Publications by authors named "Kamala Vanarsa"

23 Publications

  • Page 1 of 1

Urine protein biomarkers of bladder cancer arising from 16-plex antibody-based screens.

Oncotarget 2021 Apr 13;12(8):783-790. Epub 2021 Apr 13.

Department Biomedical Engineering, University of Houston, Houston, TX, USA.

Purpose: The purpose of this study is to identify novel urine protein biomarkers of bladder cancer using a Luminex based screening platform.

Materials And Methods: The current study examines urine samples from 66 subjects, comprised of 31 Urology clinic controls and 35 bladder cancer patients, using a Luminex based screening platform. ELISA validation was carried out for the top 4 prospective urine biomarkers using an independent cohort of 20 Urology clinic controls and 60 bladder cancer (BC) subjects.

Results: Of the 16 proteins screened by Luminex, 10 showed significant elevation in BC compared to the controls. Eight of these urine proteins were able to differentiate BC from control urine with ROC AUC values exceeding 0.70 at < 0.0001, with specificity values exceeding 0.9. Upon ELISA validation, urine IL-1α, IL-1ra, and IL-8 were able to distinguish control urine from urine drawn from various bladder cancer stages, with IL-8 being the best discriminator. Compared to members of the IL-1 cytokine family, urine IL-8 was also best at discriminating T1 and/or T2-T4 from Ta BC (ROC AUC ≥ 0.83), as well as high grade from low grade BC (ROC AUC ≥ 0.82).

Conclusions: These findings suggest that urine IL-1α, IL-1ra and IL-8 are useful indicators of bladder cancer. Urine IL-8 not only distinguishes bladder cancer from controls, it also discriminates high grade from low grade disease, and the successive clinical stages of bladder cancer. While supportive of previous reports, these findings warrant further analysis in prospective cohorts.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.18632/oncotarget.27941DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8057279PMC
April 2021

Epigallocatechin-3-Gallate Dampens Non-Alcoholic Fatty Liver by Modulating Liver Function, Lipid Profile and Macrophage Polarization.

Nutrients 2021 Feb 11;13(2). Epub 2021 Feb 11.

Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA.

Epigallocatechin-3-gallate (EGCG) has been shown to attenuate obesity, fatty liver disease, hepatic inflammation and lipid profiles. Here, we validate the efficacy of EGCG in a murine model of non-alcoholic fatty liver disease (NAFLD) and extend the mechanistic insights. NAFLD was induced in mice by a high-fat diet (HFD) with 30% fructose. EGCG was administered at a low dose (25 mg/kg/day, EGCG-25) or high dose (50 mg/kg/day, EGCG-50) for 8 weeks. In HFD-fed mice, EGCG attenuated body and liver weight by ~22% and 47%, respectively, accompanied by ~47% reduction in hepatic triglyceride (TG) accumulation and ~38% reduction in serum cholesterol, resonating well with previous reports in the literature. In EGCG-treated mice, the hepatic steatosis score and the non-alcoholic steatohepatitis activity score were both reduced by ~50% and ~57%, respectively, accompanied by improvements in hepatic inflammation grade. Liver enzymes were improved ~2-3-fold following EGCG treatment, recapitulating previous reports. Hepatic flow cytometry demonstrated that EGCG-fed mice had lower Ly6C, MHCII+ and higher CD206, CD23 hepatic macrophage infiltration, indicating that EGCG impactedM1/M2 macrophage polarization. Our study further validates the salubrious effects of EGCG on NAFLD and sheds light on a novel mechanistic contribution of EGCG, namely hepatic M1-to-M2 macrophage polarization. These findings offer further support for the use of EGCG in human NAFLD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/nu13020599DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7918805PMC
February 2021

Targeted urine proteomics in lupus nephritis - a meta-analysis.

Expert Rev Proteomics 2020 10 19;17(10):767-776. Epub 2021 Jan 19.

Department of Biomedical Engineering, University of Houston , Houston, Texas, USA.

Background: Proteomic approaches are central in biomarker discovery. While mass-spectrometry-based techniques are widely used, novel targeted proteomic platforms have enabled the high-throughput detection of low-abundance proteins in an affinity-based manner. Urine has gained growing attention as an ideal biofluid for monitoring renal disease including lupus nephritis (LN).

Methods: Pubmed was screened for targeted proteomic studies of LN urine interrogating ≥1000 proteins. Data from the primary studies were combined and a meta-analysis was performed. Shared proteins elevated in active LN across studies were identified, and relevant pathways were elucidated using ingenuity pathway and gene ontology analysis. Urine proteomic data was cross-referenced against renal single-cell RNAseq data from LN kidneys.

Results: Two high-throughput targeted proteomic platforms with capacity to interrogate ≥1000 proteins have been used to investigate LN urine. Twenty-three urine proteins were significantly elevated in both studies, including 10 chemokines, and proteins implicated in angiogenesis, and extracellular matrix turnover. Of these, Cathepsin S, CXCL10, FasL, ferritin, macrophage migration inhibitory factor (MIF), and resistin were also significantly elevated within LN kidneys.

