Publications by authors named "K C Kent Lloyd"

926 Publications

Novel taxa of Acidobacteriota implicated in seafloor sulfur cycling.

ISME J 2021 May 12. Epub 2021 May 12.

Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.

Acidobacteriota are widespread and often abundant in marine sediments, yet their metabolic and ecological properties are poorly understood. Here, we examined metabolisms and distributions of Acidobacteriota in marine sediments of Svalbard by functional predictions from metagenome-assembled genomes (MAGs), amplicon sequencing of 16S rRNA and dissimilatory sulfite reductase (dsrB) genes and transcripts, and gene expression analyses of tetrathionate-amended microcosms. Acidobacteriota were the second most abundant dsrB-harboring (averaging 13%) phylum after Desulfobacterota in Svalbard sediments, and represented 4% of dsrB transcripts on average. Meta-analysis of dsrAB datasets also showed Acidobacteriota dsrAB sequences are prominent in marine sediments worldwide, averaging 15% of all sequences analysed, and represent most of the previously unclassified dsrAB in marine sediments. We propose two new Acidobacteriota genera, Candidatus Sulfomarinibacter (class Thermoanaerobaculia, "subdivision 23") and Ca. Polarisedimenticola ("subdivision 22"), with distinct genetic properties that may explain their distributions in biogeochemically distinct sediments. Ca. Sulfomarinibacter encode flexible respiratory routes, with potential for oxygen, nitrous oxide, metal-oxide, tetrathionate, sulfur and sulfite/sulfate respiration, and possibly sulfur disproportionation. Potential nutrients and energy include cellulose, proteins, cyanophycin, hydrogen, and acetate. A Ca. Polarisedimenticola MAG encodes various enzymes to degrade proteins, and to reduce oxygen, nitrate, sulfur/polysulfide and metal-oxides. 16S rRNA gene and transcript profiling of Svalbard sediments showed Ca. Sulfomarinibacter members were relatively abundant and transcriptionally active in sulfidic fjord sediments, while Ca. Polarisedimenticola members were more relatively abundant in metal-rich fjord sediments. Overall, we reveal various physiological features of uncultured marine Acidobacteriota that indicate fundamental roles in seafloor biogeochemical cycling.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41396-021-00992-0DOI Listing
May 2021

On the potential role of globins in brown adipose tissue: a novel conceptual model and studies in myoglobin knockout mice.

Am J Physiol Endocrinol Metab 2021 May 10. Epub 2021 May 10.

Arkansas Children's Nutrition Center, Little Rock, AR, USA.

Myoglobin (Mb) regulates O bioavailability in muscle and heart as partial pressure of O (pO) drops with increased tissue workload. Globin proteins also modulate cellular NO pools, "scavenging" NO at higher pO and converting NO to NO as pO falls. Myoglobin binding of fatty acids may also signal a role in fat metabolism. Interestingly, Mb is expressed in brown adipose tissue (BAT), but its function is unknown. Herein, we present a new conceptual model that proposes links between BAT thermogenic activation, concurrently reduced pO, and NO pools regulated by deoxy/oxy-globin toggling and xanthine oxidoreductase (XOR). We describe the effect of Mb knockout (Mb) on BAT phenotype (lipid droplets, mitochondrial markers uncoupling protein 1 [UCP1] and cytochrome C oxidase 4 [Cox4], transcriptomics) in male and female mice fed a high fat diet (HFD, 45% of energy, ~13 wk), and examine Mb expression during brown adipocyte differentiation. Interscapular BAT weights did not differ by genotype, but there was a higher prevalence of mid-large sized droplets in Mb. COX4 protein expression was significantly reduced in Mb BAT, and a suite of metabolic/NO/stress/hypoxia transcripts were lower. All of these Mb-associated differences were most apparent in females. The new conceptual model, and results derived from Mb mice, suggest a role for Mb in BAT metabolic regulation, in part through sexually dimorphic systems and NO signaling. This possibility requires further validation in light of significant mouse-to-mouse variability of BAT Mb mRNA and protein abundances in wildtype mice and lower expression relative to muscle and heart.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpendo.00662.2020DOI Listing
May 2021

Metabolic physiology and skeletal muscle phenotypes in male and female myoglobin knockout mice.

