Publications by authors named "Karen W Gripp"

142 Publications

Nucleocytoplasmic transport of the RNA-binding protein CELF2 regulates neural stem cell fates.

Cell Rep 2021 Jun;35(10):109226

Department of Medial Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada. Electronic address:

The development of the cerebral cortex requires balanced expansion and differentiation of neural stem/progenitor cells (NPCs), which rely on precise regulation of gene expression. Because NPCs often exhibit transcriptional priming of cell-fate-determination genes, the ultimate output of these genes for fate decisions must be carefully controlled in a timely fashion at the post-transcriptional level, but how that is achieved is poorly understood. Here, we report that de novo missense variants in an RNA-binding protein CELF2 cause human cortical malformations and perturb NPC fate decisions in mice by disrupting CELF2 nucleocytoplasmic transport. In self-renewing NPCs, CELF2 resides in the cytoplasm, where it represses mRNAs encoding cell fate regulators and neurodevelopmental disorder-related factors. The translocation of CELF2 into the nucleus releases mRNA for translation and thereby triggers NPC differentiation. Our results reveal that CELF2 translocation between subcellular compartments orchestrates mRNA at the translational level to instruct cell fates in cortical development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2021.109226DOI Listing
June 2021

Expanding the genotypic and phenotypic spectrum in a diverse cohort of 104 individuals with Wiedemann-Steiner syndrome.

Am J Med Genet A 2021 06 30;185(6):1649-1665. Epub 2021 Mar 30.

Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.

Wiedemann-Steiner syndrome (WSS) is an autosomal dominant disorder caused by monoallelic variants in KMT2A and characterized by intellectual disability and hypertrichosis. We performed a retrospective, multicenter, observational study of 104 individuals with WSS from five continents to characterize the clinical and molecular spectrum of WSS in diverse populations, to identify physical features that may be more prevalent in White versus Black Indigenous People of Color individuals, to delineate genotype-phenotype correlations, to define developmental milestones, to describe the syndrome through adulthood, and to examine clinicians' differential diagnoses. Sixty-nine of the 82 variants (84%) observed in the study were not previously reported in the literature. Common clinical features identified in the cohort included: developmental delay or intellectual disability (97%), constipation (63.8%), failure to thrive (67.7%), feeding difficulties (66.3%), hypertrichosis cubiti (57%), short stature (57.8%), and vertebral anomalies (46.9%). The median ages at walking and first words were 20 months and 18 months, respectively. Hypotonia was associated with loss of function (LoF) variants, and seizures were associated with non-LoF variants. This study identifies genotype-phenotype correlations as well as race-facial feature associations in an ethnically diverse cohort, and accurately defines developmental trajectories, medical comorbidities, and long-term outcomes in individuals with WSS.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.a.62124DOI Listing
June 2021

Disruption of RFX family transcription factors causes autism, attention-deficit/hyperactivity disorder, intellectual disability, and dysregulated behavior.

Genet Med 2021 Jun 3;23(6):1028-1040. Epub 2021 Mar 3.

Division of Medical Genetics, Nemours/A.I. DuPont Hospital for Children, Wilmington, DE, USA.

Purpose: We describe a novel neurobehavioral phenotype of autism spectrum disorder (ASD), intellectual disability, and/or attention-deficit/hyperactivity disorder (ADHD) associated with de novo or inherited deleterious variants in members of the RFX family of genes. RFX genes are evolutionarily conserved transcription factors that act as master regulators of central nervous system development and ciliogenesis.

Methods: We assembled a cohort of 38 individuals (from 33 unrelated families) with de novo variants in RFX3, RFX4, and RFX7. We describe their common clinical phenotypes and present bioinformatic analyses of expression patterns and downstream targets of these genes as they relate to other neurodevelopmental risk genes.

Results: These individuals share neurobehavioral features including ASD, intellectual disability, and/or ADHD; other frequent features include hypersensitivity to sensory stimuli and sleep problems. RFX3, RFX4, and RFX7 are strongly expressed in developing and adult human brain, and X-box binding motifs as well as RFX ChIP-seq peaks are enriched in the cis-regulatory regions of known ASD risk genes.

Conclusion: These results establish a likely role of deleterious variation in RFX3, RFX4, and RFX7 in cases of monogenic intellectual disability, ADHD and ASD, and position these genes as potentially critical transcriptional regulators of neurobiological pathways associated with neurodevelopmental disease pathogenesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41436-021-01114-zDOI Listing
June 2021

Syndromic disorders caused by gain-of-function variants in KCNH1, KCNK4, and KCNN3-a subgroup of K channelopathies.

Eur J Hum Genet 2021 Feb 16. Epub 2021 Feb 16.

Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.