Conclusion: Targeted urinary proteomics have uncovered multiple novel biomarkers for LN. Further validation in prospective cohorts and mechanistic studies are warranted to establish their clinical utility.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/14789450.2020.1874356DOI Listing
October 2020

Quantitative planar array screen of 1000 proteins uncovers novel urinary protein biomarkers of lupus nephritis.

Ann Rheum Dis 2020 10 10;79(10):1349-1361. Epub 2020 Jul 10.

Department of Biomedical Engineering, University of Houston, Houston, Texas, USA

Objective: The goal of these studies is to discover novel urinary biomarkers of lupus nephritis (LN).

Methods: Urine from systemic lupus erythematosus (SLE) patients was interrogated for 1000 proteins using a novel, quantitative planar protein microarray. Hits were validated in an independent SLE cohort with inactive, active non-renal (ANR) and active renal (AR) patients, in a cohort with concurrent renal biopsies, and in a longitudinal cohort. Single-cell renal RNA sequencing data from LN kidneys were examined to deduce the cellular origin of each biomarker.

Results: Screening of 1000 proteins revealed 64 proteins to be significantly elevated in SLE urine, of which 17 were ELISA validated in independent cohorts. Urine Angptl4 (area under the curve (AUC)=0.96), L-selectin (AUC=0.86), TPP1 (AUC=0.84), transforming growth factor-β1 (TGFβ1) (AUC=0.78), thrombospondin-1 (AUC=0.73), FOLR2 (AUC=0.72), platelet-derived growth factor receptor-β (AUC=0.67) and PRX2 (AUC=0.65) distinguished AR from ANR SLE, outperforming anti-dsDNA, C3 and C4, in terms of specificity, sensitivity and positive predictive value. In multivariate regression analysis, urine Angptl4, L-selectin, TPP1 and TGFβ1 were highly associated with disease activity, even after correction for demographic variables. In SLE patients with serial follow-up, urine L-selectin (followed by urine Angptl4 and TGFβ1) were best at tracking concurrent or pending disease flares. Importantly, several proteins elevated in LN urine were also expressed within the kidneys in LN, either within resident renal cells or infiltrating immune cells, based on single-cell RNA sequencing analysis.

Conclusion: Unbiased planar array screening of 1000 proteins has led to the discovery of urine Angptl4, L-selectin and TGFβ1 as potential biomarker candidates for tracking disease activity in LN.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1136/annrheumdis-2019-216312DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7839323PMC
October 2020

Upregulation of Proinflammatory Bradykinin Peptides in Systemic Lupus Erythematosus and Rheumatoid Arthritis.

J Immunol 2020 07 15;205(2):369-376. Epub 2020 Jun 15.

Biomedical Engineering, University of Houston, Houston, TX 77204;

Our recent study has implicated bradykinin (BK) signaling as being of pathogenic importance in lupus. This study aims to investigate the biomarker potential of BK peptides, BK and BK-des-arg-9, in lupus and other rheumatic autoimmune diseases. Sera from systemic lupus erythematosus (SLE) patients and healthy subjects were screened for BK and BK-des-arg-9 by liquid chromatography-mass spectrometry metabolomics. Serum from 6-mo-old C57BL/6 mice and three murine lupus strains were also screened for the two peptides by metabolomics. Given the promising initial screening results, validation of these two peptides was next conducted using multiple reaction monitoring in larger patient cohorts. In initial metabolomics screening, BK-des-arg-9 was 22-fold higher in SLE serum and 106-fold higher in mouse lupus serum compared with healthy controls. In validation assays using multiple reaction monitoring and quadrupole time-of-flight mass spectrometry, BK and BK-des-arg-9 showed significant elevations in SLE serum compared with controls ( < 0.0001; area under the curve = 0.79-0.88), with a similar but less pronounced increase being noted in rheumatoid arthritis serum. Interestingly, increased renal SLE disease activity index in lupus patients was associated with reduced circulating BK-des-arg-9, and the reasons for this remain to be explored. To sum, increased conversion of BK to the proinflammatory metabolite BK-des-arg-9 appears to be a common theme in systemic rheumatic diseases. Besides serving as an early marker for systemic autoimmunity, independent studies also show that this metabolic axis may also be a pathogenic driver and therapeutic target in lupus.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.1801167DOI Listing
July 2020

Comprehensive aptamer-based screening identifies a spectrum of urinary biomarkers of lupus nephritis across ethnicities.

Nat Commun 2020 05 4;11(1):2197. Epub 2020 May 4.

Department Biomedical Engineering, University of Houston, Houston, TX, USA.

