatry, Leiden University Medical Center, Leiden (Van der Werff); the Division of Mind and Brain Research, Department of Psychiatry and Psychotherapy CCM, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin (Veer, H. Walter); the Institute of Information and Communication Technologies (Instituto ITACA), Universitat Politècnica de València, València, Spain (Gilabert); the Institute for Community Medicine, University Medicine Greifswald, Greifswald (Völzke); the Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany (M. Walter); the Department of Psychology, University of Minnesota, Minneapolis (Schreiner); the German Center for Neurodegenerative Diseases, Site Rostock/Greifswald (Grabe, Wittfeld); the Department of Neuroscience, Novosibirsk State University, Novosibirsk (Aftanas); the Department of Psychology, University of Groningen, Groningen (Aleman); the Center for Interdisciplinary Research on Applied Neurosciences, University of São Paulo, São Paulo (Busatto Filho, Rosa); the Department of Biomedical Sciences, Florida State University, Tallahassee (Connolly); the Department of Neuroimaging, Institute of Psychiatry, Psychology, and Neuroscience, King's College London (Dima); the Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen (Francks); the School of Psychology, University of East London, London (Fu); the Sunshine Coast Mind and Neuroscience Thompson Institute, Queensland, Australia (Lagopoulos); Strategic Clinical Network for Addictions and Mental Health, Alberta, Canada (MacMaster); the Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh (McIntosh); the Rehabilitation Services and Care Unit, Swiss Paraplegic Research, Nottwil, Switzerland (Papmeyer); CIBERSAM, Madrid (Portella); the Centre for Youth Mental Health, University of Melbourne, Melbourne (Davey, Schmaal); the Spinoza Center for Neuroimaging, Royal Netherlands Academy of Arts and Sciences, Amsterdam (Schrantee); Yong Loo Lin School of Medicine, National University of Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (Sim); the School of Public Health, Boston University, Boston (Ubani); the Leiden Institute for Brain and Cognition, Leiden (Van der Werff); the German Center for Cardiovascular Research, partner site Greifswald, Greifswald (Völzke).

Objective: Asymmetry is a subtle but pervasive aspect of the human brain, and it may be altered in several psychiatric conditions. MRI studies have shown subtle differences of brain anatomy between people with major depressive disorder and healthy control subjects, but few studies have specifically examined brain anatomical asymmetry in relation to this disorder, and results from those studies have remained inconclusive. At the functional level, some electroencephalography studies have indicated left fronto-cortical hypoactivity and right parietal hypoactivity in depressive disorders, so aspects of lateralized anatomy may also be affected. The authors used pooled individual-level data from data sets collected around the world to investigate differences in laterality in measures of cortical thickness, cortical surface area, and subcortical volume between individuals with major depression and healthy control subjects.

Methods: The authors investigated differences in the laterality of thickness and surface area measures of 34 cerebral cortical regions in 2,256 individuals with major depression and 3,504 control subjects from 31 separate data sets, and they investigated volume asymmetries of eight subcortical structures in 2,540 individuals with major depression and 4,230 control subjects from 32 data sets. T-weighted MRI data were processed with a single protocol using FreeSurfer and the Desikan-Killiany atlas. The large sample size provided 80% power to detect effects of the order of Cohen's d=0.1.

Results: The largest effect size (Cohen's d) of major depression diagnosis was 0.085 for the thickness asymmetry of the superior temporal cortex, which was not significant after adjustment for multiple testing. Asymmetry measures were not significantly associated with medication use, acute compared with remitted status, first episode compared with recurrent status, or age at onset.

Conclusions: Altered brain macro-anatomical asymmetry may be of little relevance to major depression etiology in most cases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1176/appi.ajp.2019.18101144DOI Listing
December 2019

Evidence for a sex-specific contribution of polygenic load for anorexia nervosa to body weight and prefrontal brain structure in nonclinical individuals.

Neuropsychopharmacology 2019 12 8;44(13):2212-2219. Epub 2019 Jul 8.

Department of Psychiatry, University of Münster, Albert-Schweitzer-Str. 11, Münster, 48149, Germany.