Decreased or increased activity of potassium channels caused by loss-of-function and gain-of-function (GOF) variants in the corresponding genes, respectively, underlies a broad spectrum of human disorders affecting the central nervous system, heart, kidney, and other organs. While the association of epilepsy and intellectual disability (ID) with variants affecting function in genes encoding potassium channels is well known, GOF missense variants in K channel encoding genes in individuals with syndromic developmental disorders have only recently been recognized. These syndromic phenotypes include Zimmermann-Laband and Temple-Baraitser syndromes, caused by dominant variants in KCNH1, FHEIG syndrome due to dominant variants in KCNK4, and the clinical picture associated with dominant variants in KCNN3. Here we review the presentation of these individuals, including five newly reported with variants in KCNH1 and three additional individuals with KCNN3 variants, all variants likely affecting function. There is notable overlap in the phenotypic findings of these syndromes associated with dominant KCNN3, KCNH1, and KCNK4 variants, sharing developmental delay and/or ID, coarse facial features, gingival enlargement, distal digital hypoplasia, and hypertrichosis. We suggest to combine the phenotypes and define a new subgroup of potassium channelopathies caused by increased K conductance, referred to as syndromic neurodevelopmental K channelopathies due to dominant variants in KCNH1, KCNK4, or KCNN3.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41431-021-00818-9DOI Listing
February 2021

TAOK1 is associated with neurodevelopmental disorder and essential for neuronal maturation and cortical development.

Hum Mutat 2021 Apr 1;42(4):445-459. Epub 2021 Mar 1.

Department of Pediatrics, SIU School of Medicine, Springfield, Illinois, USA.

Thousand and one amino-acid kinase 1 (TAOK1) is a MAP3K protein kinase, regulating different mitogen-activated protein kinase pathways, thereby modulating a multitude of processes in the cell. Given the recent finding of TAOK1 involvement in neurodevelopmental disorders (NDDs), we investigated the role of TAOK1 in neuronal function and collected a cohort of 23 individuals with mostly de novo variants in TAOK1 to further define the associated NDD. Here, we provide evidence for an important role for TAOK1 in neuronal function, showing that altered TAOK1 expression levels in the embryonic mouse brain affect neural migration in vivo, as well as neuronal maturation in vitro. The molecular spectrum of the identified TAOK1 variants comprises largely truncating and nonsense variants, but also missense variants, for which we provide evidence that they can have a loss of function or dominant-negative effect on TAOK1, expanding the potential underlying causative mechanisms resulting in NDD. Taken together, our data indicate that TAOK1 activity needs to be properly controlled for normal neuronal function and that TAOK1 dysregulation leads to a neurodevelopmental disorder mainly comprising similar facial features, developmental delay/intellectual disability and/or variable learning or behavioral problems, muscular hypotonia, infant feeding difficulties, and growth problems.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/humu.24176DOI Listing
April 2021

Phenotypic expansion of the BPTF-related neurodevelopmental disorder with dysmorphic facies and distal limb anomalies.

Am J Med Genet A 2021 05 31;185(5):1366-1378. Epub 2021 Jan 31.

Division of Medical Genetics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware, USA.

Neurodevelopmental disorder with dysmorphic facies and distal limb anomalies (NEDDFL), defined primarily by developmental delay/intellectual disability, speech delay, postnatal microcephaly, and dysmorphic features, is a syndrome resulting from heterozygous variants in the dosage-sensitive bromodomain PHD finger chromatin remodeler transcription factor BPTF gene. To date, only 11 individuals with NEDDFL due to de novo BPTF variants have been described. To expand the NEDDFL phenotypic spectrum, we describe the clinical features in 25 novel individuals with 20 distinct, clinically relevant variants in BPTF, including four individuals with inherited changes in BPTF. In addition to the previously described features, individuals in this cohort exhibited mild brain abnormalities, seizures, scoliosis, and a variety of ophthalmologic complications. These results further support the broad and multi-faceted complications due to haploinsufficiency of BPTF.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.a.62102DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8048530PMC
May 2021

Novel genetic testing model: A collaboration between genetic counselors and nephrology.

Am J Med Genet A 2021 04 21;185(4):1142-1150. Epub 2021 Jan 21.

Precision Medicine/Genetic Testing Stewardship Program, Nemours A.I. duPont Hospital for Children Precision Medicine/Genetic Testing Stewardship Program, Wilmington, Delaware, USA.

Many barriers to genetic testing currently exist which delay or prevent diagnosis. These barriers include wait times, staffing, education, and cost. Specialists are able to identify patients with disease that may need genetic testing, but lack the genetics support to facilitate that testing in the most cost, time, and medically effective manner. The Nephrology Division and the Genetic Testing Stewardship Program at Nemours A.I. duPont Hospital for Children created a novel service delivery model in which nephrologists and genetic counselors collaborate in order to highlight their complementary strengths (clinical expertise of nephrologists and genetics and counseling skills of genetic counselors). This collaboration has reduced many barriers to care for our patients. This workflow facilitated the offering of genetic testing to 76 patients, with 86 tests completed over a 20-month period. Thirty-two tests were deferred. Twenty-seven patients received a diagnosis, which lead to a change in their medical management, three of whom were diagnosed by cascade family testing. Forty-two patients had a negative result and 16 patients had one or more variants of uncertain significance on testing. The inclusion of genetic counselors in the workflow is integral toward choosing the most cost and time effective genetic testing strategy, as well as providing psychosocial support to families. The genetic counselors obtain informed consent, and review genetic test results and recommendations with the patient and their family. The availability of this program to our patients increased access to genetic testing and helps to provide diagnoses and supportive care.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.a.62088DOI Listing
April 2021

41st Annual David W. Smith workshop on malformations and morphogenesis: Abstracts of the 2020 annual meeting.

