Publications by authors named "Katerina Honkova"

7 Publications

  • Page 1 of 1

The Impact of Cesarean and Vaginal Delivery on Results of Psychological Cognitive Test in 5 Year Old Children.

Medicina (Kaunas) 2020 Oct 21;56(10). Epub 2020 Oct 21.

Faculty of Health and Social Sciences, University of South Bohemia, 370 05 Ceske Budejovice, Czech Republic.

The impact of cesarean and vaginal delivery on cognitive development was analyzed in 5 year old children. : Two cohorts of 5 year old children born in the years 2013 and 2014 in Karvina (Northern Moravia) and Ceske Budejovice (Southern Bohemia) were studied for their cognitive development related to vaginal ( = 117) and cesarean types of delivery ( = 51). The Bender Visual Motor Gestalt Test (BG test) and the Raven Colored Progressive Matrices (RCPM test) were used as psychological tests. : In the comparison of vaginal delivery vs. cesarean section, the children delivered by cesarean section scored lower and, therefore, achieved poorer performance in cognitive tests compared to those born by vaginal delivery, as shown in the RCPM ( < 0.001) and in the BG test ( < 0.001). When mothers' education level was considered, the children whose mothers achieved a university degree scored higher in both the RCPM test ( < 0.001) and the BG test ( < 0.01) compared to the children of mothers with lower secondary education. When comparing mothers with a university degree to those with higher secondary education, there was a significant correlation between level of education and score achieved in the RCPM test ( < 0.001), but not in the BG test. : According to our findings, the mode of delivery seems to have a significant influence on performance in psychological cognitive tests in 5 year old children in favor of those who were born by vaginal delivery. Since cesarean-born children scored notably below vaginally born children, it appears possible that cesarean delivery may have a convincingly adverse effect on children's further cognitive development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/medicina56100554DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7589839PMC
October 2020

The Differential Effect of Carbon Dots on Gene Expression and DNA Methylation of Human Embryonic Lung Fibroblasts as a Function of Surface Charge and Dose.

Int J Mol Sci 2020 Jul 4;21(13). Epub 2020 Jul 4.

Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic.

This study presents a toxicological evaluation of two types of carbon dots (CD), similar in size (<10 nm) but differing in surface charge. Whole-genome mRNA and miRNA expression (RNAseq), as well as gene-specific DNA methylation changes, were analyzed in human embryonic lung fibroblasts (HEL 12469) after 4 h and 24 h exposure to concentrations of 10 and 50 µg/mL (for positive charged CD; pCD) or 10 and 100 µg/mL (for negative charged CD, nCD). The results showed a distinct response for the tested nanomaterials (NMs). The exposure to pCD induced the expression of a substantially lower number of mRNAs than those to nCD, with few commonly differentially expressed genes between the two CDs. For both CDs, the number of deregulated mRNAs increased with the dose and exposure time. The pathway analysis revealed a deregulation of processes associated with immune response, tumorigenesis and cell cycle regulation, after exposure to pCD. For nCD treatment, pathways relating to cell proliferation, apoptosis, oxidative stress, gene expression, and cycle regulation were detected. The expression of miRNAs followed a similar pattern: more pronounced changes after nCD exposure and few commonly differentially expressed miRNAs between the two CDs. For both CDs the pathway analysis based on miRNA-mRNA interactions, showed a deregulation of cancer-related pathways, immune processes and processes involved in extracellular matrix interactions. DNA methylation was not affected by exposure to any of the two CDs. In summary, although the tested CDs induced distinct responses on the level of mRNA and miRNA expression, pathway analyses revealed a potential common biological impact of both NMs independent of their surface charge.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms21134763DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7369946PMC
July 2020

DNA Methylation Profiles in a Group of Workers Occupationally Exposed to Nanoparticles.

Int J Mol Sci 2020 Mar 31;21(7). Epub 2020 Mar 31.

Department of Machining and Assembly, Department of Engineering Technology, Department of Material Science, Faculty of Mechanical Engineering, Technical University in Liberec, Studentska 1402/2 Liberec, Czech Republic.