Genetic predisposition and brain structural abnormalities have been shown to be involved in the biological underpinnings of anorexia nervosa (AN). Prefrontal brain regions are suggested to contribute through behavioral inhibition mechanisms to body weight. However, it is unknown if and to which extent biological correlates for AN might be present in individuals without clinical AN symptomatology. We therefore investigated the contribution of polygenic load for AN on body weight and prefrontal brain structure in a sample of n = 380 nonclinical individuals. A polygenic score (PGS) reflecting the individual genetic load for the trait of anorexia nervosa was calculated. Structural MRI data were acquired and preprocessed using the cortical parcellation stream of FreeSurfer. We observed a significant PGS × sex interaction effect on body mass index (BMI), which was driven by a negative correlation between PGS and BMI in female participants. Imaging analyses revealed significant interaction effects of sex  × PGS on surface area of the lateral orbitofrontal cortex (OFC), the pars orbitalis (PO), the rostral middle frontal gyrus (RMF) and the pars triangularis (PT) of the left frontal cortex. The interaction effects were driven by positive correlations between PGS and prefrontal surface areas in female participants and negative correlations in male participants. We furthermore found sex-specific associations between BMI and left RMF surface area as well as between BMI and left PO and left RMF thickness. Our findings demonstrate a sex-specific association between polygenic load for AN, BMI, and prefrontal brain structure in nonclinical individuals. Hence, this study identifies structural abnormalities associated with polygenic load for AN and BMI in brain regions deeply involved in behavioral inhibition and impulse regulation as candidate brain regions for future research.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41386-019-0461-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6898345PMC
December 2019

Apolipoprotein E Homozygous ε4 Allele Status: A Deteriorating Effect on Visuospatial Working Memory and Global Brain Structure.

Front Neurol 2019 27;10:552. Epub 2019 May 27.

Department of Psychiatry, University of Münster, Münster, Germany.

The Apolipoprotein E (APOE) ε4 genotype is known to be one of the strongest single-gene predictors for Alzheimer disease, which is characterized by widespread brain structural degeneration progressing along with cognitive impairment. The ε4 allele status has been associated with brain structural alterations and lower cognitive ability in non-demented subjects. However, it remains unclear to what extent the visuospatial cognitive domain is affected, from what age onward changes are detectable and if alterations may interact with cognitive deficits in major depressive disorder (MDD). The current work investigated the effect of APOE ε4 homozygosity on visuospatial working memory (vWM) capacity, and on hippocampal morphometry. Furthermore, potential moderating roles of age and MDD were assessed. A sample of = 31 homozygous ε4 carriers was contrasted with = 31 non-ε4 carriers in a cross-sectional design. The sample consisted of non-demented, young to mid-age participants (mean age = 34.47; = 13.48; 51.6% female). Among them were = 12 homozygous ε4 carriers and = 12 non-ε4 carriers suffering from MDD (39%). VWM was assessed using the Corsi block-tapping task. Region of interest analyses of hippocampal gray matter density and volume were conducted using voxel-based morphometry (CAT12), and Freesurfer, respectively. Homozygous ε4 carriers showed significantly lower Corsi span capacity than non-ε4 carriers did, and Corsi span capacity was associated with higher gray matter density of the hippocampus. APOE group differences in hippocampal volume could be detected but were no longer present when controlling for total intracranial volume. Hippocampal gray matter density did not differ between APOE groups. We did not find any interaction effects of age and MDD diagnosis on hippocampal morphometry. Our results point toward a negative association of homozygous ε4 allele status with vWM capacity already during mid-adulthood, which emerges independently of MDD diagnosis and age. APOE genotype seems to be associated with global brain structural rather than hippocampus specific alterations in young- to mid-age participants.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fneur.2019.00552DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6545528PMC
May 2019

Time heals all wounds? A 2-year longitudinal diffusion tensor imaging study in major depressive disorder

J Psychiatry Neurosci 2019 11;44(6):407-413

From the Department of Psychiatry, University of Münster, Germany (Repple, Zaremba, Meinert, Grotegerd, Redlich, Förster, Dohm, Opel, Hahn, Enneking, Leehr, Böhnlein, Dzvonyar, Sindermann, Winter, Goltermann, Arolt, Dannlowski); and the Institute of Clinical Radiology, Medical Faculty, University of Münster, and University Hospital Münster, Germany (Kugel, Bauer, Heindel).

Background: Cross-sectional studies have repeatedly shown impaired white matter integrity in patients with major depressive disorder. Longitudinal analyses are missing from the current research and are crucial to elucidating the impact of disease trajectories on white matter impairment in major depressive disorder.

Methods: Fifty-nine patients with major depressive disorder receiving inpatient treatment, as well as 49 healthy controls, took part in a prospective study. Participants were scanned twice (baseline and follow-up), approximately 2.25 years apart, using diffusion tensor imaging. We analyzed diffusion metrics using tract-based spatial statistics.

Results: At baseline, patients had higher mean diffusivity in a large bilateral frontal cluster comprising the body and genu of the corpus callosum, the anterior and superior corona radiata, and the superior longitudinal fasciculus. A significant group × time interaction revealed a decrease of mean diffusivity in patients with major depressive disorder over time, abolishing group differences at follow-up. This effect was observed irrespective of disease course in the follow-up period.

Limitations: Analyzing the course of illness is challenging because of recollection biases in patients with major depressive disorder.