Am J Med Genet A 2021 Jan 12:1328-1337. Epub 2021 Jan 12.

Department of Pediatrics, University of Washington, Seattle, Washington, USA.

The 41st Annual David W. Smith Workshop on Malformation and Morphogenesis was scheduled to take place in Skamania, Washington, on September 11-16, 2020. Due to the COVID-19 pandemic and the associated recommendations to avoid travel and congregation in large groups, this meeting took place differently from its original plan. Rather than bringing trainees, clinicians and researchers with an interest in congenital malformations and their underlying morphogenesis together for several days in a workshop with submitted presentations and research lectures, this meeting took place virtually. A 1 day online meeting was organized in order to allow trainees to present their work. This Conference Report includes the highest scoring abstracts submitted by trainees and presented at the 2020 virtual David W. Smith Workshop.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.a.62062DOI Listing
January 2021

A dyadic approach to the delineation of diagnostic entities in clinical genomics.

Am J Hum Genet 2021 01;108(1):8-15

Molecular Medicine & Pathology and Pediatrics, McMaster University, Hamilton, ON L8S 3K9, Canada.

The delineation of disease entities is complex, yet recent advances in the molecular characterization of diseases provide opportunities to designate diseases in a biologically valid manner. Here, we have formalized an approach to the delineation of Mendelian genetic disorders that encompasses two distinct but inter-related concepts: (1) the gene that is mutated and (2) the phenotypic descriptor, preferably a recognizably distinct phenotype. We assert that only by a combinatorial or dyadic approach taking both of these attributes into account can a unitary, distinct genetic disorder be designated. We propose that all Mendelian disorders should be designated as "GENE-related phenotype descriptor" (e.g., "CFTR-related cystic fibrosis"). This approach to delineating and naming disorders reconciles the complexity of gene-to-phenotype relationships in a simple and clear manner yet communicates the complexity and nuance of these relationships.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2020.11.013DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7820621PMC
January 2021

Inherited intragenic PBX1 deletion: Expanding the phenotype.

Am J Med Genet A 2021 01 24;185(1):234-237. Epub 2020 Oct 24.

Division of Medical Genetics, Alfred I. duPont Hospital for Children, Wilmington, Delaware, USA.

PBX1 encodes the pre-B cell leukemia homeobox transcription factor, a three amino acid loop extension (TALE) homeodomain transcription factor, which forms nuclear complexes with other TALE class homeodomain proteins that ultimately regulate target genes controlling organ patterning during embryogenesis. Heterozygous de novo pathogenic variants in PBX1 resulting in haploinsufficiency are associated with congenital anomalies of the kidneys and urinary tract, most commonly renal hypoplasia, as well as anomalies involving the external ear, branchial arch, heart, and genitalia, and they cause intellectual disability and developmental delay. Affected individuals described thus far have had de novo variants. Here, we report three related individuals with an inherited pathogenic intragenic PBX1 deletion with variable clinical features typical for this syndrome.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.a.61932DOI Listing
January 2021

Mutations in FAM50A suggest that Armfield XLID syndrome is a spliceosomopathy.

Nat Commun 2020 07 23;11(1):3698. Epub 2020 Jul 23.

Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, USA.

Intellectual disability (ID) is a heterogeneous clinical entity and includes an excess of males who harbor variants on the X-chromosome (XLID). We report rare FAM50A missense variants in the original Armfield XLID syndrome family localized in Xq28 and four additional unrelated males with overlapping features. Our fam50a knockout (KO) zebrafish model exhibits abnormal neurogenesis and craniofacial patterning, and in vivo complementation assays indicate that the patient-derived variants are hypomorphic. RNA sequencing analysis from fam50a KO zebrafish show dysregulation of the transcriptome, with augmented spliceosome mRNAs and depletion of transcripts involved in neurodevelopment. Zebrafish RNA-seq datasets show a preponderance of 3' alternative splicing events in fam50a KO, suggesting a role in the spliceosome C complex. These data are supported with transcriptomic signatures from cell lines derived from affected individuals and FAM50A protein-protein interaction data. In sum, Armfield XLID syndrome is a spliceosomopathy associated with aberrant mRNA processing during development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-020-17452-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7378245PMC
July 2020

Early infantile epileptic encephalopathy due to biallelic pathogenic variants in PIGQ: Report of seven new subjects and review of the literature.

J Inherit Metab Dis 2020 11 3;43(6):1321-1332. Epub 2020 Aug 3.

Research Center, CHU Sainte Justine, University of Montreal, Montreal, Quebec, Canada.

