Publications by authors named "Julia Bruttger"

9 Publications

  • Page 1 of 1

Novel Microglia Depletion Systems: A Genetic Approach Utilizing Conditional Diphtheria Toxin Receptor Expression and a Pharmacological Model Based on the Blocking of Macrophage Colony-Stimulating Factor 1 Receptor.

Methods Mol Biol 2019 ;2034:217-230

Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany.

Microglia are the main population of macrophage residing in the central nervous system (CNS). Depletion experiments gave important insights into the physiology and function of microglia in healthy and diseased CNS. Ablation of microglia can be achieved by application of pharmacological or genetic tools. Here, we describe two approaches to ablate microglia: an efficient genetic model that utilizes DTR mouse line that has diphtheria toxin receptor (DTR) expression regulated by the promoter activity of the fractalkine receptor (CX3CR1) gene, and a pharmacological model that utilizes the blocking of macrophage colony-stimulating factor 1 receptor (CSF-1R) with a blocking antibody. Both the administration of systemic diphtheria toxin or anti-CSF-1R blocking antibody result in highly efficient and reversible depletion of microglia population in the CNS, which can be easily assessed by flow cytometry.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-9658-2_16DOI Listing
April 2020

A novel microglial subset plays a key role in myelinogenesis in developing brain.

EMBO J 2017 11 28;36(22):3292-3308. Epub 2017 Sep 28.

Department of Neurobiology Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark

Microglia are resident macrophages of the central nervous system that contribute to homeostasis and neuroinflammation. Although known to play an important role in brain development, their exact function has not been fully described. Here, we show that in contrast to healthy adult and inflammation-activated cells, neonatal microglia show a unique myelinogenic and neurogenic phenotype. A CD11c microglial subset that predominates in primary myelinating areas of the developing brain expresses genes for neuronal and glial survival, migration, and differentiation. These cells are the major source of insulin-like growth factor 1, and its selective depletion from CD11c microglia leads to impairment of primary myelination. CD11c-targeted toxin regimens induced a selective transcriptional response in neonates, distinct from adult microglia. CD11c microglia are also found in clusters of repopulating microglia after experimental ablation and in neuroinflammation in adult mice, but despite some similarities, they do not recapitulate neonatal microglial characteristics. We therefore identify a unique phenotype of neonatal microglia that deliver signals necessary for myelination and neurogenesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.15252/embj.201696056DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5686552PMC
November 2017

HMG-CoA reductase promotes protein prenylation and therefore is indispensible for T-cell survival.

Cell Death Dis 2017 05 25;8(5):e2824. Epub 2017 May 25.

Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Str. 67, Mainz 55131, Germany.

Statins are a well-established family of drugs that lower cholesterol levels via the competitive inhibition of the enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR). In addition, the pleiotropic anti-inflammatory effects of statins on T cells make them attractive as therapeutic drugs in T-cell-driven autoimmune disorders. Since statins do not exclusively target HMGCR and thus might have varying effects on different cell types, we generated a new mouse strain allowing for the tissue-specific deletion of HMGCR. Deletion of HMGCR expression in T cells led to a severe decrease in their numbers with the remaining cells displaying an activated phenotype, with an increased proportion of regulatory T cells (T) in particular. However, deletion of HMGCR specifically in T resulted in severe autoimmunity, suggesting that this enzyme is also essential for the maintenance of T. We were able to prevent the death of HMGCR-deficient lymphocytes by the addition of either the direct metabolite of HMGCR, namely mevalonate, or the downstream metabolite geranylgeranyl pyrophosphate, which is essential for protein prenylation. However, the addition of cholesterol, which is the final product of the mevalonate pathway, did not inhibit cell death, indicating that protein prenylation rather than the cholesterol biosynthesis pathway is indispensible for T-cell survival.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/cddis.2017.221DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5520735PMC
May 2017

EBI2 Is Highly Expressed in Multiple Sclerosis Lesions and Promotes Early CNS Migration of Encephalitogenic CD4 T Cells.