Conclusion: This study reports follow-up diffusion tensor imaging data in patients with major depressive disorder after an acute depressive episode. We demonstrated impaired prefrontal white matter microstructure (higher mean diffusivity) at baseline in patients with major depressive disorder, which normalized at follow-up after 2 years, irrespective of disease course. This might have been due to a general treatment effect and might have reflected recovery of white matter integrity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1503/jpn.180243DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6821510PMC
November 2019

Associations of schizophrenia risk genes ZNF804A and CACNA1C with schizotypy and modulation of attention in healthy subjects.

Schizophr Res 2019 06 7;208:67-75. Epub 2019 May 7.

Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg and University Hospital Marburg, UKGM, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032 Marburg, Germany.

Schizotypy is a multidimensional risk phenotype distributed in the general population, constituting of subclinical, psychotic-like symptoms. It is associated with psychosis proneness, and several risk genes for psychosis are associated with schizotypy in non-clinical populations. Schizotypy might also modulate cognitive abilities as it is associated with attentional deficits in healthy subjects. In this study, we tested the hypothesis that established genetic risk variants ZNF804A rs1344706 and CACNA1C rs1006737 are associated with psychometric schizotypy and that schizotypy mediates their effect on attention or vice versa. In 615 healthy subjects from the FOR2107 cohort study, we analysed the genetic risk variants ZNF804A rs1344706 and CACNA1C rs1006737, psychometric schizotypy (schizotypal personality questionnaire-brief SPQB), and a neuropsychological measure of sustained and selective attention (d2 test). ZNF804A rs1344706 C (non-risk) alleles were significantly associated with higher SPQ-B Cognitive-Perceptual subscores in women and with attention deficits in both sexes. This schizotypy dimension also mediated the effect of ZNF804A on attention in women, but not in men. CACNA1C rs1006737-A showed a significant sex-modulated negative association with Interpersonal schizotypy only in men, and no effect on attention. Our multivariate model demonstrates differential genetic contributions of two psychosis risk genes to dimensions of schizotypy and, partly, to attention. This supports a model of shared genetic influence between schizotypy and cognitive functions impaired in schizophrenia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.schres.2019.04.018DOI Listing
June 2019

Influence of electroconvulsive therapy on white matter structure in a diffusion tensor imaging study.

Psychol Med 2020 04 23;50(5):849-856. Epub 2019 Apr 23.

Department of Psychiatry, University of Muenster, Germany.

Background: Electroconvulsive therapy (ECT) is a fast-acting intervention for major depressive disorder. Previous studies indicated neurotrophic effects following ECT that might contribute to changes in white matter brain structure. We investigated the influence of ECT in a non-randomized prospective study focusing on white matter changes over time.

Methods: Twenty-nine severely depressed patients receiving ECT in addition to inpatient treatment, 69 severely depressed patients with inpatient treatment (NON-ECT) and 52 healthy controls (HC) took part in a non-randomized prospective study. Participants were scanned twice, approximately 6 weeks apart, using diffusion tensor imaging, applying tract-based spatial statistics. Additional correlational analyses were conducted in the ECT subsample to investigate the effects of seizure duration and therapeutic response.

Results: Mean diffusivity (MD) increased after ECT in the right hemisphere, which was an ECT-group-specific effect. Seizure duration was associated with decreased fractional anisotropy (FA) following ECT. Longitudinal changes in ECT were not associated with therapy response. However, within the ECT group only, baseline FA was positively and MD negatively associated with post-ECT symptomatology.

Conclusion: Our data suggest that ECT changes white matter integrity, possibly reflecting increased permeability of the blood-brain barrier, resulting in disturbed communication of fibers. Further, baseline diffusion metrics were associated with therapy response. Coherent fiber structure could be a prerequisite for a generalized seizure and inhibitory brain signaling necessary to successfully inhibit increased seizure activity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1017/S0033291719000758DOI Listing
April 2020

Mediation of the influence of childhood maltreatment on depression relapse by cortical structure: a 2-year longitudinal observational study.

Lancet Psychiatry 2019 04;6(4):318-326

Department of Psychiatry, University of Münster, Münster Germany.

Background: Childhood maltreatment is a leading environmental risk factor for an unfavourable course of disease in major depressive disorder. Both maltreatment and major depressive disorder are associated with similar brain structural alterations suggesting that brain structural changes could mediate the adverse influence of maltreatment on clinical outcome in major depressive disorder. However, longitudinal studies have not been able to confirm this hypothesis. We therefore aimed to clarify the relationship between childhood trauma, brain structural alterations, and depression relapse in a longitudinal design.

