Publications by authors named "Karin Tran-Lundmark"

19 Publications

  • Page 1 of 1

A new mouse mutant with cleavage-resistant versican and isoform-specific versican mutants demonstrate that proteolysis at the Glu-Ala peptide bond in the V1 isoform is essential for interdigital web regression.

Matrix Biol Plus 2021 Jun 14;10:100064. Epub 2021 May 14.

Department of Biomedical Engineering-ND20, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, United States.

Two inherent challenges in the mechanistic interpretation of protease-deficient phenotypes are defining the specific substrate cleavages whose reduction generates the phenotypes and determining whether the phenotypes result from loss of substrate function, substrate accumulation, or loss of a function(s) embodied in the substrate fragments. Hence, recapitulation of a protease-deficient phenotype by a cleavage-resistant substrate would stringently validate the importance of a proteolytic event and clarify the underlying mechanisms. Versican is a large proteoglycan required for development of the circulatory system and proper limb development, and is cleaved by ADAMTS proteases at the Glu-Ala peptide bond located in its alternatively spliced GAGβ domain. Specific ADAMTS protease mutants have impaired interdigit web regression leading to soft tissue syndactyly that is associated with reduced versican proteolysis. Versikine, the N-terminal proteolytic fragment generated by this cleavage, restores interdigit apoptosis in ADAMTS mutant webs. Here, we report a new mouse transgene, , with validated mutations in the GAGβ domain that specifically abolish this proteolytic event. mice have partially penetrant hindlimb soft tissue syndactyly. However, inactivation in mice leads to fully penetrant, more severe syndactyly affecting all limbs, suggesting that ADAMTS20 cleavage of versican at other sites or of other substrates is an additional requirement for web regression. Indeed, immunostaining with a neoepitope antibody against a cleavage site in the versican GAGα domain demonstrated reduced staining in the absence of ADAMTS20. Significantly, mice with deletion of exon 8, encoding the GAGβ domain, consistently developed soft tissue syndactyly, whereas mice unable to include exon 7, encoding the GAGα domain in Vcan transcripts, consistently had fully separated digits. These findings suggest that versican is cleaved within each GAG-bearing domain during web regression, and affirms that proteolysis in the GAGβ domain, via generation of versikine, has an essential role in interdigital web regression.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mbplus.2021.100064DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8233476PMC
June 2021

Distinct types of plexiform lesions identified by synchrotron-based phase-contrast micro-CT.

Am J Physiol Lung Cell Mol Physiol 2021 Jul 21;321(1):L17-L28. Epub 2021 Apr 21.

Department of Experimental Medical Science, Lund University, Lund, Sweden.

In pulmonary arterial hypertension, plexiform lesions are associated with severe arterial obstruction and right ventricular failure. Exploring their structure and position is crucial for understanding the interplay between hemodynamics and vascular remodeling. The aim of this research was to use synchrotron-based phase-contrast micro-CT to study the three-dimensional structure of plexiform lesions. Archived paraffin-embedded tissue samples from 14 patients with pulmonary arterial hypertension (13 idiopathic, 1 with known -mutation) were imaged. Clinical data showed high-median PVR (12.5 WU) and mPAP (68 mmHg). Vascular lesions with more than 1 lumen were defined as plexiform. Prior radiopaque dye injection in some samples facilitated 3-D rendering. Four distinct types of plexiform lesions were identified: ) localized within or derived from monopodial branches (supernumerary arteries), often with a connection to the vasa vasorum; ) localized between pulmonary arteries and larger airways as a tortuous transformation of intrapulmonary bronchopulmonary anastomoses; ) as spherical structures at unexpected abrupt ends of distal pulmonary arteries; and ) as occluded pulmonary arteries with recanalization. By appearance and localization, types 1-2 potentially relieve pressure via the bronchial circulation, as pulmonary arteries in these patients were almost invariably occluded distally. In addition, types 1-3 were often surrounded by dilated thin-walled vessels, often connected to pulmonary veins, peribronchial vessels, or the vasa vasorum. Collaterals, bypassing completely occluded pulmonary arteries, were also observed to originate within plexiform lesions. In conclusion, synchrotron-based imaging revealed significant plexiform lesion heterogeneity, resulting in a novel classification. The four types likely have different effects on hemodynamics and disease progression.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajplung.00432.2020DOI Listing
July 2021

Vascular dimorphism ensured by regulated proteoglycan dynamics favors rapid umbilical artery closure at birth.