We investigated seven children from six families to expand the phenotypic spectrum associated with an early infantile epileptic encephalopathy caused by biallelic pathogenic variants in the phosphatidylinositol glycan anchor biosynthesis class Q (PIGQ) gene. The affected children were all identified by clinical or research exome sequencing. Clinical data, including EEGs and MRIs, was comprehensively reviewed and flow cytometry and transfection experiments were performed to investigate PIGQ function. Pathogenic biallelic PIGQ variants were associated with increased mortality. Epileptic seizures, axial hypotonia, developmental delay and multiple congenital anomalies were consistently observed. Seizure onset occurred between 2.5 months and 7 months of age and varied from treatable seizures to recurrent episodes of status epilepticus. Gastrointestinal issues were common and severe, two affected individuals had midgut volvulus requiring surgical correction. Cardiac anomalies including arrythmias were observed. Flow cytometry using granulocytes and fibroblasts from affected individuals showed reduced expression of glycosylphosphatidylinositol (GPI)-anchored proteins. Transfection of wildtype PIGQ cDNA into patient fibroblasts rescued this phenotype. We expand the phenotypic spectrum of PIGQ-related disease and provide the first functional evidence in human cells of defective GPI-anchoring due to pathogenic variants in PIGQ.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jimd.12278DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7689772PMC
November 2020

The novel duplication HRAS c.186_206dup p.(Glu62_Arg68dup): clinical and functional aspects.

Eur J Hum Genet 2020 11 4;28(11):1548-1554. Epub 2020 Jun 4.

Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.

Specific activating missense HRAS variants cause Costello syndrome (CS), a RASopathy with recognizable facial features. The majority of these dominant disease causing variants affect the glycine residues in position 12 or 13. A clinically suspected CS diagnosis can be confirmed through identification of a dominant pathogenic HRAS variant. A novel HRAS variant predicting p.(Glu62_Arg68dup) was identified in an individual with hypertrophic cardiomyopathy, Chiari 1 malformation and ectodermal findings consistent with a RASopathy. Functional studies showed that the p.Glu62_Arg68dup alteration affects HRAS interaction with effector protein PIK3CA (catalytic subunit of phosphoinositide 3-kinase) and the regulator neurofibromin 1 (NF1) GTPase-activating protein (GAP). HRAS binding with effectors rapidly accelerated fibrosarcoma (RAF1), RAL guanine nucleotide dissociation stimulator (RALGDS) and phospholipase C1 (PLCE1) was enhanced. Accordingly, p.Glu62_Arg68dup increased steady-state phosphorylation of MEK1/2 and ERK1/2 downstream of RAF1, whereas AKT phosphorylation downstream of PI3K was not significantly affected. Growth factor stimulation revealed that expression of HRAS abolished the HRAS' capacity to modulate downstream signaling. Our data underscore that different qualities of dysregulated HRAS-dependent signaling dynamics determine the clinical severity in CS.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41431-020-0662-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7576819PMC
November 2020

De novo heterozygous missense and loss-of-function variants in CDC42BPB are associated with a neurodevelopmental phenotype.

Am J Med Genet A 2020 05 7;182(5):962-973. Epub 2020 Feb 7.

Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, Missouri.

CDC42BPB encodes MRCKβ (myotonic dystrophy-related Cdc42-binding kinase beta), a serine/threonine protein kinase, and a downstream effector of CDC42, which has recently been associated with Takenouchi-Kosaki syndrome, an autosomal dominant neurodevelopmental disorder. We identified 12 heterozygous predicted deleterious variants in CDC42BPB (9 missense, 2 frameshift, and 1 nonsense) in 14 unrelated individuals (confirmed de novo in 11/14) with neurodevelopmental disorders including developmental delay/intellectual disability, autism, hypotonia, and structural brain abnormalities including cerebellar vermis hypoplasia and agenesis/hypoplasia of the corpus callosum. The frameshift and nonsense variants in CDC42BPB are expected to be gene-disrupting and lead to haploinsufficiency via nonsense-mediated decay. All missense variants are located in highly conserved and functionally important protein domains/regions: 3 are found in the protein kinase domain, 2 are in the citron homology domain, and 4 in a 20-amino acid sequence between 2 coiled-coil regions, 2 of which are recurrent. Future studies will help to delineate the natural history and to elucidate the underlying biological mechanisms of the missense variants leading to the neurodevelopmental and behavioral phenotypes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.a.61505DOI Listing
May 2020

GATAD2B-associated neurodevelopmental disorder (GAND): clinical and molecular insights into a NuRD-related disorder.

Genet Med 2020 05 17;22(5):878-888. Epub 2020 Jan 17.

Royal North Shore Hospital, St Leonards, NSW, Australia.

Purpose: Determination of genotypic/phenotypic features of GATAD2B-associated neurodevelopmental disorder (GAND).

Methods: Fifty GAND subjects were evaluated to determine consistent genotypic/phenotypic features. Immunoprecipitation assays utilizing in vitro transcription-translation products were used to evaluate GATAD2B missense variants' ability to interact with binding partners within the nucleosome remodeling and deacetylase (NuRD) complex.

