Publications by authors named "Karen Rickers"

4 Publications

  • Page 1 of 1

Real-world emission factors for antimony and other brake wear related trace elements: size-segregated values for light and heavy duty vehicles.

Environ Sci Technol 2009 Nov;43(21):8072-8

Empa, Swiss Federal Laboratories for Materials Testing and Research, CH-8600 Duebendorf, Switzerland.

Hourly trace element measurements were performed in an urban street canyon and next to an interurban freeway in Switzerland during more than one month each, deploying a rotating drum impactor (RDI) and subsequent sample analysis by synchrotron radiation X-ray fluorescence spectrometry (SR-XRF). Antimony and other brake wear associated elements were detected in three particle size ranges (2.5-10, 1-2.5, and 0.1-1 microm). The hourly measurements revealed that the effect of resuspended road dust has to be taken into account for the calculation of vehicle emission factors. Individual values for light and heavy duty vehicles were obtained for stop-and-go traffic in the urban street canyon. Mass based brake wear emissions were predominantly found in the coarse particle fraction. For antimony, determined emission factors were 11 +/- 7 and 86 +/- 42 microg km(-1) vehicle(-1) for light and heavy duty vehicles, respectively. Antimony emissions along the interurban freeway with free-flowing traffic were significantly lower. Relative patterns for brake wear related elements were very similar for both considered locations. Beside vehicle type specific brake wear emissions, road dust resuspension was found to be a dominant contributor of antimony in the street canyon.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/es9006096DOI Listing
November 2009

Neuroprotective action of FK-506 (tacrolimus) after seizures induced with pilocarpine: quantitative and topographic elemental analysis of brain tissue.

J Biol Inorg Chem 2010 Feb 28;15(2):283-9. Epub 2009 Oct 28.

Department of Applied Nuclear Methods, Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków, Poland.

In the present work, X-ray fluorescence microscopy with a synchrotron source for the exciting radiation was applied for topographic and quantitative elemental analysis of rat brain tissue in pilocarpine-induced epilepsy and neuroprotection with FK-506. The mass per unit area of the elements P, S, Cl, K, Ca, Fe, Cu, Zn, Se, Br, and Rb was determined in four fields of the hippocampal formation (sectors 1 and 3 of Ammon's horn-CA1, CA3; dentate gyrus; hilus of dentate gyrus) and the parietal cortex. The results obtained for epileptic rats treated with FK-506 (SNF) were compared with data obtained previously for epileptic rats (SNS) and a control group. Many statistically significant differences in elemental composition were observed between the SNF and SNS groups. Higher mass per unit area of P was noticed in CA1 and CA3 regions of the hippocampus of SNF rats in comparison with SNS rats. A similar relation was observed for K in all five brain areas analyzed. Also, Fe in CA3 and dentate gyrus, Cu in the parietal cortex, and Zn in CA3 and in the cortex were present at a higher level in the SNF group in comparison with the SNS group. The findings obtained in the present study suggest that the neuroprotective action of FK-506 in epileptic rat brain may involve not only the inhibition of calcineurin but also blockade of the K(+) channels.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00775-009-0597-2DOI Listing
February 2010

Visualization of a lost painting by Vincent van Gogh using synchrotron radiation based X-ray fluorescence elemental mapping.

Anal Chem 2008 Aug 29;80(16):6436-42. Epub 2008 Jul 29.

Department of Materials Science, Delft University of Technology, Mekelweg 2, 2628CD Delft, The Netherlands.

Vincent van Gogh (1853-1890), one of the founding fathers of modern painting, is best known for his vivid colors, his vibrant painting style, and his short but highly productive career. His productivity is even higher than generally realized, as many of his known paintings cover a previous composition. This is thought to be the case in one-third of his early period paintings. Van Gogh would often reuse the canvas of an abandoned painting and paint a new or modified composition on top. These hidden paintings offer a unique and intimate insight into the genesis of his works. Yet, current museum-based imaging tools are unable to properly visualize many of these hidden images. We present the first-time use of synchrotron radiation based X-ray fluorescence mapping, applied to visualize a woman's head hidden under the work Patch of Grass by Van Gogh. We recorded decimeter-scale, X-ray fluorescence intensity maps, reflecting the distribution of specific elements in the paint layers. In doing so we succeeded in visualizing the hidden face with unprecedented detail. In particular, the distribution of Hg and Sb in the red and light tones, respectively, enabled an approximate color reconstruction of the flesh tones. This reconstruction proved to be the missing link for the comparison of the hidden face with Van Gogh's known paintings. Our approach literally opens up new vistas in the nondestructive study of hidden paint layers, which applies to the oeuvre of Van Gogh in particular and to old master paintings in general.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac800965gDOI Listing
August 2008

Three-dimensional trace element analysis by confocal X-ray microfluorescence imaging.

Anal Chem 2004 Nov;76(22):6786-91

MiTAC, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium.

A three-dimensional (3D) variant of scanning micro X-ray fluorescence (XRF) is described and evaluated at the ID18F instrument of the European Synchrotron Radiation Facility (ESRF). The method is based on confocal excitation/detection using a polycapillary half-lens in front of the energy-dispersive detector. The experimental arrangement represents a significant generalization of regular two-dimensional (2D) scanning micro-XRF and employs a detector half-lens whose focus coincides with that of the focused incoming beam. The detection volume defined by the intersection of the exciting beam and the energy-dependent acceptance of the polycapillary optics is 100-350 mum(3). Minimum detection limits are sub-ppm, and sensitivities are comparable with regular scanning XRF. Next to the reduction of in-sample single/multiple scattering, the setup provides the possibility of sample depth scans with an energy-dependent resolution of 10-35 mum in the energy range of 3-23 keV and the possibility of performing 3D-XRF analysis by simple XYZ linear scanning. This provides a suitable alternative to X-ray fluorescence tomography. The method is illustrated with results of the analysis of solid inclusions in diamond and fluid inclusions in quartz.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac049274lDOI Listing
November 2004