Elife 2020 09 10;9. Epub 2020 Sep 10.

Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, United States.

The umbilical artery lumen closes rapidly at birth, preventing neonatal blood loss, whereas the umbilical vein remains patent longer. Here, analysis of umbilical cords from humans and other mammals identified differential arterial-venous proteoglycan dynamics as a determinant of these contrasting vascular responses. The umbilical artery, but not the vein, has an inner layer enriched in the hydrated proteoglycan aggrecan, external to which lie contraction-primed smooth muscle cells (SMC). At birth, SMC contraction drives inner layer buckling and centripetal displacement to occlude the arterial lumen, a mechanism revealed by biomechanical observations and confirmed by computational analyses. This vascular dimorphism arises from spatially regulated proteoglycan expression and breakdown. Mice lacking aggrecan or the metalloprotease ADAMTS1, which degrades proteoglycans, demonstrate their opposing roles in umbilical vascular dimorphism, including effects on SMC differentiation. Umbilical vessel dimorphism is conserved in mammals, suggesting that differential proteoglycan dynamics and inner layer buckling were positively selected during evolution.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.7554/eLife.60683DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7529456PMC
September 2020

Pulmonary Vasodilator Therapy in Children with Single Ventricle Physiology: Effects on Saturation and Pulmonary Arterial Pressure.

Pediatr Cardiol 2020 Dec 30;41(8):1651-1659. Epub 2020 Jul 30.

Great Ormond Street Hospital for Children, London, UK.

In children with single ventricle physiology, increased pulmonary vascular resistance may impede surgical progression or result in failing single ventricle physiology. The use of pulmonary vasodilators has been suggested as a potential therapy. However, knowledge on indication, dosage, and effect is limited. A retrospective case notes review of all (n = 36) children with single ventricle physiology, treated with pulmonary vasodilators by the UK Pulmonary Hypertension Service for Children 2004-2017. Therapy was initiated in Stage 1 (n = 12), Glenn (n = 8), or TCPC (n = 16). Treatment indications were high mean pulmonary arterial pressure, cyanosis, reduced exercise tolerance, protein-losing enteropathy, ascites, or plastic bronchitis. Average dose of sildenafil was 2.0 mg/kg/day and bosentan was 3.3 mg/kg/day. 56% had combination therapy. Therapy was associated with a reduction of the mean pulmonary arterial pressure from 19 to 14 mmHg (n = 17, p < 0.01). Initial therapy with one or two vasodilators was associated with an increase in the mean saturation from 80 to 85%, (n = 16, p < 0.01). Adding a second vasodilator did not give significant additional effect. 5 of 12 patients progressed from Stage 1 to Glenn, Kawashima, or TCPC, and 2 of 8 from Glenn to TCPC during a mean follow-up time of 4.7 years (0-12.8). Bosentan was discontinued in 57% and sildenafil in 14% of treated patients and saturations remained stable. Pulmonary vasodilator therapy was well tolerated and associated with improvements in saturation and mean pulmonary arterial pressure in children with single ventricle physiology. It appears safe to discontinue when no clear benefit is observed.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00246-020-02424-wDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7695650PMC
December 2020

Synchrotron-based phase-contrast micro-CT as a tool for understanding pulmonary vascular pathobiology and the 3-D microanatomy of alveolar capillary dysplasia.

Am J Physiol Lung Cell Mol Physiol 2020 01 9;318(1):L65-L75. Epub 2019 Oct 9.

Department of Experimental Medical Science, Lund University, Lund, Sweden.

