Publications by authors named "Juan Iovanna"

288 Publications

OncoSNIPE® Study Protocol, a study of molecular profiles associated with development of resistance in solid cancer patients.

BMC Cancer 2022 Jan 6;22(1):41. Epub 2022 Jan 6.

Oncodesign SA, 18-20 rue Jean Mazen, 21079, Dijon Cedex, France.

Background: Nowadays, evaluation of the efficacy and the duration of treatment, in context of monitoring patients with solid tumors, is based on the RECIST methodology. With these criteria, resistance and/or insensitivity are defined as tumor non-response which does not allow a good understanding of the diversity of the underlying mechanisms. The main objective of the OncoSNIPE® collaborative clinical research program is to identify early and late markers of resistance to treatment.

Methods: Multicentric, interventional study with the primary objective to identify early and / or late markers of resistance to treatment, in 600 adult patients with locally advanced or metastatic triple negative or Luminal B breast cancer, non-small-cell lung cancer or pancreatic ductal adenocarcinoma. Patients targeted in this study have all rapid progression of their pathology, making it possible to obtain models for evaluating markers of early and / or late responses over the 2-year period of follow-up, and thus provide the information necessary to understand resistance mechanisms. To explore the phenomena of resistance, during therapeutic response and / or progression of the pathology, we will use a multidisciplinary approach including high-throughput sequencing (Exome-seq and RNAseq), clinical data, medical images and immunological profile by ELISA. Patients will have long-term follow-up with different biological samples, at baseline (blood and biopsy) and at each tumoral evaluation or tumoral progression evaluated by medical imaging. Clinical data will be collected through a dedicated Case Report Form (CRF) and enriched by semantic extraction based on the French ConSoRe (Continuum Soins Recherche) initiative, a dedicated Semantic Clinical Data Warehouse (SCDW) to cancer. The study is sponsored by Oncodesign (Dijon, France) and is currently ongoing.

Discussion: The great diversity of intrinsic or acquired molecular mechanisms involved in resistance to treatment constitutes a real therapeutic issue. Improving understanding of mechanisms of resistance of cancer cells to anti-tumor treatments is therefore a major challenge. The OncoSNIPE cohort will lead to a better understanding of the mechanisms of resistance and will allow to explore new mechanisms of actions and to discover new therapeutic targets or strategies making it possible to circumvent the escape in different types of cancer.

Trial Registration: Clinicaltrial.gov. Registered 16 September 2020, https://clinicaltrials.gov/ct2/show/NCT04548960?term=oncosnipe&draw=2&rank=1 and ANSM ID RCB 2017-A02018-45.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12885-021-09134-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8734369PMC
January 2022

DNA Methylation of PI3K/AKT Pathway-Related Genes Predicts Outcome in Patients with Pancreatic Cancer: A Comprehensive Bioinformatics-Based Study.

Cancers (Basel) 2021 Dec 17;13(24). Epub 2021 Dec 17.

Faculty of Medicine and Biomedical Sciences (FMCB), Campus de Gambelas, University of Algarve, 8005-139 Faro, Portugal.

Pancreatic cancer (PCA) is one of the most lethal malignancies worldwide with a 5-year survival rate of 9%. Despite the advances in the field, the need for an earlier detection and effective therapies is paramount. PCA high heterogeneity suggests that epigenetic alterations play a key role in tumour development. However, only few epigenetic biomarkers or therapeutic targets have been identified so far. Here we explored the potential of distinct DNA methylation signatures as biomarkers for early detection and prognosis of PCA. PI3K/AKT-related genes differentially expressed in PCA were identified using the Pancreatic Expression Database ( = 153). Methylation data from PCA patients was obtained from The Cancer Genome Atlas ( = 183), crossed with clinical data to evaluate the biomarker potential of the epigenetic signatures identified and validated in independent cohorts. The majority of selected genes presented higher expression and hypomethylation in tumour tissue. The methylation signatures of specific genes in the PI3K/AKT pathway could distinguish normal from malignant tissue at initial disease stages with AUC > 0.8, revealing their potential as PCA diagnostic tools. , , , and methylation levels could be independent prognostic indicators of patients' survival. Methylation status of and were also associated with disease recurrence. Our study reveals that the methylation levels of PIK3/AKT genes involved in PCA could be used to diagnose and predict patients' clinical outcome with high sensitivity and specificity. These results provide new evidence of the potential of epigenetic alterations as biomarkers for disease screening and management and highlight possible therapeutic targets.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/cancers13246354DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8699150PMC
December 2021