Emerging urinary biomarkers continue to show promise in evaluating lupus nephritis (LN). Here, we screen urine from active LN patients for 1129 proteins using an aptamer-based platform, followed by ELISA validation in two independent cohorts comprised of 127 inactive lupus, 107 active LN, 67 active non-renal lupus patients and 74 healthy controls, of three different ethnicities. Urine proteins that best distinguish active LN from inactive disease are ALCAM, PF-4, properdin, and VCAM-1 among African-Americans, sE-selectin, VCAM-1, BFL-1 and Hemopexin among Caucasians, and ALCAM, VCAM-1, TFPI and PF-4 among Asians. Most of these correlate significantly with disease activity indices in the respective ethnic groups, and surpass conventional metrics in identifying active LN, with better sensitivity, and negative/positive predictive values. Several elevated urinary molecules are also expressed within the kidneys in LN, based on single-cell RNAseq analysis. Longitudinal studies are warranted to assess the utility of these biomarkers in tracking lupus nephritis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-020-15986-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7198599PMC
May 2020

Association of Urine sCD163 With Proliferative Lupus Nephritis, Fibrinoid Necrosis, Cellular Crescents and Intrarenal M2 Macrophages.

Front Immunol 2020 15;11:671. Epub 2020 Apr 15.

Department of Biomedical Engineering, University of Houston, Houston, TX, United States.

CD163 is a marker for alternatively activated macrophages, which have been implicated in the pathogenesis of lupus nephritis (LN). In our preliminary screening of urine proteins in LN, urine soluble CD163 (sCD163) was significantly elevated in patients with active LN. To evaluate the potential of sCD163 as a biomarker in LN, urine sCD163 was assayed in patients with active LN, active non-renal lupus patients (ANR), inactive SLE and healthy controls (HC), using ELISA and normalized to urine creatinine. The correlation of urine sCD163 with clinical parameters and renal pathological attributes was further investigated in LN patients with concurrent renal biopsies. A total of 228 SLE patients and 56 HC were included from three cohorts. Results demonstrated that urine sCD163 was significantly elevated in active LN when compared with HC, inactive SLE, or ANR in African-American, Caucasian and Asian subjects (all < 0.001). In LN patients with concurrent renal biopsies, urine sCD163 was significantly increased in patients with proliferative LN when compared with non-proliferative LN ( < 0.001). Urine sCD163 strongly correlated with SLEDAI, rSLEDAI, activity index (AI) of renal pathology, fibrinoid necrosis, cellular crescents, and interstitial inflammation on biopsies (all < 0.01). Macrophages, particularly M2 macrophages, the predominant cells expressing CD163 within LN kidneys, represented a potential source of elevated urine sCD163, based on single-cell RNA sequencing analysis. To conclude, urine sCD163 discriminated patients with active LN from other SLE patients and was significantly elevated in proliferative LN. It strongly correlated with concurrent AI and several specific pathological attributes, demonstrating its potential in predicting renal pathology.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fimmu.2020.00671DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7174755PMC
April 2021

ALCAM and VCAM-1 as urine biomarkers of activity and long-term renal outcome in systemic lupus erythematosus.

Rheumatology (Oxford) 2020 09;59(9):2237-2249

Department of Biomedical Engineering, University of Houston, Houston, TX, USA.

Objectives: We investigated the cell adhesion molecules (CAMs) Vascular CAM 1 (VCAM-1) and Activated Leucocyte CAM (ALCAM) as urinary biomarkers in SLE patients with and without renal involvement.

Methods: Female SLE patients (n = 111) and non-SLE population-based controls (n = 99) were enrolled. We measured renal activity using the renal domain of the BILAG index and urine (U) and plasma (P) concentrations of soluble (s)VCAM 1 and U-sALCAM using ELISA. U-sCAM levels were next corrected by U-creatinine.

Results: U-sVCAM-1/creatinine and U-sALCAM/creatinine ratios were higher in SLE patients vs non-SLE controls (P < 0.001 for both), as well as in patients with active/low-active (BILAG A-C; n = 11) vs quiescent (BILAG D; n = 19) LN (P = 0.023 and P = 0.001, respectively). U-sALCAM/creatinine but not U-sVCAM-1/creatinine ratios were higher in patients with nephritis history (BILAG A-D; n = 30) vs non-renal SLE (BILAG E; n = 79) (P = 0.014). Patients with baseline U-sVCAM-1/creatinine ratios ≥75th percentile showed a 23-fold increased risk of a deterioration in estimated glomerular filtration rate by ≥25% during a 10-year follow-up (odds ratio: 22.9; 95% CI: 2.8, 189.2; P = 0.004); this association remained significant after adjustments for age, disease duration and organ damage. Traditional markers including anti-dsDNA antibodies did not predict this outcome.

Conclusion: While high U-sVCAM-1 levels appear to reflect SLE disease activity, sALCAM might have particular importance in renal SLE. Both U-sVCAM-1 and U-sALCAM showed ability to distinguish SLE patients with active renal involvement from patients with quiescent or no prior nephritis. High U-sVCAM-1 levels may indicate patients at increased risk for long-term renal function loss.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/rheumatology/kez528DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7449816PMC
September 2020

Low dose Epigallocatechin Gallate Alleviates Experimental Colitis by Subduing Inflammatory Cells and Cytokines, and Improving Intestinal Permeability.