This study aimed to explore the value of synchrotron-based phase-contrast microcomputed tomography (micro-CT) in pulmonary vascular pathobiology. The microanatomy of the lung is complex with intricate branching patterns. Tissue sections are therefore difficult to interpret. Recruited intrapulmonary bronchopulmonary anastomoses (IBAs) have been described in several forms of pulmonary hypertension, including alveolar capillary dysplasia with misaligned pulmonary veins (ACD/MPV). Here, we examine paraffin-embedded tissue using this nondestructive method for high-resolution three-dimensional imaging. Blocks of healthy and ACD/MPV lung tissue were used. Pulmonary and bronchial arteries in the ACD/MPV block had been preinjected with dye. One section per block was stained, and areas of interest were marked to allow precise beam-alignment during image acquisition at the X02DA TOMCAT beamline (Swiss Light Source). A ×4 magnifying objective coupled to a 20-µm thick scintillating material and a sCMOS detector yielded the best trade-off between spatial resolution and field-of-view. A phase retrieval algorithm was applied and virtual tomographic slices and video clips of the imaged volumes were produced. Dye injections generated a distinct attenuation difference between vessels and surrounding tissue, facilitating segmentation and three-dimensional rendering. Histology and immunohistochemistry post-imaging offered complementary information. IBAs were confirmed in ACD/MPV, and the MPVs were positioned like bronchial veins/venules. We demonstrate the advantages of using synchrotron-based phase-contrast micro-CT for three-dimensional characterization of pulmonary microvascular anatomy in paraffin-embedded tissue. Vascular dye injections add additional value. We confirm intrapulmonary shunting in ACD/MPV and provide support for the hypothesis that MPVs are dilated bronchial veins/venules.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajplung.00103.2019DOI Listing
January 2020

2019 updated consensus statement on the diagnosis and treatment of pediatric pulmonary hypertension: The European Pediatric Pulmonary Vascular Disease Network (EPPVDN), endorsed by AEPC, ESPR and ISHLT.

J Heart Lung Transplant 2019 09 21;38(9):879-901. Epub 2019 Jun 21.

Department of Paediatric Cardiology, German Pediatric Heart Centre, Sankt Augustin, Germany.

The European Pediatric Pulmonary Vascular Disease Network is a registered, non-profit organization that strives to define and develop effective, innovative diagnostic methods and treatment options in all forms of pediatric pulmonary hypertensive vascular disease, including pulmonary hypertension (PH) associated with bronchopulmonary dysplasia, PH associated with congenital heart disease (CHD), persistent PH of the newborn, and related cardiac dysfunction. The executive writing group members conducted searches of the PubMed/MEDLINE bibliographic database (1990-2018) and held face-to-face and web-based meetings. Ten section task forces voted on the updated recommendations, based on the 2016 executive summary. Clinical trials, meta-analyses, guidelines, and other articles that include pediatric data were searched using the term "pulmonary hypertension" and other keywords. Class of recommendation (COR) and level of evidence (LOE) were assigned based on European Society of Cardiology/American Heart Association definitions and on pediatric data only, or on adult studies that included >10% children or studies that enrolled adults with CHD. New definitions by the World Symposium on Pulmonary Hypertension 2018 were included. We generated 10 tables with graded recommendations (COR/LOE). The topics include diagnosis/monitoring, genetics/biomarkers, cardiac catheterization, echocardiography, cardiac magnetic resonance/chest computed tomography, associated forms of PH, intensive care unit/lung transplantation, and treatment of pediatric PH. For the first time, a set of specific recommendations on the management of PH in middle- and low-income regions was developed. Taken together, these executive, up-to-date guidelines provide a specific, comprehensive, detailed but practical framework for the optimal clinical care of children and young adults with PH.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.healun.2019.06.022DOI Listing
September 2019

The extracellular matrix in early and advanced pulmonary arterial hypertension.

Am J Physiol Heart Circ Physiol 2018 Dec 28;315(6):H1684-H1686. Epub 2018 Sep 28.

Department of Experimental Medical Science, Lund University , Lund , Sweden.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpheart.00620.2018DOI Listing
December 2018

Extracellular retention of PDGF-B directs vascular remodeling in mouse hypoxia-induced pulmonary hypertension.

Am J Physiol Lung Cell Mol Physiol 2018 04 6;314(4):L593-L605. Epub 2017 Dec 6.

Department of Molecular Medicine and Surgery, Karolinska Institutet , Stockholm , Sweden.