Cell Rep 2017 01;18(5):1270-1284

Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany. Electronic address:

Arrival of encephalitogenic T cells at inflammatory foci represents a critical step in development of experimental autoimmune encephalomyelitis (EAE), the animal model for multiple sclerosis. EBI2 and its ligand, 7α,25-OHC, direct immune cell localization in secondary lymphoid organs. CH25H and CYP7B1 hydroxylate cholesterol to 7α,25-OHC. During EAE, we found increased expression of CH25H by microglia and CYP7B1 by CNS-infiltrating immune cells elevating the ligand concentration in the CNS. Two critical pro-inflammatory cytokines, interleukin-23 (IL-23) and interleukin-1 beta (IL-1β), maintained expression of EBI2 in differentiating Th17 cells. In line with this, EBI2 enhanced early migration of encephalitogenic T cells into the CNS in a transfer EAE model. Nonetheless, EBI2 was dispensable in active EAE. Human Th17 cells do also express EBI2, and EBI2 expressing cells are abundant within multiple sclerosis (MS) white matter lesions. These findings implicate EBI2 as a mediator of CNS autoimmunity and describe mechanistically its contribution to the migration of autoreactive T cells into inflamed organs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2017.01.020DOI Listing
January 2017

Gatekeeper role of brain antigen-presenting CD11c+ cells in neuroinflammation.

EMBO J 2016 Jan 26;35(1):89-101. Epub 2015 Nov 26.

Department of Neurology, Focus Program Translational Neurosciences (FTN), Research Center for Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn²) University Medical Center of the Johannes Gutenberg University, Mainz, Germany

Multiple sclerosis is the most frequent chronic inflammatory disease of the CNS. The entry and survival of pathogenic T cells in the CNS are crucial for the initiation and persistence of autoimmune neuroinflammation. In this respect, contradictory evidence exists on the role of the most potent type of antigen-presenting cells, dendritic cells. Applying intravital two-photon microscopy, we demonstrate the gatekeeper function of CNS professional antigen-presenting CD11c(+) cells, which preferentially interact with Th17 cells. IL-17 expression correlates with expression of GM-CSF by T cells and with accumulation of CNS CD11c(+) cells. These CD11c(+) cells are organized in perivascular clusters, targeted by T cells, and strongly express the inflammatory chemokines Ccl5, Cxcl9, and Cxcl10. Our findings demonstrate a fundamental role of CNS CD11c(+) cells in the attraction of pathogenic T cells into and their survival within the CNS. Depletion of CD11c(+) cells markedly reduced disease severity due to impaired enrichment of pathogenic T cells within the CNS.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.15252/embj.201591488DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4718005PMC
January 2016

Homeostasis of Microglia in the Adult Brain: Review of Novel Microglia Depletion Systems.

Trends Immunol 2015 Oct;36(10):625-636

Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Straße 67, 55131 Mainz, Germany.

Microglia are brain macrophages that emerge from early erythro-myeloid precursors in the embryonic yolk sac and migrate to the brain mesenchyme before the blood brain barrier is formed. They seed the brain, and proliferate until they have formed a grid-like distribution in the central nervous system that is maintained throughout lifespan. The mechanisms through which these embryonic-derived cells contribute to microglia homoeostasis at steady state and upon inflammation are still not entirely clear. Here we review recent studies that provided insight into the contribution of embryonically-derived microglia and of adult 'microglia-like' cells derived from monocytes during inflammation. We examine different microglia depletion models, and discuss the origin of their rapid repopulation after depletion and outline important areas of future research.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.it.2015.08.005DOI Listing
October 2015

Genetic Cell Ablation Reveals Clusters of Local Self-Renewing Microglia in the Mammalian Central Nervous System.

Immunity 2015 Jul 7;43(1):92-106. Epub 2015 Jul 7.

Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Str. 67, 55131 Mainz, Germany. Electronic address:

During early embryogenesis, microglia arise from yolk sac progenitors that populate the developing central nervous system (CNS), but how the tissue-resident macrophages are maintained throughout the organism's lifespan still remains unclear. Here, we describe a system that allows specific, conditional ablation of microglia in adult mice. We found that the microglial compartment was reconstituted within 1 week of depletion. Microglia repopulation relied on CNS-resident cells, independent from bone-marrow-derived precursors. During repopulation, microglia formed clusters of highly proliferative cells that migrated apart once steady state was achieved. Proliferating microglia expressed high amounts of the interleukin-1 receptor (IL-1R), and treatment with an IL-1R antagonist during the repopulation phase impaired microglia proliferation. Hence, microglia have the potential for efficient self-renewal without the contribution of peripheral myeloid cells, and IL-1R signaling participates in this restorative proliferation process.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.immuni.2015.06.012DOI Listing
July 2015

Perivascular microglia promote blood vessel disintegration in the ischemic penumbra.

Acta Neuropathol 2015 02 13;129(2):279-95. Epub 2014 Dec 13.

Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn2), Johannes Gutenberg University, University Medical Center, Mainz, Germany.

The contribution of microglia to ischemic cortical stroke is of particular therapeutic interest because of the impact on the survival of brain tissue in the ischemic penumbra, a region that is potentially salvable upon a brain infarct. Whether or not tissue in the penumbra survives critically depends on blood flow and vessel perfusion. To study the role of microglia in cortical stroke and blood vessel stability, CX3CR1(+/GFP) mice were subjected to transient middle cerebral artery occlusion and then microglia were investigated using time-lapse two-photon microscopy in vivo. Soon after reperfusion, microglia became activated in the stroke penumbra and started to expand cellular protrusions towards adjacent blood vessels. All microglia in the penumbra were found associated with blood vessels within 24 h post reperfusion and partially fully engulfed them. In the same time frame blood vessels became permissive for blood serum components. Migration assays in vitro showed that blood serum proteins leaking into the tissue provided molecular cues leading to the recruitment of microglia to blood vessels and to their activation. Subsequently, these perivascular microglia started to eat up endothelial cells by phagocytosis, which caused an activation of the local endothelium and contributed to the disintegration of blood vessels with an eventual break down of the blood brain barrier. Loss-of-microglia-function studies using CX3CR1(GFP/GFP) mice displayed a decrease in stroke size and a reduction in the extravasation of contrast agent into the brain penumbra as measured by MRI. Potentially, medication directed at inhibiting microglia activation within the first day after stroke could stabilize blood vessels in the penumbra, increase blood flow, and serve as a valuable treatment for patients suffering from ischemic stroke.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00401-014-1372-1DOI Listing
February 2015

Oligodendrocyte ablation triggers central pain independently of innate or adaptive immune responses in mice.

Nat Commun 2014 Dec 1;5:5472. Epub 2014 Dec 1.

Institute for Pharmacology, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany.

Mechanisms underlying central neuropathic pain are poorly understood. Although glial dysfunction has been functionally linked with neuropathic pain, very little is known about modulation of pain by oligodendrocytes. Here we report that genetic ablation of oligodendrocytes rapidly triggers a pattern of sensory changes that closely resemble central neuropathic pain, which are manifest before overt demyelination. Primary oligodendrocyte loss is not associated with autoreactive T- and B-cell infiltration in the spinal cord and neither activation of microglia nor reactive astrogliosis contribute functionally to central pain evoked by ablation of oligodendrocytes. Instead, light and electron microscopic analyses reveal axonal pathology in the spinal dorsal horn and spinothalamic tract concurrent with the induction and maintenance of nociceptive hypersensitivity. These data reveal a role for oligodendrocytes in modulating pain and suggest that perturbation of oligodendrocyte functions that maintain axonal integrity can lead to central neuropathic pain independent of immune contributions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ncomms6472DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4268702PMC
December 2014