Results: Subjects had clinical findings that included macrocephaly, hypotonia, intellectual disability, neonatal feeding issues, polyhydramnios, apraxia of speech, epilepsy, and bicuspid aortic valves. Forty-one novelGATAD2B variants were identified with multiple variant types (nonsense, truncating frameshift, splice-site variants, deletions, and missense). Seven subjects were identified with missense variants that localized within two conserved region domains (CR1 or CR2) of the GATAD2B protein. Immunoprecipitation assays revealed several of these missense variants disrupted GATAD2B interactions with its NuRD complex binding partners.

Conclusions: A consistent GAND phenotype was caused by a range of genetic variants in GATAD2B that include loss-of-function and missense subtypes. Missense variants were present in conserved region domains that disrupted assembly of NuRD complex proteins. GAND's clinical phenotype had substantial clinical overlap with other disorders associated with the NuRD complex that involve CHD3 and CHD4, with clinical features of hypotonia, intellectual disability, cardiac defects, childhood apraxia of speech, and macrocephaly.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41436-019-0747-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7920571PMC
May 2020

Advancing RAS/RASopathy therapies: An NCI-sponsored intramural and extramural collaboration for the study of RASopathies.

Am J Med Genet A 2020 04 8;182(4):866-876. Epub 2020 Jan 8.

Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.

RASopathies caused by germline pathogenic variants in genes that encode RAS pathway proteins. These disorders include neurofibromatosis type 1 (NF1), Noonan syndrome (NS), cardiofaciocutaneous syndrome (CFC), and Costello syndrome (CS), and others. RASopathies are characterized by heterogenous manifestations, including congenital heart disease, failure to thrive, and increased risk of cancers. Previous work led by the NCI Pediatric Oncology Branch has altered the natural course of one of the key manifestations of the RASopathy NF1. Through the conduct of a longitudinal cohort study and early phase clinical trials, the MEK inhibitor selumetinib was identified as the first active therapy for the NF1-related peripheral nerve sheath tumors called plexiform neurofibromas (PNs). As a result, selumetinib was granted breakthrough therapy designation by the FDA for the treatment of PN. Other RASopathy manifestations may also benefit from RAS targeted therapies. The overall goal of Advancing RAS/RASopathy Therapies (ART), a new NCI initiative, is to develop effective therapies and prevention strategies for the clinical manifestations of the non-NF1 RASopathies and for tumors characterized by somatic RAS mutations. This report reflects discussions from a February 2019 initiation meeting for this project, which had broad international collaboration from basic and clinical researchers and patient advocates.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.a.61485DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7456498PMC
April 2020

MN1 C-terminal truncation syndrome is a novel neurodevelopmental and craniofacial disorder with partial rhombencephalosynapsis.

Brain 2020 01;143(1):55-68

GeneDx, Gaithersburg, MD, USA.

MN1 encodes a transcriptional co-regulator without homology to other proteins, previously implicated in acute myeloid leukaemia and development of the palate. Large deletions encompassing MN1 have been reported in individuals with variable neurodevelopmental anomalies and non-specific facial features. We identified a cluster of de novo truncating mutations in MN1 in a cohort of 23 individuals with strikingly similar dysmorphic facial features, especially midface hypoplasia, and intellectual disability with severe expressive language delay. Imaging revealed an atypical form of rhombencephalosynapsis, a distinctive brain malformation characterized by partial or complete loss of the cerebellar vermis with fusion of the cerebellar hemispheres, in 8/10 individuals. Rhombencephalosynapsis has no previously known definitive genetic or environmental causes. Other frequent features included perisylvian polymicrogyria, abnormal posterior clinoid processes and persistent trigeminal artery. MN1 is encoded by only two exons. All mutations, including the recurrent variant p.Arg1295* observed in 8/21 probands, fall in the terminal exon or the extreme 3' region of exon 1, and are therefore predicted to result in escape from nonsense-mediated mRNA decay. This was confirmed in fibroblasts from three individuals. We propose that the condition described here, MN1 C-terminal truncation (MCTT) syndrome, is not due to MN1 haploinsufficiency but rather is the result of dominantly acting C-terminally truncated MN1 protein. Our data show that MN1 plays a critical role in human craniofacial and brain development, and opens the door to understanding the biological mechanisms underlying rhombencephalosynapsis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/brain/awz379DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7962909PMC
January 2020

The sixth international RASopathies symposium: Precision medicine-From promise to practice.

Am J Med Genet A 2020 03 11;182(3):597-606. Epub 2019 Dec 11.

Cincinnati Children's Hospital Medical Center and University of Cincinnati, School of Medicine, Cincinnati, Ohio.

The RASopathies are a group of genetic disorders that result from germline pathogenic variants affecting RAS-mitogen activated protein kinase (MAPK) pathway genes. RASopathies share RAS/MAPK pathway dysregulation and share phenotypic manifestations affecting numerous organ systems, causing lifelong and at times life-limiting medical complications. RASopathies may benefit from precision medicine approaches. For this reason, the Sixth International RASopathies Symposium focused on exploring precision medicine. This meeting brought together basic science researchers, clinicians, clinician scientists, patient advocates, and representatives from pharmaceutical companies and the National Institutes of Health. Novel RASopathy genes, variants, and animal models were discussed in the context of medication trials and drug development. Attempts to define and measure meaningful endpoints for treatment trials were discussed, as was drug availability to patients after trial completion.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.a.61434DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7021559PMC
March 2020

De novo and inherited variants in ZNF292 underlie a neurodevelopmental disorder with features of autism spectrum disorder.