Pulmonary hypertension (PH) is a lethal condition, and current vasodilator therapy has limited effect. Antiproliferative strategies targeting platelet-derived growth factor (PDGF) receptors, such as imatinib, have generated promising results in animal studies. Imatinib is, however, a nonspecific tyrosine kinase inhibitor and has in clinical studies caused unacceptable adverse events. Further studies are needed on the role of PDGF signaling in PH. Here, mice expressing a variant of PDGF-B with no retention motif ( Pdgfb), resulting in defective binding to extracellular matrix, were studied. Following 4 wk of hypoxia, right ventricular systolic pressure, right ventricular hypertrophy, and vascular remodeling were examined. Pdgfb mice did not develop PH, as assessed by hemodynamic parameters. Hypoxia did, however, induce vascular remodeling in Pdgfb mice; but unlike the situation in controls where the remodeling led to an increased concentric muscularization of arteries, the vascular remodeling in Pdgfb mice was characterized by a diffuse muscularization, in which cells expressing smooth muscle cell markers were found in the interalveolar septa detached from the normally muscularized intra-acinar vessels. Additionally, fewer NG2-positive perivascular cells were found in Pdgfb lungs, and mRNA analyses showed significantly increased levels of Il6 following hypoxia, a known promigratory factor for pericytes. No differences in proliferation were detected at 4 wk. This study emphasizes the importance of extracellular matrix-growth factor interactions and adds to previous knowledge of PDGF-B in PH pathobiology. In summary, Pdgfb mice have unaltered hemodynamic parameters following chronic hypoxia, possibly secondary to a disorganized vascular muscularization.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajplung.00054.2017DOI Listing
April 2018

MicroRNA-Dependent Control of Serotonin-Induced Pulmonary Arterial Contraction.

J Vasc Res 2017 11;54(4):246-256. Epub 2017 Aug 11.

Department of Experimental Medical Science, Lund University, Lund, Sweden.

Background: Serotonin (5-HT) is considered to play a role in pulmonary arterial hypertension by regulating vascular remodeling and smooth muscle contractility. Here, arteries from mice with inducible and smooth muscle-specific deletion of Dicer were used to address mechanisms by which microRNAs control 5-HT-induced contraction.

Methods: Mice were used 5 weeks after Dicer deletion, and pulmonary artery contractility was analyzed by wire myography.

Results: No change was seen in right ventricular systolic pressure following dicer deletion, but systemic blood pressure was reduced. Enhanced 5-HT-induced contraction in Dicer KO pulmonary arteries was associated with increased 5-HT2A receptor mRNA expression whereas 5-HT1B and 5-HT2B receptor mRNAs were unchanged. Contraction by the 5-HT2A agonist TCB-2 was increased in Dicer KO as was the response to the 5-HT2B agonist BW723C86. Effects of Src and protein kinase C inhibition were similar in control and KO arteries, but the effect of inhibition of Rho kinase was reduced. We identified miR-30c as a potential candidate for 5-HT2A receptor regulation as it repressed 5-HT2A mRNA and protein.

Conclusion: Our findings show that 5-HT receptor signaling in the arterial wall is subject to regulation by microRNAs and that this entails altered 5-HT2A receptor expression and signaling.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1159/000478013DOI Listing
September 2017

Midterm results of the Ross procedure in children: an appraisal of the subannular implantation with interrupted sutures technique.

Eur J Cardiothorac Surg 2017 Oct;52(4):798-804

Cardiothoracic Surgery Unit, Great Ormond Street Hospital for Children NHS Trust, London, UK.

Objectives: The support of the pulmonary autograft root by the fibromuscular left ventricular outflow tract is emphasized to address the concern related to the dilatation of the pulmonary autograft structures in the paediatric population.

Methods: This retrospective study analyses the outcomes of 75 children who were operated between 1998 and 2012 with the subannular interrupted sutures technique at a median age of 10.2 years (range, 5.3 months-18.0 years). Median follow-up time was 5.2 years (range, 3 days-13.2 years).

Results: There were no deaths, but there were 3 reinterventions on the autograft for regurgitation and 2 resections of left ventricular outflow tract obstruction. There was no significant autograft stenosis, and freedom from moderate-to-severe regurgitation was 95% (95% confidence interval: 89-100) and 88% (95% confidence interval: 77-99) at 5 and 10 years, respectively. Median z-scores at the latest follow-up examination were, at the annulus, 0.31 [interquartile range (IQR) = -0.81 to 1.2]; at the sinus of Valsalva, 2.7 (IQR = 1.5-3.5); and at the sinotubular junction, 3.1 (IQR = 1.7-4.2). The correlation between z-scores and time after the operation was negative at the level of the annulus (r = -0.29, P = 0.034) but positive at the level of the sinus (r = +0.37, P = 0.005) and the sinotubular junction (r = +0.26, P = 0.068). The median rate of change in the z-score at the annulus was low, 0.065 z-score/year (IQR = -0.13 to 0.43).