Induction of Apoptosis in Human Pancreatic Cancer Stem Cells by the Endoplasmic Reticulum-Targeted Alkylphospholipid Analog Edelfosine and Potentiation by Autophagy Inhibition.

Cancers (Basel) 2021 Dec 5;13(23). Epub 2021 Dec 5.

Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, E-28040 Madrid, Spain.

Pancreatic cancer is one of the most lethal malignancies with a poor and gloomy prognosis and the highest mortality-to-incidence ratio. Pancreatic cancer remains an incurable malignancy, and current therapies are ineffective. We isolated cancer stem cells (CSCs) from the human PANC-1 pancreatic cancer cell line as CD44CD24EpCAM cells. These CSCs form pancreatic cancer spheres or spheroids and develop tumors in SCID mice after subcutaneous injection of as few as 100 cells per mouse. Here, we found that the alkylphospholipid analog edelfosine inhibited CSC pancreatic cancer spheroid formation and induced cell death, as assessed by an increase in the percentage of cells in the sub-G/G region by means of flow cytometry, indicative of DNA breakdown and apoptosis. This correlated with an increase in caspase-3 activity and PARP breakdown, as a major substrate of caspase-3, following PANC-1 CSC treatment with edelfosine. The antitumor ether lipid edelfosine colocalized with the endoplasmic reticulum in both PANC-1 cells as well as PANC-1 CSCs by using a fluorescent edelfosine analog, and induced an endoplasmic reticulum stress response in both PANC-1 cells and PANC-1 CSCs, with a potent CHOP/GADD153 upregulation. Edelfosine elicited a strong autophagy response in both PANC-1 cells and PANC-1 CSCs, and preincubation of CSCs with autophagy inhibitors, chloroquine or bafilomycin A1, enhanced edelfosine-induced apoptosis. Primary cultures from pancreatic cancer patients were sensitive to edelfosine, as well as their respective isolated CSCs. Nontumorigenic pancreatic human cell line HPNE and normal human fibroblasts were largely spared. These data suggest that pancreatic CSCs isolated from established cell lines and pancreatic cancer patients are sensitive to edelfosine through its accumulation in the endoplasmic reticulum and induction of endoplasmic reticulum stress.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/cancers13236124DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8656492PMC
December 2021

Design of Inhibitors of the Intrinsically Disordered Protein NUPR1: Balance between Drug Affinity and Target Function.

Biomolecules 2021 10 3;11(10). Epub 2021 Oct 3.

Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille Université, 13288 Marseille, France.

Intrinsically disordered proteins (IDPs) are emerging as attractive drug targets by virtue of their physiological ubiquity and their prevalence in various diseases, including cancer. NUPR1 is an IDP that localizes throughout the whole cell, and is involved in the development and progression of several tumors. We have previously repurposed trifluoperazine (TFP) as a drug targeting NUPR1 and, by using a ligand-based approach, designed the drug ZZW-115 starting from the TFP scaffold. Such derivative compound hinders the development of pancreatic ductal adenocarcinoma (PDAC) in mice, by hampering nuclear translocation of NUPR1. Aiming to further improve the activity of ZZW-115, here we have used an indirect drug design approach to modify its chemical features, by changing the substituent attached to the piperazine ring. As a result, we have synthesized a series of compounds based on the same chemical scaffold. Isothermal titration calorimetry (ITC) showed that, with the exception of the compound preserving the same chemical moiety at the end of the alkyl chain as ZZW-115, an increase of the length by a single methylene group (i.e., ethyl to propyl) significantly decreased the affinity towards NUPR1 measured in vitro, whereas maintaining the same length of the alkyl chain and adding heterocycles favored the binding affinity. However, small improvements of the compound affinity towards NUPR1, as measured by ITC, did not result in a corresponding improvement in their inhibitory properties and in cellulo functions, as proved by measuring three different biological effects: hindrance of the nuclear translocation of the protein, sensitization of cells against DNA damage mediated by NUPR1, and prevention of cancer cell growth. Our findings suggest that a delicate compromise between favoring ligand affinity and controlling protein function may be required to successfully design drugs against NUPR1, and likely other IDPs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/biom11101453DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8533202PMC
October 2021