The risk of exposure to nanoparticles (NPs) has rapidly increased during the last decade due to the vast use of nanomaterials (NMs) in many areas of human life. Despite this fact, human biomonitoring studies focused on the effect of NP exposure on DNA alterations are still rare. Furthermore, there are virtually no epigenetic data available. In this study, we investigated global and gene-specific DNA methylation profiles in a group of 20 long-term (mean 14.5 years) exposed, nanocomposite, research workers and in 20 controls. Both groups were sampled twice/day (pre-shift and post-shift) in September 2018. We applied Infinium Methylation Assay, using the Infinium MethylationEPIC BeadChips with more than 850,000 CpG loci, for identification of the DNA methylation pattern in the studied groups. Aerosol exposure monitoring, including two nanosized fractions, was also performed as proof of acute NP exposure. The obtained array data showed significant differences in methylation between the exposed and control groups related to long-term exposure, specifically 341 CpG loci were hypomethylated and 364 hypermethylated. The most significant CpG differences were mainly detected in genes involved in lipid metabolism, the immune system, lung functions, signaling pathways, cancer development and xenobiotic detoxification. In contrast, short-term acute NP exposure was not accompanied by DNA methylation changes. In summary, long-term (years) exposure to NP is associated with DNA epigenetic alterations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms21072420DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7177382PMC
March 2020

Gene expression profiling in healthy newborns from diverse localities of the Czech Republic.

Environ Mol Mutagen 2018 06 30;59(5):401-415. Epub 2018 Mar 30.

Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic.

Prenatal exposure to air pollution is associated with intrauterine growth restriction and low birth weight. Gene expression changes in newborns in relation to air pollution have not been sufficiently studied. We analyzed whole genome expression in cord blood leukocytes of 202 newborns from diverse localities of the Czech Republic, differing among other factors in levels of air pollution: the district of Karvina (characterized by higher concentration of air pollutants) and Ceske Budejovice (lower air pollution levels). We aimed to identify differentially expressed genes (DEGs) and pathways in relation to locality and concentration of air pollutants. We applied the linear model to identify the specific DEGs and the correlation analysis, to investigate the relationship between the concentrations of air pollutants and gene expression data. An analysis of biochemical pathways and gene set enrichment was also performed. In general, we observed modest changes of gene expression, mostly attributed to the effect of the locality. The highest number of DEGs was found in samples from the district of Karvina. A pathway analysis revealed a deregulation of processes associated with cell growth, apoptosis or cellular homeostasis, immune response-related processes or oxidative stress response. The association between concentrations of air pollutants and gene expression changes was weak, particularly for samples collected in Karvina. In summary, as we did not find a direct effect of exposure to air pollutants, we assume that the general differences in the environment, rather than actual concentrations of individual pollutants, represent a key factor affecting gene expression changes at delivery. Environ. Mol. Mutagen. 59:401-415, 2018. © 2018 Wiley Periodicals, Inc.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/em.22184DOI Listing
June 2018

Mapping the factors affecting the frequency and types of micronuclei in an elderly population from Southern Bohemia.

Mutat Res 2016 Nov - Dec;793-794:32-40. Epub 2016 Oct 26.

Institute of Radiology, Toxicology and Civil Protection, University of South Bohemia, 37005 Ceske Budejovice, Czechia.

The micronucleus assay is one of the most common methods used to assess chromosomal damage (losses or breaks) in human peripheral blood lymphocytes (PBL) in genetic toxicology. Most studies have focused on analyzing total micronuclei (MN), but identifying the content of MN can provide more detailed information. The main aim of this study was to map the factors affecting the frequency and types of micronuclei in binucleated cells (BNC) in elderly population. Fluorescence in situ hybridization using Human Pan Centromeric Chromosome Paint was used to identify centromere positive (CEN+) or centromere negative (CEN-) MN. A group of 95 men from Southern Bohemia, Czech Republic (average age 68.0±6.8 years) was followed repeatedly, in spring and fall 2014. The study participants were former workers of the uranium plant "MAPE Mydlovary" (processing uranium ore from 1962 to 1991), and controls. The general profile of individual types of MN, and the effect of the season, former uranium exposure, age, smoking status, weight, and X-ray examination on the level and type of MN were analyzed. The results of this study showed: (i) a stable profile of BNC with MN based on the number of MN during two seasons; (ii) an increase of the number of CEN+ MN from spring to fall; (iii) a lower frequency of the total MN in the exposed group than in controls with a significant difference in the percentage of aberrant cells (%AB.C.) in the fall; (iv) no clear effect of age, smoking and BMI on DNA damage in this group; (v) lower DNA damage levels in former uranium workers who received X-ray examination later in life. In summary, the results indicate a trend of seasonal changes of individual types of MN and suggest that former exposure can have a protective effect on the level of DNA damage in case of future exposure.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mrfmmm.2016.10.004DOI Listing
May 2017

Air pollution and childhood bronchitis: Interaction with xenobiotic, immune regulatory and DNA repair genes.