Conclusions: The subannular interrupted sutures implantation technique is associated with acceptable risks and, in the midterm, delivers limited annular dilatation, autograft regurgitation and delayed need for autograft reintervention.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/ejcts/ezx113DOI Listing
October 2017

Versican accumulates in vascular lesions in pulmonary arterial hypertension.

Pulm Circ 2016 Sep;6(3):347-59

Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Experimental Medical Science, Lund University, Lund, Sweden.

Pulmonary arterial hypertension (PAH) is a lethal condition for which there is no effective curative pharmacotherapy. PAH is characterized by vasoconstriction, wall thickening of pulmonary arteries, and increased vascular resistance. Versican is a chondroitin sulfate proteoglycan in the vascular extracellular matrix that accumulates following vascular injury and promotes smooth-muscle cell proliferation in systemic arteries. Here, we investigated whether versican may play a similar role in PAH. Paraffin-embedded lung sections from patients who underwent lung transplantation to treat PAH were used for immunohistochemistry. The etiologies of PAH in the subjects involved in this study were idiopathic PAH, scleroderma, and congenital heart disease (atrial septal defect) with left-to-right shunt. Independent of the underlying etiology, increased versican immunostaining was observed in areas of medial thickening, in neointima, and in plexiform lesions. Western blot of lung tissue lysates confirmed accumulation of versican in patients with PAH. Double staining for versican and CD45 showed only occasional colocalization in neointima of high-grade lesions and plexiform lesions. In vitro, metabolic labeling with [(35)S]sulfate showed that human pulmonary artery smooth-muscle cells (hPASMCs) produce mainly chondroitin sulfate glycosaminoglycans. In addition, hypoxia, but not cyclic stretch, was demonstrated to increase both versican messenger RNA expression and protein synthesis by hPASMCs. Versican accumulates in vascular lesions of PAH, and the amount of versican correlates more with lesion severity than with underlying etiology or inflammation. Hypoxia is a possible regulator of versican accumulation, which may promote proliferation of pulmonary smooth-muscle cells and vascular remodeling in PAH.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5019088PMC
http://dx.doi.org/10.1086/686994DOI Listing
September 2016

Perlecan heparan sulfate deficiency impairs pulmonary vascular development and attenuates hypoxic pulmonary hypertension.

Cardiovasc Res 2015 Jul 6;107(1):20-31. Epub 2015 May 6.

Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden Department of Experimental Medical Science, Lund University, Lund, Sweden.

Aims: Excessive vascular cell proliferation is an important component of pulmonary hypertension (PH). Perlecan is the major heparan sulfate (HS) proteoglycan in the vascular extracellular matrix. It binds growth factors, including FGF2, and either restricts or promotes cell proliferation. In this study, we have explored the effects of perlecan HS deficiency on pulmonary vascular development and in hypoxia-induced PH.

Methods And Results: In normoxia, Hspg2(Δ3/Δ3) mice, deficient in perlecan HS, had reduced pericytes and muscularization of intra-acinar vessels. Pulmonary angiography revealed a peripheral perfusion defect. Despite these abnormalities, right ventricular systolic pressure (RVSP) and myocardial mass remained normal. After 4 weeks of hypoxia, increases in the proportion of muscularized vessels, RVSP, and right ventricular hypertrophy were significantly less in Hspg2(Δ3/Δ3) compared with wild type. The early phase of hypoxia induced a significantly lower increase in fibroblast growth factor receptor-1 (FGFR1) protein level and receptor phosphorylation, and reduced pulmonary artery smooth muscle cell (PASMC) proliferation in Hspg2(Δ3/Δ3). At 4 weeks, FGF2 mRNA and protein were also significantly reduced in Hspg2(Δ3/Δ3) lungs. Ligand and carbohydrate engagement assay showed that perlecan HS is required for HS-FGF2-FGFR1 ternary complex formation. In vitro, proliferation assays showed that PASMC proliferation is reduced by selective FGFR1 inhibition. PASMC adhesion to fibronectin was higher in Hspg2(Δ3/Δ3) compared with wild type.

Conclusions: Perlecan HS chains are important for normal vascular arborization and recruitment of pericytes to pulmonary vessels. Perlecan HS deficiency also attenuates hypoxia-induced PH, where the underlying mechanisms involve impaired FGF2/FGFR1 interaction, inhibition of PASMC growth, and altered cell-matrix interactions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/cvr/cvv143DOI Listing
July 2015

Perlecan heparan sulfate proteoglycan is a critical determinant of angiogenesis in response to mouse hind-limb ischemia.

