Publications by authors named "Juan M Anchordoquy"

5 Publications

  • Page 1 of 1

Eicosapentaenoic acid supplemented to in vitro maturation medium results in lesser lipid content and intracellular reactive oxygen species in blastocysts of cattle.

Anim Reprod Sci 2021 Jun 9;229:106765. Epub 2021 May 9.

IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N Dulout"(UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, Calles 60 y 118, B1904AMA, La Plata, Buenos Aires, Argentina. Electronic address:

Sub-optimal cattle embryo development to the blastocyst stage still is a problem when conducting in vitro production (IVP) procedures. Supplementation of in vitro maturation (IVM) medium with omega 3-polyunsaturated eicosapentaenoic acid (EPA) is an approach that might have positive effects on lipid metabolism of cattle oocytes, potentially improving subsequent embryo development. The aim of this study was to evaluate effects of EPA addition to serum-free IVM medium on pronuclear formation after in vitro fertilization, cleavage, and blastocyst rates. Effects of EPA on lipid accumulation and intracellular reactive oxygen species (ROS) generation with IVP of cattle embryos was also investigated. In all experiments, cumulus-oocyte complexes were matured in IVM medium supplemented with 0 nM, 1 nM, or 1 μM EPA for 24 h. Pronuclear formation, cleavage, and blastocyst rates were similar for embryos when there was supplementation of EPA at all concentrations to those of the control group (P > 0.05). The inclusion of 1 nM EPA in medium resulted in a greater lipid content and less intracellular ROS in day 8-embryos compared with those of the Control group (P < 0.05). There were no differences, however, when there was inclusion of 1 μM EPA compared to embryos of the Control group at the day 8 developmental stage (P > 0.05). In conclusion, supplementation with IVM medium with the 1 nM EPA concentration resulted in a lesser blastocyst lipid and intracellular ROS concentration, without modifying embryo development, therefore, EPA could be a desirable supplement to improve embryo quality in cattle.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.anireprosci.2021.106765DOI Listing
June 2021

Effect of alpha-lipoic acid during preimplantation development of cattle embryos when there were different in vitro culture conditions.

Anim Reprod Sci 2020 Oct 25;221:106550. Epub 2020 Jul 25.

IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, Calles 60 y 118, B1904AMA La Plata, Buenos Aires, Argentina. Electronic address:

In many species, alpha-lipoic acid (ALA) is essential for embryo development. There, therefore, was investigation of effects of ALA supplementation to culture media for in vitro development of cattle embryos. In Experiment I, there were assessments of embryo production and oxidative status of cattle embryos derived by in vitro maturation and fertilization (IVM/IVF)that were cultured until the blastocyst stage of development using different ALA concentrations (5, 25 and 100 μM), fetal bovine serum (FBS) and amino acids (aa) as well as 20 % oxygen (O) in the culture atmosphere. In Experiment II, embryos were cultured without FBS, at different ALA concentrations (2.5, 5 and 7.5 μM) and in the presence or absence of aa when there was a 7 % O atmosphere. Embryo development rates and blastocyst quality were evaluated. With 20 % O concentration, treatment with 100 μM ALA resulted in lesser hatching rates and development to the blastocyst stage (P < 0.01), while with supplementation with 5 μM ALA there were lesser (P = 0.04) glutathione concentrations and greater protein contents of embryos (P < 0.01). Culturing in the 7 % O atmosphere, combined with supplementation with 2.5 μM ALA with FBS and aa resulted in a greater blastocyst cell number (P = 0.03) and lesser hatching rates (P = 0.04). Taken together, results indicate supplementation with the greater ALA concentrations resulted in impairment of embryo development, regardless of the O concentration imposed during the culture period, while the relatively lesser supplementation-concentrations with ALA led to improvements in embryo quality.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.anireprosci.2020.106550DOI Listing
October 2020

Reproductive hormones influence zinc homeostasis in the bovine cumulus-oocyte complex: Impact on intracellular zinc concentration and transporters gene expression.

Theriogenology 2020 Apr 29;146:48-57. Epub 2020 Jan 29.

IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N Dulout"(UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, calles 60 y 118, B1904AMA La Plata, Buenos Aires, Argentina; Cátedra de Citología, Histología y Embriología "A" Facultad de Ciencias Médicas, Universidad Nacional de La Plata, calle 60 y 120 s/n, CP 1900, La Plata, Buenos Aires, Argentina. Electronic address:

Zinc (Zn) is a vital trace element for the body and its bioavailability influences numerous reproductive events. However, the mechanisms that regulate Zn homeostasis in the cumulus-oocyte complex (COC) are yet to be elucidated. The aim of this study was to investigate the role of estradiol 17-beta (E), FSH and LH in Zn homeostasis regulation in bovine COC matured in vitro and Zn transporters gene expression. For this purpose, intracellular Zn levels in oocytes and cumulus cells (CC) were assessed using a Zn-specific fluorescent indicator. In addition, gene expression and sequencing of six Zn transporters (Slc39a6, Slc39a8, Slc39a14, Slc30a3, Slc30a7 and Slc30a9) were assessed. Our results demonstrated that the simultaneous presence of E, FSH, and LH during oocyte maturation altered intracellular zinc levels and transporters expression in both oocytes and CC. Transporter's gene expression was different in oocytes and CC, possibly due to cell-specific changes in Zn levels during maturation. The interaction effects of Zn with hormonal treatments influenced the results. This study emphasizes that Slc39a6 is highly sensitive to hormone induction. Overall, the hormonal modulation of Zn homeostasis in the COC was evidenced. Also, a preponderant role of FSH as a modulator of Zn intracellular levels and transporter gene expression is suggested.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.theriogenology.2020.01.054DOI Listing
April 2020

Effect of eicosapentaenoic acid on bovine cumulus-oocyte complex in vitro.

Cell Biol Int 2017 May 13;41(5):505-513. Epub 2017 Mar 13.

IGEVET-Instituto de Genética Veterinaria "Ing. Fernando N Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, Calles 60 y 118, B1904AMA La Plata, Buenos Aires, Argentina.

The aim of the present study was to investigate the effects of eicosapentaenoic acid (EPA) supplementation during in vitro maturation (IVM) of bovine oocytes. The concentrations tested in all experiments were 1 nM, 1 μM, and 1 mM EPA. The effect of EPA was evaluated on cumulus-oocyte complexes (COC) by oocyte maturation (cumulus expansion area and oocyte nuclear maturation), genotoxicity [single cell gel electrophoresis (SCGE)], and cytotoxicity (apoptosis, viability, and MTT assays) end points. The maturation parameters were affected by exposure of COC to different EPA concentrations in the IVM medium. Cumulus expansion area increased in the presence of 1 nM EPA (P < 0.05) whereas addition of 1 nM EPA (P < 0.05) decreased cumulus expansion after 24 h of IVM. Moreover, the maturation rate significantly decreased when 1 mM of EPA was assayed (P < 0.001). EPA at 1 nM induced genotoxic and cytotoxic effects on bovine cumulus cells (CC) and primary DNA lesions (P < 0.001). A significant increase in the frequency of apoptotic (P < 0.01) and necrotic (P < 0.001) cells was observed after 24 h of treatment with 1 nM, 1 μM, and 1 mM EPA. Mitochondrial activity was altered with 1 mM EPA (P < 0.001). We inferred that optimal oocyte quality was partially dependent on the presence of adequate EPA concentrations; EPA could be beneficial to improve oocyte quality in the maturation process, because low concentration tested (1 nM EPA) improved cumulus expansion.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbin.10746DOI Listing
May 2017

Analysis of apoptosis and DNA damage in bovine cumulus cells after exposure in vitro to different zinc concentrations.

Cell Biol Int 2011 Jun;35(6):593-7

Instituto de Gentica Veterinaria Prof. Fernando N. Dulout IGEVET, UNLPCONICET, Facultad de Ciencias Veterinarias FCV, Universidad Nacional de La Plata UNLP, Calle 60 y 118 sn, La Plata 1900, Buenos Aires, Argentina.

The purpose of this study was to investigate the effect of Zn (zinc) concentration on CCs (cumulus cells) during in vitro maturation. For this purpose, DNA integrity of CCs by addition of different Zn concentrations [0 (control); 0.7 μg/ml (Zn1); 1.1 μg/ml (Zn2) and 1.5 μg/ml (Zn3)] to the culture medium was evaluated by comet assay. In addition, early apoptosis was analysed by annexin staining assay. CCs treated with Zn showed a significant decrease in the DNA damage in a dose-dependent manner. Comet assay analysed for TM (tail moment) was significantly higher in cells cultured without Zn (control, P<0.01) with respect to cells treated with Zn (control: 5.24±16.05; Zn1: 1.13±5.31; Zn2: 0.10±0.36; Zn3: 0.017±0.06). All treatments were statistically different from the control (P = 0.014 for Zn1; P<0.01 for Zn2 and Zn3). The frequency of apoptotic cells was higher in the control group (control: 0.142±0.07; Zn1: 0.109±0.0328; Zn2:0.102±0.013; Zn3: 0.0577±0.019). Statistical differences were found between control and Zn1 (P = 0.0308), control and Zn2 (P = 0.0077), control and Zn3 (P<0.0001), Zn1 and Zn3 (P<0.001) and Zn2 and Zn3 (P = 0.0004). No differences were found between Zn1 and Zn2. In conclusion, low Zn concentrations increase DNA damage and apoptosis in CCs cultured in vitro. However, adequate Zn concentrations 'protect' the integrity of DNA molecule and diminish the percentage of apoptotic CC.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1042/CBI20100507DOI Listing
June 2011