Nutrients 2019 Jul 29;11(8). Epub 2019 Jul 29.

Department of Biomedical Engineering, University of Houston, Houston 77204, TX, USA.

Background: In this study, we investigate the impact of epigallocatechin gallate (EGCG), the most abundant and potent catechin in green tea, on a mouse model of inflammatory bowel disease (IBD) and the underlying mechanisms of action.

Methods: C57BL/6J mice were subjected to dextran sulfate sodium (DSS)-induced IBD-like disease and then randomly divided into three groups: Model group (MD), low-dose EGCG group (LE, 20 mg/kg/d), and high-dose EGCG group (HE, 50 mg/kg/d). DSS-induced clinical and macroscopic changes were monitored daily. Intestinal permeability was assessed by FITC-Dextran assay.

Results: Both high- and low-dose EGCG treatment alleviated clinical manifestations including body weight loss and disease activity index (DAI) of DSS-induced colitis. The DAI score was significantly improved after two days of EGCG treatment. At the end of the study, the macroscopic severity score (MSS) of HE and LE treatment groups were 2.4 ± 1.2, and 2.2 ± 1.0, respectively, significantly lower than that of the controls (5.0 ± 2.1). EGCG treatment also prevented colon shortening, and improved intestinal permeability and histopathological changes. In addition, EGCG treatment attenuated colon inflammation by suppressing colonic levels of pro-inflammatory cytokines IL-6, MCP-1, and TNF-alpha, and inhibited CD3+ T cell and CD68+ macrophage infiltration.

Conclusion: EGCG is effective in inflammatory colitis because it reduces cellular and molecular inflammation, and reduces intestinal permeability.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/nu11081743DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6724056PMC
July 2019

Identification of Low-Abundance Urinary Biomarkers in Lupus Nephritis Using Electrochemiluminescence Immunoassays.

Arthritis Rheumatol 2019 05 3;71(5):744-755. Epub 2019 Apr 3.

University of Houston, Houston, Texas.

Objective: To investigate the utility of a sensitive platform using electrochemiluminescence (ECL) for the identification of low-abundance urinary protein biomarkers in lupus nephritis (LN).

Methods: Forty-eight urine samples were obtained from subjects in 2 independent cohorts, each consisting of 3 groups (matched for age, sex, and race) of 8 patients with active LN (renal Systemic Lupus Erythematosus Disease Activity Index [SLEDAI] >0), 8 patients with inactive SLE (renal SLEDAI 0), and 8 healthy controls. Samples were tested using a preexisting 40-plex ECL panel. A custom 5-plex ECL panel was then developed for further validation studies and used to test 140 urine samples (from 44 patients with active LN, 41 patients with inactive SLE, 28 healthy controls, and 27 patients with other kidney diseases).

Results: Levels of 17 urinary proteins were elevated (P < 0.05 by 2-tailed Mann-Whitney U test) in samples from patients with active LN compared to samples from patients with inactive SLE and healthy controls in cohort 1, while 9 were similarly elevated in cohort 2. Of these, interleukin-7 (IL-7), IL-12p40, IL-15, interferon-γ-inducible protein 10 (IP-10), and thymus and activation-regulated chemokine (TARC) were chosen for further validation. These 5 proteins were undetectable by enzyme-linked immunosorbent assay (ELISA). Hence, a custom 5-plex ECL panel was developed and used to validate the results from the initial 40-plex screening panel. Urinary IL-7, IL-12p40, IL-15, IP-10, and TARC levels were again significantly elevated in patients with active LN compared to those with inactive SLE and healthy controls, and correlated well with the renal SLEDAI and physician's global assessment of disease activity (R > 0.67, P < 0.05). All 5 urinary proteins were more frequently elevated in LN compared to controls with other chronic kidney diseases, although overall group differences attained significance only for urinary IL-7 and IL-15.

Conclusion: Urinary levels of IL-7, IL-12p40, IL-15, IP-10, and TARC are potentially useful diagnostic tools in LN. The use of ECL assays may allow detection of urinary biomarkers that are below ELISA detection limits.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/art.40813DOI Listing
May 2019

Lipocalin-2 is a pathogenic determinant and biomarker of neuropsychiatric lupus.

J Autoimmun 2019 01 30;96:59-73. Epub 2018 Aug 30.

Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA; Division of Rheumatology, Albert Einstein College of Medicine, Bronx, NY, USA. Electronic address:

Neuropsychiatric manifestations in lupus (NPSLE) affect ∼20-40% of patients. In the central nervous system, lipocalin-2 (LCN2) can promote injury through mechanisms directly linked to NPSLE, including brain barrier disruption, neurotoxicity, and glial activation. Since LCN2 is elevated in lupus and has been implicated in neuroinflammation, we investigated whether LCN2 is required for the pathogenesis of NPSLE. Here, we investigated the effects of LCN2 deficiency on the development of neurobehavioral deficits in the B6.Sle1.Sle3 (Sle1,3) mouse lupus model. Sle1,3 mice exhibited depression-like behavior and impaired spatial and recognition memory, and these deficits were attenuated in Sle1,3-LCN2KO mice. Whole-brain flow cytometry showed a significant increase in brain infiltrating leukocytes in Sle1,3 mice that was not reduced by LCN2 deficiency. RNA sequencing on sorted microglia revealed that several genes differentially expressed between B6 and Sle1,3 mice were regulated by LCN2, and that these genes are key mediators of the neuroinflammatory cascade. Importantly, LCN2 is upregulated in the cerebrospinal fluid of NPSLE patients across 2 different ethnicities. Our findings establish the Sle1,3 strain as an NPSLE model, demonstrate that LCN2 is a major regulator of the detrimental neuroimmune response in NPSLE, and identify CSF LCN2 as a novel biomarker for NPSLE.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jaut.2018.08.005DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6310639PMC
January 2019

Leukocyte Beta-Catenin Expression Is Disturbed in Systemic Lupus Erythematosus.

PLoS One 2016 22;11(8):e0161682. Epub 2016 Aug 22.

The Department of Internal Medicine Rheumatic Diseases Division, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America.

Wnt/β-catenin signaling is relatively understudied in immunity and autoimmunity. β-catenin blocks inflammatory mediators and favors tolerogenic dendritic cell (DC) phenotypes. We show here that leukocytes from lupus-prone mice and SLE patients express diminished β-catenin transcriptional activity, particularly in myeloid cells, although other leukocytes revealed similar trends. Serum levels of DKK-1, an inhibitor under transcriptional control of Wnt/β-catenin, were also decreased in lupus-prone mice. Surprisingly, however, preemptive deletion of β-catenin from macrophages appears to have no effect on lupus development, even in mice with varying genetic loads for lupus. Although myeloid-specific loss of β-catenin does not seem to be important for lupus development, the potential role of this transcription factor in other leukocytes and renal cells remain to be elucidated.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0161682PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4993388PMC
August 2017

Heightened cleavage of Axl receptor tyrosine kinase by ADAM metalloproteases may contribute to disease pathogenesis in SLE.

Clin Immunol 2016 08 27;169:58-68. Epub 2016 May 27.

The Department of Internal Medicine, Rheumatic Diseases Division, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States; The Department of Biomedical Engineering, University of Houston, Houston, TX 77204-5060, United States. Electronic address:

Systemic lupus erythematosus (SLE) is characterized by antibody-mediated chronic inflammation in the kidney, lung, skin, and other organs to cause inflammation and damage. Several inflammatory pathways are dysregulated in SLE, and understanding these pathways may improve diagnosis and treatment. In one such pathway, Axl tyrosine kinase receptor responds to Gas6 ligand to block inflammation in leukocytes. A soluble form of the Axl receptor ectodomain (sAxl) is elevated in serum from patients with SLE and lupus-prone mice. We hypothesized that sAxl in SLE serum originates from the surface of leukocytes and that the loss of leukocyte Axl contributes to the disease. We determined that macrophages and B cells are a source of sAxl in SLE and in lupus-prone mice. Shedding of the Axl ectodomain from the leukocytes of lupus-prone mice is mediated by the matrix metalloproteases ADAM10 and TACE (ADAM17). Loss of Axl from lupus-prone macrophages renders them unresponsive to Gas6-induced anti-inflammatory signaling in vitro. This phenotype is rescued by combined ADAM10/TACE inhibition. Mice with Axl-deficient macrophages develop worse disease than controls when challenged with anti-glomerular basement membrane (anti-GBM) sera in an induced model of nephritis. ADAM10 and TACE also mediate human SLE PBMC Axl cleavage. Collectively, these studies indicate that increased metalloprotease-mediated cleavage of leukocyte Axl may contribute to end organ disease in lupus. They further suggest dual ADAM10/TACE inhibition as a potential therapeutic modality in SLE.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clim.2016.05.011DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5193537PMC
August 2016

The association between reduced folate carrier-1 gene 80G/A polymorphism and methotrexate efficacy or methotrexate related-toxicity in rheumatoid arthritis: A meta-analysis.

Int Immunopharmacol 2016 Sep 24;38:8-15. Epub 2016 May 24.