Can J Cardiol 2014 Nov 12;30(11):1444-51. Epub 2014 Jun 12.

Schulich Heart Center, Sunnybrook Health Sciences Center, Toronto, Ontario, Canada; University of Toronto, Toronto, Ontario, Canada. Electronic address:

Background: Perlecan is a heparan sulfate proteoglycan (HSPG) constituent of the extracellular matrix with roles in cell growth, differentiation, and angiogenesis. The role of the HS side chains in regulating in vivo angiogenesis after hind-limb ischemia is unknown.

Methods: Heparan sulfate (HS)-deficient perlecan (Hspg2(Δ3/Δ3)) mice (n = 35), containing normal perlecan core protein but deficient in HS side chains, and wild-type (n = 33) littermates underwent surgical induction of hind-limb ischemia. Laser Doppler perfusion imaging (LDPI) and contrast-enhanced ultrasonography (CEU) provided serial assessment of hind-limb perfusion. Harvested muscles underwent immunostaining for endothelial cell density (CD31), real-time reverse transcription polymerase chain reaction RT-PCR for vascular endothelial growth factor (VEGF) mRNA expression and western blot analysis for VEGF and fibroblast growth factor (FGF)2 protein expression at days 2 and 28.

Results: Serial LDPI showed significantly greater perfusion recovery in ischemic limbs of wild-type compared with Hspg2(Δ3/Δ3) mice. CEU showed that normalized microvascular perfusion was increased in wild-type compared with Hspg2(Δ3/Δ3) mice at day 28 (0.67 ± 0.12 vs 0.26 ± 0.08; P = 0.001). CD31-positive cell counts were significantly higher in wild-type compared with Hspg2(Δ3/Δ3) mice on day 28 (122 ± 30 cells vs 84 ± 34 cells per high-power field [HPF]; P < 0.05). Endogenous VEGF mRNA expression (P < 0.05) and VEGF protein expression (P < 0.002) were significantly decreased in the ischemic limbs of Hspg2(Δ3/Δ3) mice compared with wild-type mice at day 2 and day 28, respectively. FGF2 protein expression showed no significant differences.

Conclusions: These results suggest that the HS side chains in perlecan are important mediators of the angiogenic response to ischemia through a mechanism that involves upregulation of VEGF expression.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cjca.2014.06.003DOI Listing
November 2014

Perlecan Heparan Sulfate Is Required for the Inhibition of Smooth Muscle Cell Proliferation by All-trans-Retinoic Acid.

J Cell Physiol 2015 Feb;230(2):482-7

Benaroya Research Institute at Virginia Mason, Seattle, Washington.

Smooth muscle cell (SMC) proliferation is a key process in stabilization of atherosclerotic plaques, and during restenosis after interventions. A clearer understanding of SMC growth regulation is therefore needed to design specific anti-proliferative therapies. Retinoic acid has been shown to inhibit proliferation of SMCs both in vitro and in vivo and to affect the expression of extracellular matrix molecules. To explore the mechanisms behind the growth inhibitory activity of retinoic acid, we hypothesized that retinoids may induce the expression of perlecan, a large heparan sulfate proteoglycan with anti-proliferative properties. Perlecan expression and accumulation was induced in murine SMC cultures by all-trans-retinoic acid (AtRA). Moreover, the growth inhibitory effect of AtRA on wild-type cells was greatly diminished in SMCs from transgenic mice expressing heparan sulfate-deficient perlecan, indicating that the inhibition is perlecan heparan sulfate-dependent. In addition, AtRA influenced activation and phosphorylation of PTEN and Akt differently in wild-type and mutant SMCs, consistent with previous studies of perlecan-dependent SMC growth inhibition. We demonstrate that AtRA regulates perlecan expression in SMCs and that the inhibition of SMC proliferation by AtRA is, at least in part, secondary to an increased expression of perlecan and dependent upon its heparan sulfate-chains.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.24731DOI Listing
February 2015

Heparan sulfate side chains have a critical role in the inhibitory effects of perlecan on vascular smooth muscle cell response to arterial injury.

Am J Physiol Heart Circ Physiol 2014 Aug 23;307(3):H337-45. Epub 2014 May 23.