Kras induces changes in chromatin territories that differentially impact early nuclear reprogramming in pancreatic cells.

Genome Biol 2021 10 14;22(1):289. Epub 2021 Oct 14.

Genomic Science and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI, USA.

Background: Pancreatic ductal adenocarcinoma initiation is most frequently caused by Kras mutations.

Results: Here, we apply biological, biochemical, and network biology methods to validate GEMM-derived cell models using inducible Kras expression. We describe the time-dependent, chromatin remodeling program that impacts function during early oncogenic signaling. We find that the Kras-induced transcriptional response is dominated by downregulated expression concordant with layers of epigenetic events. More open chromatin characterizes the ATAC-seq profile associated with a smaller group of upregulated genes and epigenetic marks. RRBS demonstrates that promoter hypermethylation does not account for the silencing of the extensive gene promoter network. Moreover, ChIP-Seq reveals that heterochromatin reorganization plays little role in this early transcriptional program. Notably, both gene activation and silencing primarily depend on the marking of genes with a combination of H3K27ac, H3K4me3, and H3K36me3. Indeed, integrated modeling of all these datasets shows that Kras regulates its transcriptional program primarily through unique super-enhancers and enhancers, and marking specific gene promoters and bodies. We also report chromatin remodeling across genomic areas that, although not contributing directly to cis-gene transcription, are likely important for Kras functions.

Conclusions: In summary, we report a comprehensive, time-dependent, and coordinated early epigenomic program for Kras in pancreatic cells, which is mechanistically relevant to understanding chromatin remodeling events underlying transcriptional outcomes needed for the function of this oncogene.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13059-021-02498-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8518179PMC
October 2021

NUPR1 inhibitor ZZW-115 induces ferroptosis in a mitochondria-dependent manner.

Cell Death Discov 2021 Oct 1;7(1):269. Epub 2021 Oct 1.

Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes; Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13288, Marseille, France.

Ferroptosis is an iron-dependent cell death characterized by the accumulation of hydroperoxided phospholipids. Here, we report that the NUPR1 inhibitor ZZW-115 induces ROS accumulation followed by a ferroptotic cell death, which could be prevented by ferrostatin-1 (Fer-1) and ROS-scavenging agents. The ferroptotic activity can be improved by inhibiting antioxidant factors in pancreatic ductal adenocarcinoma (PDAC)- and hepatocellular carcinoma (HCC)-derived cells. In addition, ZZW-115-treatment increases the accumulation of hydroperoxided lipids in these cells. We also found that a loss of activity and strong deregulation of key enzymes involved in the GSH- and GPX-dependent antioxidant systems upon ZZW-115 treatment. These results have been validated in xenografts induced with PDAC- and HCC-derived cells in nude mice during the treatment with ZZW-115. More importantly, we demonstrate that ZZW-115-induced mitochondrial morphological changes, compatible with the ferroptotic process, as well as mitochondrial network disorganization and strong mitochondrial metabolic dysfunction, which are rescued by both Fer-1 and N-acetylcysteine (NAC). Of note, the expression of TFAM, a key regulator of mitochondrial biogenesis, is downregulated by ZZW-115. Forced expression of TFAM is able to rescue morphological and functional mitochondrial alterations, ROS production, and cell death induced by ZZW-115 or genetic inhibition of NUPR1. Altogether, these results demonstrate that the mitochondrial cell death mediated by NUPR1 inhibitor ZZW-115 is fully rescued by Fer-1 but also via TFAM complementation. In conclusion, TFAM could be considered as an antagonist of the ferroptotic cell death.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41420-021-00662-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8486797PMC
October 2021

Targeting REG3β limits pancreatic ductal adenocarcinoma progression through CTGF downregulation.