Methods: We recruited participants at the Department of Psychiatry, University of Münster, Germany, from the Münster Neuroimage Cohort for whom 2-year longitudinal clinical data were available. Baseline data acquisition comprised clinical assessments, structural MRI, and retrospective assessment of the extent of childhood maltreatment experiences using the Childhood Trauma Questionnaire. Clinical follow-up assessments were conducted in all participants 2 years after initial recruitment.

Findings: Initial recruitment was March 21, 2010-Jan 29, 2016; follow-up reassessment Sept 7, 2012-March 9, 2018. 110 patients with major depressive disorder participated in this study. 35 patients were relapse-free, whereas 75 patients had experienced depression relapse within the 2-year follow-up period. Childhood maltreatment was significantly associated with depression relapse during follow-up (odds ratio [OR] 1·035, 95% CI 1·001-1·070; p=0·045). Both previous childhood maltreatment experiences and future depression relapse were associated with reduced cortical surface area (OR 0·996, 95% CI 0·994-0·999; p=0·001), primarily in the right insula at baseline (r=-0·219, p=0·023). Insular surface area was shown to mediate the association between maltreatment and future depression relapse (indirect effect: coefficient 0·0128, SE 0·0081, 95% CI 0·0024-0·0333).

Interpretation: Early life stress has a detrimental effect on brain structure, which increases the risk of unfavourable disease courses in major depression. Clinical and translational research should explore the role of childhood maltreatment as causing a potential clinically and biologically distinct subtype of major depressive disorder.

Funding: The German Research Foundation, the Interdisciplinary Centre for Clinical Research, and the Deanery of the Medical Faculty of the University of Münster.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/S2215-0366(19)30044-6DOI Listing
April 2019

The effects of processing speed on memory impairment in patients with major depressive disorder.

Prog Neuropsychopharmacol Biol Psychiatry 2019 06 1;92:494-500. Epub 2019 Mar 1.

Department of Psychiatry, University of Münster, Germany. Electronic address:

Objective: Learning and memory performance have been reported to be impaired in patients with Major Depressive Disorder (MDD). Impairments are associated with diminished psychosocial functioning. Based on the processing-speed theory, we aimed to examine whether processing speed mediates the relationship between depression status and verbal, visuo-spatial and working memory impairment.

Methods: A neuropsychological test-battery was administered to 106 patients with current MDD, 119 patients with remitted MDD and 120 healthy controls to assess processing speed, learning and memory performance. To examine the impact of diagnosis status and processing speed on learning and memory performance, simple mediation models were computed.

Results: Currently depressed patients with MDD showed partially slowed processing speed, impaired short-term verbal and visuo-spatial memory performance compared to healthy controls. A basic deficit in processing speed mediated the relationship between depression status and verbal, visuo-spatial, and working memory impairment. However, there was no processing speed or memory impairment in patients with remitted MDD.

Conclusion: Processing speed is an important factor regarding learning and memory impairment in patients with current MDD. Thereby, our results highlight novel targets for treatment of diminished learning and memory performance via enhancement of processing speed using pharmacological as well as therapeutic interventions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pnpbp.2019.02.015DOI Listing
June 2019

Social anhedonia in major depressive disorder: a symptom-specific neuroimaging approach.

Neuropsychopharmacology 2019 04 27;44(5):883-889. Epub 2018 Nov 27.

Department of Psychiatry, University of Münster, Münster, Germany.

While research concerning brain structural biomarkers of major depressive disorder (MDD) is continuously progressing, our state of knowledge regarding biomarkers of specific clinical profiles of MDD is still limited. The aim of the present study was to investigate brain structural correlates of social anhedonia as a cardinal symptom of MDD. In a cross-sectional study, we investigated n = 166 patients with MDD and n = 166 matched healthy controls (HC) using structural magnetic resonance imaging (MRI). Social anhedonia was assessed using the Chapman Scales for Social Anhedonia (SAS). An anhedonia x group ANCOVA was performed in a region of interest approach of the dorsal and ventral striatum (bilateral caudate nucleus, putamen, nucleus accumbens respectively) as well as on whole-brain level. The analyses revealed a significant main effect for social anhedonia: higher SAS-scores were associated with reduced gray matter volume in the bilateral caudate nucleus in both the MDD-group (p = 0.002) and the HC-group (p = 0.032). The whole-brain analysis confirmed this association (left: p = 0.036, right: p = 0.047). There was no significant main effect of group and no significant anhedonia x group interaction effect. This is the first study providing evidence for volumetric aberrations in the reward system related to social anhedonia independently of diagnosis, depression severity, medication status, and former course of disease. These results support the hypothesis that social anhedonia has a brain biomarker serving as a possible endophenotype of depression and possibly providing an alternative approach for a more precise and effective treatment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41386-018-0283-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6461766PMC
April 2019
-->