Department of Biomedical Engineering, University of Houston, Houston, TX, USA. Electronic address:

Methotrexate (MTX), the most commonly used anti-rheumatic drug against RA, enters the cell via the action of the reduced folate carrier 1(RFC1). A major polymorphism of the RFC1 gene, 80G/A, has been reported to influence the activity of RFC1, resulting in variable intracellular MTX-polyglutamate (MTX-PG) levels. However, the association studies addressing the RFC1 80G/A polymorphism and MTX efficacy or toxicity in Rheumatoid arthritis (RA) has yielded conflicting results. In the present meta-analysis, we aimed to evaluate the association between the RFC1 80G/A polymorphism and MTX efficacy or toxicity in RA patients. A total 17 studies met our inclusion criteria. Among them, 12 studies with 2049 subjects reported the association between the RFC1 80G/A and MTX response, and 12 studies involving 2627 subjects were on MTX-related toxicity. Meta-analysis revealed significant association between RFC1 80G/A polymorphism and MTX efficacy (odds ratio (OR) for the A allele=1.29, 95% confidence interval (CI) 1.05-1.67, P=0.02; for AA genotype: OR=1.49, 95%CI 1.17-1.907, P=0.001). However, no association could be detected in the analysis of MTX-related toxicity. Stratification by ethnic population also indicated an association between this polymorphism and MTX efficacy in Asian group (P=0.002 for A allele; P=0.003 for AA genotype), but not in the Caucasian group (P=0.15 for A allele; P=0.05 for AA genotype). In both Asian and Caucasian sub-groups, no influence of the RFC1 80G/A polymorphism on MTX toxicity can be detected. In conclusion, the RFC1 G80A polymorphism is associated with responsiveness to MTX therapy, but may not be associated with MTX toxicity in RA patients.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2016.05.012DOI Listing
September 2016

Fatty Acid Amide Hydrolase Regulates Peripheral B Cell Receptor Revision, Polyreactivity, and B1 Cells in Lupus.

J Immunol 2016 Feb 15;196(4):1507-16. Epub 2016 Jan 15.

Division of Rheumatic Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390; Department of Biomedical Engineering, University of Houston, Houston, TX 77204; Center for Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390; and

C57BL/6 mice bearing the Sle2(z) lupus-susceptibility congenic interval on chromosome 4 display high titers of polyclonal autoantibodies with generalized B cell hyperactivity, hallmarks of systemic lupus erythematosus. In B6.Sle2(z)HEL(Ig).sHEL BCR-transgenic mice, Sle2(z) did not breach central tolerance, but it led to heightened expression of endogenous Ig H and L chains in splenic B cells, upregulation of RAG, and serological polyreactivity, suggestive of excessive receptor revision. Fatty acid amide hydrolase (FAAH), a gene in the minimal subcongenic interval generated through recombinant mapping, was found to be upregulated in Sle2(z) B cells by microarray analysis, Western blot, and functional assays. Pharmacological inhibition of FAAH reversed the increase in receptor revision, RAG expression, and polyreactive autoantibodies in lupus-prone mice. These studies indicate that increased peripheral BCR revision, or selective peripheral expansion of BCR-revised B cells, may lead to systemic autoimmunity and that FAAH is a lupus-susceptibility gene that might regulate this process.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.1500291DOI Listing
February 2016

Green Tea Epigallocatechin-3-Gallate Suppresses Autoimmune Arthritis Through Indoleamine-2,3-Dioxygenase Expressing Dendritic Cells and the Nuclear Factor, Erythroid 2-Like 2 Antioxidant Pathway.

J Inflamm (Lond) 2015 15;12:53. Epub 2015 Sep 15.

Division of Rheumatology, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Bldg Y, Flr 8, Room 206 (Y8.206), Dallas, TX 75390-8884 USA.

Background: The activity of one of the major catechins in Green Tea, the polyphenol (-)-epigallocatechin-3-gallate (EGCG), has been shown to have a variety of health benefits. Recent studies suggest that EGCG can modulate both the innate and adaptive arms of the immune system. The goal of the current studies was to examine the immunomodulatory effects and mechanisms of action of EGCG on experimental arthritis in mice.

Methods: EGCG (10 mg/kg) was administered by oral gavage after CIA induction, while control mice were administered phosphate buffered saline (PBS). Disease mechanisms were studied in both groups of mice. Phenotypes were examined using repeated measure analysis of variance (ANOVA) and data from in vitro and ex vivo experiments were analyzed for significance using the Mann-Whitney U test.

Results: EGCG treatment ameliorated clinical symptoms and reduced histological scores in arthritic mice. Serum type-II collagen-specific immunoglobulin (Ig) IgG2a antibodies were significantly lower in EGCG-fed mice compared to PBS-treated mice. EGCG significantly suppressed T cell proliferation and relative frequencies of CD4 T cells, CD8 T cells and B cell subsets including marginal zone B cells, T1 and T2 transitional B cells, while increasing the frequency of CD4(+) Foxp3(+) regulatory T cells (Tregs) and indoleamine-2,3-dioxygenase (IDO) expression by CD11b(+) dendritic cells (DC). Splenic CD11b(+) DC from EGCG fed mice induced an increased frequency of Tregs via an IDO-dependent mechanism in in vitro cultures. Importantly, joint homogenates from EGCG-fed mice exhibited significantly increased levels of Nuclear Factor, Erythroid 2-Like 2 (Nrf-2) and Heme oxygenase-1 (HO-1) compared with PBS-fed mice.