Environ Int 2016 Feb 2;87:94-100. Epub 2015 Dec 2.

Department of Public Health Sciences, University of California, Davis, United States.

Background: Gene-environment interactions have been investigated for diseases such as asthma, chronic obstructive pulmonary disease, cancer etc. but acute disease like bronchitis has rarely been studied. We investigated interactions between air pollution (polycyclic aromatic hydrocarbons (PAH) and particulate matter <2.5 μm (PM2.5)) and single nucleotide polymorphisms (SNP) in EPHX1, IL10, STAT4 and XPC genes in relation to bronchitis in children aged 0-2 years.

Methods: A stratified random sample of 1133 Czech children, born between 1994 and 1998 in two districts, were followed since birth, of which 626 were genotyped. Pediatrician-diagnosed bronchitis episodes were obtained from the medical records. Central-site monitors measured air pollution exposure. We used multivariable logistic regression and estimated coefficients using generalized estimating equations. Interaction was assessed between pollutants and genes and associations in genotype-specific strata were presented. False discovery rate was used to adjust for multiple comparisons.

Results: There were 803 episodes of bronchitis with an incidence rate of 56 per 1000 child-months. We found significant gene-environment interaction between PAH and four SNPs (EPHX1, (rs2854461), STAT4 (rs16833215), XPC (rs2228001 and rs2733532)), which became non-significant after adjusting for multiple comparisons. PM2.5 interactions with two XPC SNPs (rs2228001 and rs2733532) remained significant after accounting for multiple comparisons and those with CC alleles had a more than doubling of odds, OR=2.65 (95% CI: 1.91, 3.69) and 2.72 (95% CI: 1.95, 3.78), respectively, per 25 μg/m(3) increase in exposure.

Conclusion: The findings suggest that the DNA repair gene XPC may play an important role in the air pollution-induced pathogenesis of the inflammatory disease bronchitis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envint.2015.10.002DOI Listing
February 2016

Reduced gene expression levels after chronic exposure to high concentrations of air pollutants.

Mutat Res 2015 Oct 11;780:60-70. Epub 2015 Aug 11.

Department of Genetic Ecotoxicology, Institute of Experimental Medicine, Prague, Czech Republic.

We analyzed the ability of particulate matter (PM) and chemicals adsorbed onto it to induce diverse gene expression profiles in subjects living in two regions of the Czech Republic differing in levels and sources of the air pollution. A total of 312 samples from polluted Ostrava region and 154 control samples from Prague were collected in winter 2009, summer 2009 and winter 2010. The highest concentrations of air pollutants were detected in winter 2010 when the subjects were exposed to: PM of aerodynamic diameter <2.5μm (PM2.5) (70 vs. 44.9μg/m(3)); benzo[a]pyrene (9.02 vs. 2.56ng/m(3)) and benzene (10.2 vs. 5.5μg/m(3)) in Ostrava and Prague, respectively. Global gene expression analysis of total RNA extracted from leukocytes was performed using Illumina Expression BeadChips microarrays. The expression of selected genes was verified by quantitative real-time PCR (qRT-PCR). Gene expression profiles differed by locations and seasons. Despite lower concentrations of air pollutants a higher number of differentially expressed genes and affected KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways was found in subjects from Prague. In both locations immune response pathways were affected, in Prague also neurodegenerative diseases-related pathways. Over-representation of the latter pathways was associated with the exposure to PM2.5. The qRT-PCR analysis showed a significant decrease in expression of APEX, ATM, FAS, GSTM1, IL1B and RAD21 in subjects from Ostrava, in a comparison of winter 2010 and summer 2009. In Prague, an increase in gene expression was observed for GADD45A and PTGS2. In conclusion, high concentrations of pollutants in Ostrava were not associated with higher number of differentially expressed genes, affected KEGG pathways and expression levels of selected genes. This observation suggests that chronic exposure to air pollution may result in reduced gene expression response with possible negative health consequences.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mrfmmm.2015.08.001DOI Listing
October 2015