Cancer Lett 2021 Aug 24;521:64-70. Epub 2021 Aug 24.

Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13288, Marseille, France. Electronic address:

The crosstalk between the transformed tumoral cells and their microenvironment is a key aspect for pancreatic ductal adenocarcinoma (PDAC) progression. This molecular dialog is intensively studied because it may result in an efficient therapeutic target. Contrary to this near microenvironment, the stromal portion in direct contact with the transformed cells, a far microenvironment, placed at the periphery of the tumor mass, produces factors signaling tumors. Among these factors, REG3β, produced by this part of the pancreas, is an important factor in promoting tumor progression. This paper demonstrated that targeting REG3β protein with specific antibodies limits the PDAC tumor growth in an orthotopic, syngeneic mice model induced by injection of Panc02 cells. Then, we showed that CTGF is over-expressed in response to REG3β in PDAC-derived cells. Moreover, inactivation of REG3β by treating tumors with anti-REG3β antibodies results in a strong decrease of CTGF in PDAC tumors. Lastly, we demonstrated that forced expression of CTGF in xenografted Panc02 cells abolishes the therapeutic effect of the anti-REG3β antibody treatment. Altogether, these results indicate that the effect of REG3β in promoting PDAC progression is mediated by CTGF over-activation. Thus, REG3β is a promising therapeutic target to treat PDAC with an original rationale. In conclusion, we demonstrated that the far microenvironment is essential for PDAC progression by producing active secretory factors, and some of them could be used as therapeutic targets.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.canlet.2021.08.024DOI Listing
August 2021

A glycosyltransferase gene signature to detect pancreatic ductal adenocarcinoma patients with poor prognosis.

EBioMedicine 2021 Sep 20;71:103541. Epub 2021 Aug 20.

Cancer Research Center of Marseille, Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France. Electronic address:

Background: Pancreatic ductal adenocarcinoma (PDAC) is characterized by an important heterogeneity, reflected by different clinical outcomes and chemoresistance. During carcinogenesis, tumor cells display aberrant glycosylated structures, synthetized by deregulated glycosyltransferases, supporting the tumor progression. In this study, we aimed to determine whether PDAC could be stratified through their glycosyltransferase expression profiles better than the current binary classification (basal-like and classical) in order to improve detection of patients with poor prognosis.

Methods: Bioinformatic analysis of 169 glycosyltransferase RNA sequencing data were performed for 74 patient-derived xenografts (PDX) of resected and unresectable tumors. The Australian cohort of International Cancer Genome Consortium and the microarray dataset from Puleo patient's cohort were used as independent validation datasets.

Findings: New PDAC stratification based on glycosyltransferase expression profile allowed to distinguish different groups of patients with distinct clinical outcome (p-value = 0.007). A combination of 19 glycosyltransferases differentially expressed in PDX defined a glyco-signature, whose prognostic value was validated on datasets including resected whole tumor tissues. The glyco-signature was able to discriminate three clusters of PDAC patients on the validation cohorts, two clusters displaying a short overall survival compared to one cluster having a better prognosis. Both poor prognostic clusters having different glyco-profiles in Puleo patient's cohort were correlated with stroma activated or desmoplastic subtypes corresponding to distinct microenvironment features (p-value < 0.0001). Besides, differential expression and enrichment analyses revealed deregulated functional pathways specific to different clusters.

Interpretation: This study identifies a glyco-signature relevant for a prognostic use, potentially applicable to resected and unresectable PDAC. Furthermore, it provides new potential therapeutic targets.

Funding: This work was supported by INCa (Grants number 2018-078 and 2018-079), Fondation ARC (Grant number ARCPJA32020070002326), Cancéropôle PACA, DGOS (labelization SIRIC, Grant number 6038), Amidex Foundation and Ligue Nationale Contre le Cancer and by institutional fundings from INSERM and the Aix-Marseille Université.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ebiom.2021.103541DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8379629PMC
September 2021

LDL receptor-peptide conjugate as in vivo tool for specific targeting of pancreatic ductal adenocarcinoma.