Schulich Heart Program, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada;

Perlecan is a proteoglycan composed of a 470-kDa core protein linked to three heparan sulfate (HS) glycosaminoglycan chains. The intact proteoglycan inhibits the smooth muscle cell (SMC) response to vascular injury. Hspg2(Δ3/Δ3) (MΔ3/Δ3) mice produce a mutant perlecan lacking the HS side chains. The objective of this study was to determine differences between these two types of perlecan in modifying SMC activities to the arterial injury response, in order to define the specific role of the HS side chains. In vitro proliferative and migratory activities were compared in SMC isolated from MΔ3/Δ3 and wild-type mice. Proliferation of MΔ3/Δ3 SMC was 1.5× greater than in wild type (P < 0.001), increased by addition of growth factors, and showed a 42% greater migratory response than wild-type cells to PDGF-BB (P < 0.001). In MΔ3/Δ3 SMC adhesion to fibronectin, and collagen types I and IV was significantly greater than wild type. Addition of DRL-12582, an inducer of perlecan expression, decreased proliferation and migratory response to PDGF-BB stimulation in wild-type SMC compared with MΔ3/Δ3. In an in vivo carotid artery wire injury model, the medial thickness, medial area/lumen ratio, and macrophage infiltration were significantly increased in the MΔ3/Δ3 mice, indicating a prominent role of the HS side chain in limiting vascular injury response. Mutant perlecan that lacks HS side chains had a marked reduction in the inhibition of in vitro SMC function and the in vivo arterial response to injury, indicating the critical role of HS side chains in perlecan function in the vessel wall.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpheart.00654.2013DOI Listing
August 2014

Antenatal imatinib treatment reduces pulmonary vascular remodeling in a rat model of congenital diaphragmatic hernia.

Am J Physiol Lung Cell Mol Physiol 2012 Jun 23;302(11):L1159-66. Epub 2012 Mar 23.

Division of Pediatrics, Department of Women’s and Children’s Health, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden.

The pathophysiology of congenital diaphragmatic hernia (CDH) is constituted by pulmonary hypoplasia and pulmonary hypertension (PH). We previously reported successful treatment with imatinib of a patient with CDH. This study examines the effect of antenatal imatinib administration on the pulmonary vasculature in a rat model of CDH. Pregnant rats were given nitrofen to induce CDH. Controls were given olive oil. Half of the CDH fetuses and half of the controls were treated with imatinib antenatally E17-E21, rendering four groups: Control, Control+Imatinib, CDH, and CDH+Imatinib. Lung sections were obtained for morphometry and immunohistochemistry, and protein was purified for Western blot. Effects of nitrofen and imatinib on Ki-67, caspase-3, PDGF-B, and PDGF receptors were analyzed. Imatinib significantly reduced medial wall thickness in pulmonary arteries of rats with CDH. It also normalized lumen area and reduced the proportion of fully muscularized arteries. Imatinib also caused medial thinning in the control group. Cell proliferation was increased in CDH, and this proliferation was significantly reduced by imatinib. PDGF-B and PDGFR-β were upregulated in CDH, and imatinib treatment resulted in a downregulation. PDGFR-α remained unchanged in CDH but was significantly downregulated by imatinib. Antenatal imatinib treatment reduces development of medial wall thickness and restores lumen area in pulmonary arteries in nitrofen-induced CDH. The mechanism is reduced cell proliferation. Imatinib is an interesting candidate for antenatal therapy for PH in CDH, but potential side effects need to be investigated and more specific targeting of PDGF signaling is needed.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajplung.00325.2010DOI Listing
June 2012

Heparan sulfate in perlecan promotes mouse atherosclerosis: roles in lipid permeability, lipid retention, and smooth muscle cell proliferation.

Circ Res 2008 Jul;103(1):43-52

Department of Molecular Medicine and Surgery, Karolinska University Hospital, Karolinska Institutet, SE-17176 Stockholm, Sweden.