Conclusions: This is the first report of upregulation of the Nrf-2 antioxidant pathway in EGCG-mediated immunoregulation. EGCG ameliorated experimental arthritis in mice by eliciting IDO-producing DCs, increasing frequencies of T regs and inducing the activation of the Nrf-2 antioxidant pathway. It remains to be established whether EGCG is useful for the prevention and treatment of rheumatoid arthritis and other inflammatory disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12950-015-0097-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4570740PMC
September 2015

Modulating proximal cell signaling by targeting Btk ameliorates humoral autoimmunity and end-organ disease in murine lupus.

Arthritis Res Ther 2012 Nov 8;14(6):R243. Epub 2012 Nov 8.

Introduction: Systemic lupus erythematosus is a chronic autoimmune disease characterized by an abundance of autoantibodies against nuclear antigens. Bruton's tyrosine kinase (Btk) is a proximal transducer of the BCR signal that allows for B-cell activation and differentiation. Recently, selective inhibition of Btk by PCI-32765 has shown promise in limiting activity of multiple cells types in various models of cancer and autoimmunity. The aim of this study was to determine the effect of Btk inhibition by PCI-32765 on the development of lupus in lupus-prone B6.Sle1 and B6.Sle1.Sle3 mice.

Methods: B6.Sle1 or B6.Sle1.Sle3 mice received drinking water containing either the Btk inhibitor PCI-32765 or vehicle for 56 days. Following treatment, mice were examined for clinical and pathological characteristics of lupus. The effect of PCI-32765 on specific cell types was also investigated.

Results: In this study, we report that Btk inhibition dampens humoral autoimmunity in B6.Sle1 monocongenic mice. Moreover, in B6.Sle1.Sle3 bicongenic mice that are prone to severe lupus, Btk inhibition also dampens humoral and cellular autoimmunity, as well as lupus nephritis.

Conclusions: These findings suggest that partial crippling of cell signaling in B cells and antigen presenting cells (APCs) may be a viable alternative to total depletion of these cells as a therapeutic modality for lupus.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/ar4086DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3674619PMC
November 2012

Inflammation associated anemia and ferritin as disease markers in SLE.

Arthritis Res Ther 2012 Aug 7;14(4):R182. Epub 2012 Aug 7.

Introduction: In a recent screening to detect biomarkers in systemic lupus erythematosus (SLE), expression of the iron storage protein, ferritin, was increased. Given that proteins that regulate the storage, transfer and release of iron play an important role in inflammation, this study aims to determine the serum and urine levels of ferritin and of the iron transfer protein, transferrin, in lupus patients and to correlate these levels with disease activity, inflammatory cytokine levels and markers of anemia.

Methods: A protein array was utilized to measure ferritin expression in the urine and serum of SLE patients and healthy controls. To confirm these results as well as the role of the iron transfer pathway in SLE, ELISAs were performed to measure ferritin and transferrin levels in inactive or active SLE patients and healthy controls. The relationship between ferritin/transferrin levels and inflammatory markers and anemia was next analyzed.

Results: Protein array results showed elevated ferritin levels in the serum and urine of lupus patients as compared to controls, which were further validated by ELISA. Increased ferritin levels correlated with measures of disease activity and anemia as well as inflammatory cytokine titers. Though active SLE patients had elevated urine transferrin, serum transferrin was reduced.

Conclusion: Urine ferritin and transferrin levels are elevated significantly in SLE patients and correlate with disease activity, bolstering previous reports. Most importantly, these changes correlated with the inflammatory state of the patients and anemia of chronic disease. Taken together, altered iron handling, inflammation and anemia of chronic disease constitute an ominous triad in SLE.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/ar4012DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3580577PMC
August 2012

Urine VCAM-1 as a marker of renal pathology activity index in lupus nephritis.

Arthritis Res Ther 2012 Jul 13;14(4):R164. Epub 2012 Jul 13.

Introduction: Although renal pathology is highly predictive of the disease course in lupus nephritis, it cannot be performed serially because of its invasive nature and associated morbidity. The goal of this study is to investigate whether urinary levels of CXC ligand 16 (CXCL16), monocyte chemotactic protein-1 (MCP-1) or vascular cell adhesion molecule-1 (VCAM-1) in patients with lupus nephritis are predictive of particular features of renal pathology in renal biopsies obtained on the day of urine procurement.

Methods: CXCL16, MCP-1, and VCAM-1 levels were measured in urine samples from 74 lupus nephritis patients and 13 healthy volunteers. Of the patients enrolled, 24 patients had a concomitant kidney biopsy performed at the time of urine collection. In addition, patients with other renal diatheses were also included as controls.

Results: All three molecules were elevated in the urine of systemic lupus erythematosus patients, although VCAM-1 (area under curve = 0.92) and MCP-1 (area under curve = 0.87) were best at distinguishing the systemic lupus erythematosus samples from the healthy controls, and were also most strongly associated with clinical disease severity and active renal disease. For patients in whom concurrent renal biopsies had also been performed, urine VCAM-1 exhibited the strongest association with the renal pathology activity index and glomerulonephritis class IV, although it correlated negatively with the chronicity index. Interestingly, urinary VCAM-1 was also elevated in anti-neutrophil cytoplasmic antibodies-associated glomerulonephritis, focal segmental glomerulosclerosis and membranous nephropathy but not in minimal-change disease.