Genet Med 2020 03 14;22(3):538-546. Epub 2019 Nov 14.

New York State Institute for Basic Research in Developmental Disability, NY, Staten Island, USA.

Purpose: Intellectual disability (ID) and autism spectrum disorder (ASD) are genetically heterogeneous neurodevelopmental disorders. We sought to delineate the clinical, molecular, and neuroimaging spectrum of a novel neurodevelopmental disorder caused by variants in the zinc finger protein 292 gene (ZNF292).

Methods: We ascertained a cohort of 28 families with ID due to putatively pathogenic ZNF292 variants that were identified via targeted and exome sequencing. Available data were analyzed to characterize the canonical phenotype and examine genotype-phenotype relationships.

Results: Probands presented with ID as well as a spectrum of neurodevelopmental features including ASD, among others. All ZNF292 variants were de novo, except in one family with dominant inheritance. ZNF292 encodes a highly conserved zinc finger protein that acts as a transcription factor and is highly expressed in the developing human brain supporting its critical role in neurodevelopment.

Conclusion: De novo and dominantly inherited variants in ZNF292 are associated with a range of neurodevelopmental features including ID and ASD. The clinical spectrum is broad, and most individuals present with mild to moderate ID with or without other syndromic features. Our results suggest that variants in ZNF292 are likely a recurrent cause of a neurodevelopmental disorder manifesting as ID with or without ASD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41436-019-0693-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7060121PMC
March 2020

Medically actionable comorbidities in adults with Costello syndrome.

Am J Med Genet A 2020 01 3;182(1):130-136. Epub 2019 Nov 3.

Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.

Costello syndrome (CS) is an autosomal-dominant condition caused by activating missense mutations in HRAS. There is little literature describing health concerns specific to adults with CS. Parents of individuals with CS need to know what to anticipate as their children age. We surveyed a group of 20 adults and older adolescents with CS regarding their medical concerns and lifestyle characteristics. We identified several previously undescribed actionable medical concerns in adults with CS. First, the high prevalence of anxiety in this cohort indicates that screening for anxiety is warranted since this is a treatable condition that can have a significant impact on quality of life. Second, adults with CS should be monitored for progressive contractures or other problems that could decrease mobility. This is especially important in a population that seems to have increased risk for osteopenia. Finally, the lack of cancer diagnoses in adulthood is of interest, although the cohort is too small to draw definitive conclusions about cancer risk in adults with CS. Ongoing follow-up of the current cohort of adults with CS is necessary to delineate progressive medical and physical problems, which is essential for providing targeted management recommendations and anticipatory guidance to families.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.a.61394DOI Listing
January 2020

Clinical spectrum of individuals with pathogenic NF1 missense variants affecting p.Met1149, p.Arg1276, and p.Lys1423: genotype-phenotype study in neurofibromatosis type 1.

Hum Mutat 2020 01 26;41(1):299-315. Epub 2019 Oct 26.

Department of Dermatology and Venereology, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy.

We report 281 individuals carrying a pathogenic recurrent NF1 missense variant at p.Met1149, p.Arg1276, or p.Lys1423, representing three nontruncating NF1 hotspots in the University of Alabama at Birmingham (UAB) cohort, together identified in 1.8% of unrelated NF1 individuals. About 25% (95% confidence interval: 20.5-31.2%) of individuals heterozygous for a pathogenic NF1 p.Met1149, p.Arg1276, or p.Lys1423 missense variant had a Noonan-like phenotype, which is significantly more compared with the "classic" NF1-affected cohorts (all p < .0001). Furthermore, p.Arg1276 and p.Lys1423 pathogenic missense variants were associated with a high prevalence of cardiovascular abnormalities, including pulmonic stenosis (all p < .0001), while p.Arg1276 variants had a high prevalence of symptomatic spinal neurofibromas (p < .0001) compared with "classic" NF1-affected cohorts. However, p.Met1149-positive individuals had a mild phenotype, characterized mainly by pigmentary manifestations without externally visible plexiform neurofibromas, symptomatic spinal neurofibromas or symptomatic optic pathway gliomas. As up to 0.4% of unrelated individuals in the UAB cohort carries a p.Met1149 missense variant, this finding will contribute to more accurate stratification of a significant number of NF1 individuals. Although clinically relevant genotype-phenotype correlations are rare in NF1, each affecting only a small percentage of individuals, together they impact counseling and management of a significant number of the NF1 population.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/humu.23929DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6973139PMC
January 2020

Using facial analysis technology in a typical genetic clinic: experience from 30 individuals from a single institution.

J Hum Genet 2019 12 24;64(12):1243-1245. Epub 2019 Sep 24.