Commun Biol 2021 08 19;4(1):987. Epub 2021 Aug 19.

CRCM, Aix-Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes (IPC), Marseille, France.

Despite clinical advances in diagnosis and treatment, pancreatic ductal adenocarcinoma (PDAC) remains the third leading cause of cancer death, and is still associated with poor prognosis and dismal survival rates. Identifying novel PDAC-targeted tools to tackle these unmet clinical needs is thus an urgent requirement. Here we use a peptide conjugate that specifically targets PDAC through low-density lipoprotein receptor (LDLR). We demonstrate by using near-infrared fluorescence imaging the potential of this conjugate to specifically detect and discriminate primary PDAC from healthy organs including pancreas and from benign mass-forming chronic pancreatitis, as well as detect metastatic pancreatic cancer cells in healthy liver. This work paves the way towards clinical applications in which safe LDLR-targeting peptide conjugate promotes tumor-specific delivery of imaging and/or therapeutic agents, thereby leading to substantial improvements of the PDAC patient's outcome.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s42003-021-02508-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8377056PMC
August 2021

NUPR1: A Critical Regulator of the Antioxidant System.

Cancers (Basel) 2021 Jul 22;13(15). Epub 2021 Jul 22.

Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13288 Marseille, France.

Nuclear protein 1 (NUPR1) is a small intrinsically disordered protein (IDP) activated in response to various types of cellular stress, including endoplasmic reticulum (ER) stress and oxidative stress. Reactive oxygen species (ROS) are mainly produced during mitochondrial oxidative metabolism, and directly impact redox homeostasis and oxidative stress. Ferroptosis is a ROS-dependent programmed cell death driven by an iron-mediated redox reaction. Substantial evidence supports a maintenance role of the stress-inducible protein NUPR1 on cancer cell metabolism that confers chemotherapeutic resistance by upregulating mitochondrial function-associated genes and various antioxidant genes in cancer cells. NUPR1, identified as an antagonist of ferroptosis, plays an important role in redox reactions. This review summarizes the current knowledge on the mechanism behind the observed impact of NUPR1 on mitochondrial function, energy metabolism, iron metabolism, and the antioxidant system. The therapeutic potential of genetic or pharmacological inhibition of NUPR1 in cancer is also discussed. Understanding the role of NUPR1 in the antioxidant system and the mechanisms behind its regulation of ferroptosis may promote the development of more efficacious strategies for cancer therapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/cancers13153670DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8345110PMC
July 2021

Squamousness gain defines pancreatic ductal adenocarcinoma hepatic metastases phenotype, and gemcitabine response.

Eur J Cancer 2021 09 1;155:42-53. Epub 2021 Aug 1.

Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France. Electronic address:

Background: Pancreatic ductal adenocarcinoma (PDAC) is a dismal disease with a survival rate of less than 7%, mainly due to the hepatic metastatic spread. Despite the importance of understanding PDAC metastases, central questions remain concerning their biology and chemosensitivity. Moreover, the transcriptomic divergence between primary tumor (PT) and hepatic metastases (HM) has been poorly studied and without a clear dissection of the confounding tumoral-surrounding tissue.

Methods: Here, to unravel key biological features not biased by the surrounding tissue, we implemented a blind source separation based on independent component analysis, ProDenICA, on a treatment-naïve cohort of PDAC paired samples and a cohort of 305 resectable patients. In addition, a time-lapse experiment was performed to assess the gemcitabine chemosensitivity profile between the PT and HM.

Results: We identified HM's specific transcriptomic characteristics related to the upregulation of cell cycle checkpoint, mitochondria activity, and extracellular matrix reorganization, which could be associated with metastatic niche adaptation mechanisms. Furthermore, squamous lineage emerged as a key feature linked with a downregulation in the epithelial-to-mesenchymal program that can stratifies PDAC HM independent of the classical/basal-like spectrum. Remarkably, we also demonstrated that gemcitabine response is influenced by the squamous profile, being the HM more refractory to the treatment than the PT.