Conclusion: Urinary VCAM-1 emerges as a reliable indicator of the activity:chronicity ratios that mark the underlying renal pathology in lupus nephritis. Since VCAM-1 is involved in the acute phase of inflammation when leukocytic infiltration is ongoing, longitudinal studies are warranted to establish whether tracking urine VCAM-1 levels may help monitor clinical and pathological disease activity over time.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/ar3912DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3580557PMC
July 2012

Peritoneal catheter implantation elicits IL-10-producing immune-suppressor macrophages through a MyD88-dependent pathway.

Clin Immunol 2012 Apr 17;143(1):59-72. Epub 2012 Jan 17.

Department of Internal Medicine, University of Texas Southwestern Medical School, Dallas, TX 75390, USA.

Catheters are implanted into the peritoneal cavity during the process of peritoneal dialysis. Though these catheters may be effective and beneficial, the impact of catheters on the immune system is poorly understood. Catheters and other devices implanted in the peritoneal cavity elicit a foreign body reaction. However, the immunological consequences of this remain uncharacterized. To model this, catheters were implanted into the peritoneal cavity of healthy mice. Catheter implantation induced rapid cellular changes within the peritoneal cavity. Whereas B-cells and T-cells were reduced, catheter implantation was associated with the rapid expansion of F4/80-low-positive, CD11b-positive macrophages that elaborated IL-10, and suppressed T-cell division and Th1 skewing in co-culture assays. Peritoneal catheter elicited macrophages had increased Jmjd3 but reduced NF-κB activation, and their emergence was MyD88-dependent. Collectively, these studies indicate that foreign body implantation into the peritoneal cavity is associated with the expansion of suppressor macrophages. Whether peritoneal cavity catheter implantation may have systemic immunoregulatory roles remains to be explored.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clim.2012.01.003DOI Listing
April 2012

Proteomics in rheumatology: the dawn of a new era.

F1000 Med Rep 2010 Dec 8;2:87. Epub 2010 Dec 8.

Department of Internal Medicine, Rheumatic Divisions Department, UT Southwestern Medical Center 5323 Harry Hines Boulevard, Dallas, TX 75390-8884 USA.

Most rheumatic autoimmune diseases are complex in terms of their genetic origins and underlying pathogenic processes. Non-hypothesis-driven scanning platforms are adding novel insights to our understanding of these multifactorial diseases. This review summarizes the handful of recent proteomic studies that have been executed using samples from patients with rheumatoid arthritis, systemic lupus erythematosus, ankylosing spondylitis, osteoarthritis, or Sjogren's syndrome. The candidate biomarkers that have been uncovered in the reviewed studies have potential applications in diagnosis, prognosis, and theranostics. Though we are at the infancy of the proteomics era in rheumatology, the limited number of molecules uncovered thus far already hold promise. Ongoing research in proteomics holds tremendous potential for shaping how rheumatic diseases are diagnosed, prognosticated, and managed clinically over the coming years.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3410/M2-87DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3026622PMC
December 2010

Urine proteome scans uncover total urinary protease, prostaglandin D synthase, serum amyloid P, and superoxide dismutase as potential markers of lupus nephritis.

J Immunol 2010 Feb 11;184(4):2183-93. Epub 2010 Jan 11.

Division of Rheumatology, Department of Internal Medicine, University of Texas Southwestern Medical School, Dallas, TX 75235, USA.

To identify potential biomarkers in immune-mediated nephritis, urine from mice subjected to an augmented passive model of anti-glomerular basement membrane (GBM)-induced experimental nephritis was resolved using two-dimensional gels. The urinary proteome in these diseased mice was comprised of at least 71 different proteins. Using orthogonal assays, several of these molecules, including serum amyloid P (SAP), PG D synthase, superoxide dismutase, renin, and total protease were validated to be elevated in the urine and kidneys of mice during anti-GBM disease, as well as in mice with spontaneously arising lupus nephritis. Among these, urinary protease was the only marker that appeared to be exclusively renal in origin, whereas the others were partly serum-derived. Longitudinal studies in murine lupus demonstrated that total urinary protease had better predictive value for histologically active nephritis (r = 0.78) compared with proteinuria (r = -0.04), azotemia (r = 0.28), or the other markers examined, whereas urine SAP emerged as the single most predictive marker of histological glomerulonephritis. Collectively, these studies uncover total urinary protease, PG D synthase, SAP, and superoxide dismutase as novel biomarkers of anti-GBM disease and lupus nephritis, with stronger correlation to renal disease compared with currently employed biomarkers. These findings could have important diagnostic and prognostic ramifications in the management of these renal diatheses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.0900292DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2927858PMC
February 2010