Division of Medical Genetics, A. I. du Pont Hospital for Children/Nemours, Wilmington, DE, USA.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s10038-019-0673-6DOI Listing
December 2019

Costello syndrome: Clinical phenotype, genotype, and management guidelines.

Am J Med Genet A 2019 09 20;179(9):1725-1744. Epub 2019 Jun 20.

Division of Genomic Medicine, Department of Pediatrics, University of California Davis, Sacramento, California.

Costello syndrome (CS) is a RASopathy caused by activating germline mutations in HRAS. Due to ubiquitous HRAS gene expression, CS affects multiple organ systems and individuals are predisposed to cancer. Individuals with CS may have distinctive craniofacial features, cardiac anomalies, growth and developmental delays, as well as dermatological, orthopedic, ocular, and neurological issues; however, considerable overlap with other RASopathies exists. Medical evaluation requires an understanding of the multifaceted phenotype. Subspecialists may have limited experience in caring for these individuals because of the rarity of CS. Furthermore, the phenotypic presentation may vary with the underlying genotype. These guidelines were developed by an interdisciplinary team of experts in order to encourage timely health care practices and provide medical management guidelines for the primary and specialty care provider, as well as for the families and affected individuals across their lifespan. These guidelines are based on expert opinion and do not represent evidence-based guidelines due to the lack of data for this rare condition.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.a.61270DOI Listing
September 2019

PEDIA: prioritization of exome data by image analysis.

Genet Med 2019 12 5;21(12):2807-2814. Epub 2019 Jun 5.

National Research and Applied Medicine Centre 'Mother and Child'', Minsk, Belarus.

Purpose: Phenotype information is crucial for the interpretation of genomic variants. So far it has only been accessible for bioinformatics workflows after encoding into clinical terms by expert dysmorphologists.

Methods: Here, we introduce an approach driven by artificial intelligence that uses portrait photographs for the interpretation of clinical exome data. We measured the value added by computer-assisted image analysis to the diagnostic yield on a cohort consisting of 679 individuals with 105 different monogenic disorders. For each case in the cohort we compiled frontal photos, clinical features, and the disease-causing variants, and simulated multiple exomes of different ethnic backgrounds.

Results: The additional use of similarity scores from computer-assisted analysis of frontal photos improved the top 1 accuracy rate by more than 20-89% and the top 10 accuracy rate by more than 5-99% for the disease-causing gene.

Conclusion: Image analysis by deep-learning algorithms can be used to quantify the phenotypic similarity (PP4 criterion of the American College of Medical Genetics and Genomics guidelines) and to advance the performance of bioinformatics pipelines for exome analysis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41436-019-0566-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6892739PMC
December 2019

Gain-of-Function Mutations in KCNN3 Encoding the Small-Conductance Ca-Activated K Channel SK3 Cause Zimmermann-Laband Syndrome.

Am J Hum Genet 2019 06 30;104(6):1139-1157. Epub 2019 May 30.

Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany. Electronic address:

Zimmermann-Laband syndrome (ZLS) is characterized by coarse facial features with gingival enlargement, intellectual disability (ID), hypertrichosis, and hypoplasia or aplasia of nails and terminal phalanges. De novo missense mutations in KCNH1 and KCNK4, encoding K channels, have been identified in subjects with ZLS and ZLS-like phenotype, respectively. We report de novo missense variants in KCNN3 in three individuals with typical clinical features of ZLS. KCNN3 (SK3/KCa2.3) constitutes one of three members of the small-conductance Ca-activated K (SK) channels that are part of a multiprotein complex consisting of the pore-forming channel subunits, the constitutively bound Ca sensor calmodulin, protein kinase CK2, and protein phosphatase 2A. CK2 modulates Ca sensitivity of the channels by phosphorylating SK-bound calmodulin. Patch-clamp whole-cell recordings of KCNN3 channel-expressing CHO cells demonstrated that disease-associated mutations result in gain of function of the mutant channels, characterized by increased Ca sensitivity leading to faster and more complete activation of KCNN3 mutant channels. Pretreatment of cells with the CK2 inhibitor 4,5,6,7-tetrabromobenzotriazole revealed basal inhibition of wild-type and mutant KCNN3 channels by CK2. Analogous experiments with the KCNN3 p.Val450Leu mutant previously identified in a family with portal hypertension indicated basal constitutive channel activity and thus a different gain-of-function mechanism compared to the ZLS-associated mutant channels. With the report on de novo KCNK4 mutations in subjects with facial dysmorphism, hypertrichosis, epilepsy, ID, and gingival overgrowth, we propose to combine the phenotypes caused by mutations in KCNH1, KCNK4, and KCNN3 in a group of neurological potassium channelopathies caused by an increase in K conductance.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2019.04.012DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6562147PMC
June 2019

Gene domain-specific DNA methylation episignatures highlight distinct molecular entities of ADNP syndrome.

Clin Epigenetics 2019 04 27;11(1):64. Epub 2019 Apr 27.

Department of Pathology and Laboratory Medicine, Western University, 800 Commissioner's Road E, London, ON, N6A 5W9, Canada.