Heparan sulfate (HS) has been proposed to be antiatherogenic through inhibition of lipoprotein retention, inflammation, and smooth muscle cell proliferation. Perlecan is the predominant HS proteoglycan in the artery wall. Here, we investigated the role of perlecan HS chains using apoE null (ApoE0) mice that were cross-bred with mice expressing HS-deficient perlecan (Hspg2(Delta3/Delta3)). Morphometry of cross-sections from aortic roots and en face preparations of whole aortas revealed a significant decrease in lesion formation in ApoE0/Hspg2(Delta3/Delta3) mice at both 15 and 33 weeks. In vitro, binding of labeled mouse triglyceride-rich lipoproteins and human LDL to total extracellular matrix, as well as to purified proteoglycans, prepared from ApoE0/Hspg2(Delta3/Delta3) smooth muscle cells was reduced. In vivo, at 20 minutes influx of human (125)I-LDL or mouse triglyceride-rich lipoproteins into the aortic wall was increased in ApoE0/Hspg2(Delta3/Delta3) mice compared to ApoE0 mice. However, at 72 hours accumulation of (125)I-LDL was similar in ApoE0/Hspg2(Delta3/Delta3) and ApoE0 mice. Immunohistochemistry of lesions from ApoE0/Hspg2(Delta3/Delta3) mice showed decreased staining for apoB and increased smooth muscle alpha-actin content, whereas accumulation of CD68-positive inflammatory cells was unchanged. We conclude that the perlecan HS chains are proatherogenic in mice, possibly through increased lipoprotein retention, altered vascular permeability, or other mechanisms. The ability of HS to inhibit smooth muscle cell growth may also influence development as well as instability of lesions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCRESAHA.108.172833DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2765377PMC
July 2008

Reduced perlecan expression and accumulation in human carotid atherosclerotic lesions.

Atherosclerosis 2007 Feb 18;190(2):264-70. Epub 2006 Apr 18.

Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden.

Heparan sulfate in the extracellular matrix of the artery wall has been proposed to possess anti-atherogenic properties by interfering with lipoprotein retention, suppression of inflammation, and inhibition of smooth muscle cell growth. Previously, the amount of heparan sulfate in atherosclerotic lesions from humans and animals has been shown to be reduced but the identity or identities of the heparan sulfate molecules being down regulated in this disease are not known. In this study, atherosclerotic lesions were retrieved from 44 patients undergoing surgery for symptomatic carotid stenosis. Normal iliac arteries from organ donors were used as controls. Analysis of the specimens by gene microarray showed a selective reduction in perlecan gene expression, whereas, expression of the other heparan sulfate proteoglycans in the artery wall, agrin and collagen XVIII, remained unchanged. Expression of the large chondroitin sulfate proteoglycan, versican, also remained unchanged. Real-time PCR confirmed the decrease in perlecan gene expression and the unchanged expression of versican. The findings were supported by immunohistochemical analysis demonstrating a reduced accumulation of both perlecan core protein and heparan sulfate in carotid lesions. The study demonstrates a reduction of perlecan mRNA-expression and protein deposition in human atherosclerosis, which in part explains the low levels of heparan sulfate in this disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.atherosclerosis.2006.03.010DOI Listing
February 2007

Increased intimal hyperplasia and smooth muscle cell proliferation in transgenic mice with heparan sulfate-deficient perlecan.

Circ Res 2004 Mar 22;94(4):550-8. Epub 2004 Jan 22.

Department of Surgical Sciences, Karolinska Hospital, SE-17176 Stockholm, Sweden.

Smooth muscle cell (SMC) proliferation is a critical process in vascular disease. Heparan sulfate (HS) proteoglycans inhibit SMC growth, but the role of endogenous counterparts in the vessel wall in control of SMC function is not known in detail. Perlecan is the major HS proteoglycans in SMC basement membranes and in vessel wall extracellular matrix (ECM). In this study, transgenic mice with HS-deficient perlecan were analyzed with respect to vascular phenotype and intimal lesion formation. Furthermore, SMC cultures were established and characterized with respect to morphology, immunocytochemical features, proteoglycan synthesis, proliferative capacity, and ECM binding of basic fibroblast growth factor (FGF-2). In vitro, mutant SMCs formed basement membranes with perlecan core protein, but with decreased levels of HS, they showed diminished secretion of HS-containing perlecan into the medium and a defective ECM-binding capacity of FGF-2. In vitro, mutant SMCs showed increased proliferation compared with wild-type cells, and in vivo, enhanced SMC proliferation and intimal hyperplasia were observed after flow cessation of the carotid artery in mutant mice. The results indicate that the endogenous HS side-chains of perlecan contribute to SMC growth control both in vitro and during intimal hyperplasia, possibly by sequestering heparin-binding mitogens such as FGF-2.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/01.RES.0000117772.86853.34DOI Listing
March 2004