Am J Physiol Endocrinol Metab 2021 May 10. Epub 2021 May 10.

Arkansas Children's Nutrition Center, Little Rock, AR, USA.

Myoglobin (Mb) is a regulator of O bioavailability in type I muscle and heart, at least when tissue O levels drop. Mb also plays a role in regulating cellular NO pools. Robust binding of long-chain fatty acids and long-chain acylcarnitines to Mb, and enhanced glucose metabolism in hearts of Mb knockout (KO) mice, suggests additional roles in muscle intermediary metabolism and fuel selection. To evaluate this hypothesis, we measured energy expenditure (EE), respiratory exchange ratio (RER), body weight gain and adiposity, glucose tolerance and insulin sensitivity in Mb knockout (Mb) and wildtype (WT) mice challenged with a high fat diet (HFD, 45% of calories). In males (n=10/genotype) and females (n=9/genotype) aged 5-6, 11-12, and 17-18 wk, there were no genotype effects on RER, EE, or food intake. RER and EE during cold (10˚C, 72 h), and glucose and insulin tolerance, were not different compared to within-sex WT controls. At ~18 and ~19 wk of age, female Mb adiposity was ~42-48% higher vs. WT females (p=0.1). Transcriptomics analyses (whole gastrocnemius, soleus) revealed few consistent changes, with the notable exception of a 20% drop in soleus transferrin receptor (Tfrc) mRNA. Capillarity indices were significantly increased in Mb, specifically in Mb-rich soleus and deep gastrocnemius. The results indicate that Mb loss does not have a major impact on whole-body glucose homeostasis, EE, RER, or response to a cold challenge in mice. However, the greater adiposity in female Mb mice indicates a sex-specific effect of Mb KO on fat storage and feed efficiency.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpendo.00624.2020DOI Listing
May 2021

Metabolic physiology and skeletal muscle phenotypes in male and female myoglobin knockout mice.

Am J Physiol Endocrinol Metab 2021 May 10. Epub 2021 May 10.

Arkansas Children's Nutrition Center, Little Rock, AR, USA.

Myoglobin (Mb) is a regulator of O bioavailability in type I muscle and heart, at least when tissue O levels drop. Mb also plays a role in regulating cellular NO pools. Robust binding of long-chain fatty acids and long-chain acylcarnitines to Mb, and enhanced glucose metabolism in hearts of Mb knockout (KO) mice, suggests additional roles in muscle intermediary metabolism and fuel selection. To evaluate this hypothesis, we measured energy expenditure (EE), respiratory exchange ratio (RER), body weight gain and adiposity, glucose tolerance and insulin sensitivity in Mb knockout (Mb) and wildtype (WT) mice challenged with a high fat diet (HFD, 45% of calories). In males (n=10/genotype) and females (n=9/genotype) aged 5-6, 11-12, and 17-18 wk, there were no genotype effects on RER, EE, or food intake. RER and EE during cold (10˚C, 72 h), and glucose and insulin tolerance, were not different compared to within-sex WT controls. At ~18 and ~19 wk of age, female Mb adiposity was ~42-48% higher vs. WT females (p=0.1). Transcriptomics analyses (whole gastrocnemius, soleus) revealed few consistent changes, with the notable exception of a 20% drop in soleus transferrin receptor (Tfrc) mRNA. Capillarity indices were significantly increased in Mb, specifically in Mb-rich soleus and deep gastrocnemius. The results indicate that Mb loss does not have a major impact on whole-body glucose homeostasis, EE, RER, or response to a cold challenge in mice. However, the greater adiposity in female Mb mice indicates a sex-specific effect of Mb KO on fat storage and feed efficiency.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpendo.00624.2020DOI Listing
May 2021