Background: ADNP syndrome is a rare Mendelian disorder characterized by global developmental delay, intellectual disability, and autism. It is caused by truncating mutations in ADNP, which is involved in chromatin regulation. We hypothesized that the disruption of chromatin regulation might result in specific DNA methylation patterns that could be used in the molecular diagnosis of ADNP syndrome.

Results: We identified two distinct and partially opposing genomic DNA methylation episignatures in the peripheral blood samples from 22 patients with ADNP syndrome. The "epi-ADNP-1" episignature included ~ 6000 mostly hypomethylated CpGs, and the "epi-ADNP-2" episignature included ~ 1000 predominantly hypermethylated CpGs. The two signatures correlated with the locations of the ADNP mutations. Epi-ADNP-1 mutations occupy the N- and C-terminus, and epi-ADNP-2 mutations are centered on the nuclear localization signal. The episignatures were enriched for genes involved in neuronal system development and function. A classifier trained on these profiles yielded full sensitivity and specificity in detecting patients with either of the two episignatures. Applying this model to seven patients with uncertain clinical diagnosis enabled reclassification of genetic variants of uncertain significance and assigned new diagnosis when the primary clinical suspicion was not correct. When applied to a large cohort of unresolved patients with developmental delay (N = 1150), the model predicted three additional previously undiagnosed patients to have ADNP syndrome. DNA sequencing of these subjects, wherever available, identified pathogenic mutations within the gene domains predicted by the model.

Conclusions: We describe the first Mendelian condition with two distinct episignatures caused by mutations in a single gene. These highly sensitive and specific DNA methylation episignatures enable diagnosis, screening, and genetic variant classifications in ADNP syndrome.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13148-019-0658-5DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6487024PMC
April 2019

Biallelic sequence variants in INTS1 in patients with developmental delays, cataracts, and craniofacial anomalies.

Eur J Hum Genet 2019 Apr 8;27(4):582-593. Epub 2019 Jan 8.

Dept. Pediatrics, Division of Genetics, University of California, San Francisco, San Francisco, CA, 94143-2711, USA.

The Integrator complex subunit 1 (INTS1) is a component of the integrator complex that comprises 14 subunits and associates with RPB1 to catalyze endonucleolytic cleavage of nascent snRNAs and assist RNA polymerase II in promoter-proximal pause-release on protein-coding genes. We present five patients, including two sib pairs, with biallelic sequence variants in INTS1. The patients manifested absent or severely limited speech, an abnormal gait, hypotonia and cataracts. Exome sequencing revealed biallelic variants in INTS1 in all patients. One sib pair demonstrated a missense variant, p.(Arg77Cys), and a frameshift variant, p.(Arg1800Profs*20), another sib pair had a homozygous missense variant, p.(Pro1874Leu), and the fifth patient had a frameshift variant, p.(Leu1764Cysfs*16) and a missense variant, p.(Leu2164Pro). We also report additional clinical data on three previously described individuals with a homozygous, loss of function variant, p.(Ser1784*) in INTS1 that shared cognitive delays, cataracts and dysmorphic features with these patients. Several of the variants affected the protein C-terminus and preliminary modeling showed that the p.(Pro1874Leu) and p.(Leu2164Pro) variants may interfere with INTS1 helix folding. In view of the cataracts observed, we performed in-situ hybridization and demonstrated expression of ints1 in the zebrafish eye. We used Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 to make larvae with biallelic insertion/deletion (indel) variants in ints1. The mutant larvae developed typically through gastrulation, but sections of the eye showed abnormal lens development. The distinctive phenotype associated with biallelic variants in INTS1 points to dysfunction of the integrator complex as a mechanism for intellectual disability, eye defects and craniofacial anomalies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41431-018-0298-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6460580PMC
April 2019

Identifying facial phenotypes of genetic disorders using deep learning.

Nat Med 2019 01 7;25(1):60-64. Epub 2019 Jan 7.

Division of Medical Genetics, A. I. du Pont Hospital for Children/Nemours, Wilmington, DE, USA.

Syndromic genetic conditions, in aggregate, affect 8% of the population. Many syndromes have recognizable facial features that are highly informative to clinical geneticists. Recent studies show that facial analysis technologies measured up to the capabilities of expert clinicians in syndrome identification. However, these technologies identified only a few disease phenotypes, limiting their role in clinical settings, where hundreds of diagnoses must be considered. Here we present a facial image analysis framework, DeepGestalt, using computer vision and deep-learning algorithms, that quantifies similarities to hundreds of syndromes. DeepGestalt outperformed clinicians in three initial experiments, two with the goal of distinguishing subjects with a target syndrome from other syndromes, and one of separating different genetic subtypes in Noonan syndrome. On the final experiment reflecting a real clinical setting problem, DeepGestalt achieved 91% top-10 accuracy in identifying the correct syndrome on 502 different images. The model was trained on a dataset of over 17,000 images representing more than 200 syndromes, curated through a community-driven phenotyping platform. DeepGestalt potentially adds considerable value to phenotypic evaluations in clinical genetics, genetic testing, research and precision medicine.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41591-018-0279-0DOI Listing
January 2019