Conclusions: These results pointed out divergent HM aspects compared to PT and allowed their stratification through the squamous lineage. Moreover, we unravel a clinical actionable squamous signature that predicts the gemcitabine response.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejca.2021.06.038DOI Listing
September 2021

The NUPR1/p73 axis contributes to sorafenib resistance in hepatocellular carcinoma.

Cancer Lett 2021 10 24;519:250-262. Epub 2021 Jul 24.

Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy. Electronic address:

The multikinase inhibitor sorafenib was the first drug approved by the FDA for treating patients with advanced hepatocellular carcinoma (HCC). However, sorafenib resistance remains a major challenge for improving the effectiveness of HCC treatment. Previously, we identified several genes modulated after sorafenib treatment of human HCC cells, including the stress-inducible nuclear protein 1 (NUPR1) gene. Multiple studies have shown that NUPR1 regulates autophagy, apoptosis, and chemoresistance. Here, we demonstrate that treatment of HCC cells with sorafenib resulted in the activation of autophagic flux. NUPR1 knock-down (KD) in HCC cells was associated with increased p62 expression, suggesting an impairment of autophagic flux, and with a significant increase of cell sensitivity to sorafenib. In NUPR1 KD cells, reduced levels of NUPR1 were associated with the increased expression of p73 as well as its downstream transcription targets PUMA, NOXA, and p21. Simultaneous silencing of p73 and NUPR1 in HCC cells resulted in increased resistance to sorafenib, as compared to the single KD of either gene. Conversely, pharmacological activation of p73, via the novel p73 small molecule activator NSC59984, determined synergistic anti-tumor effects in sorafenib-treated HCC cells. The combination of NSC59984 and sorafenib, when compared to either treatment alone, synergistically suppressed tumor growth of HCC cells in vivo. Our data suggest that the activation of the p73 pathway achieved by NUPR1 KD potentiates sorafenib-induced anti-tumor effects in HCC cells. Moreover, combined pharmacological therapy with the p73 activator NSC59984 and sorafenib could represent a novel approach for HCC treatment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.canlet.2021.07.026DOI Listing
October 2021

Crowding Effects on the Structure and Dynamics of the Intrinsically Disordered Nuclear Chromatin Protein NUPR1.

Front Mol Biosci 2021 5;8:684622. Epub 2021 Jul 5.

Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Joint Units IQFR-CSIC-BIFI and GBsC-CSIC-BIFI, Universidad de Zaragoza, Zaragoza, Spain.

The intracellular environment is crowded with macromolecules, including sugars, proteins and nucleic acids. In the cytoplasm, crowding effects are capable of excluding up to 40% of the volume available to any macromolecule when compared to dilute conditions. NUPR1 is an intrinsically disordered protein (IDP) involved in cell-cycle regulation, stress-cell response, apoptosis processes, DNA binding and repair, chromatin remodeling and transcription. Simulations of molecular crowding predict that IDPs can adopt compact states, as well as more extended conformations under crowding conditions. In this work, we analyzed the conformation and dynamics of NUPR1 in the presence of two synthetic polymers, Ficoll-70 and Dextran-40, which mimic crowding effects in the cells, at two different concentrations (50 and 150 mg/ml). The study was carried out by using a multi-spectroscopic approach, including: site-directed spin labelling electron paramagnetic resonance spectroscopy (SDSL-EPR), nuclear magnetic resonance spectroscopy (NMR), circular dichroism (CD), small angle X-ray scattering (SAXS) and dynamic light scattering (DLS). SDSL-EPR spectra of two spin-labelled mutants indicate that there was binding with the crowders and that the local dynamics of the C and N termini of NUPR1 were partially affected by the crowders. However, the overall disordered nature of NUPR1 did not change substantially in the presence of the crowders, as shown by circular dichroism CD and NMR, and further confirmed by EPR. The changes in the dynamics of the paramagnetic probes appear to be related to preferred local conformations and thus crowding agents partially affect some specific regions, further pinpointing that NUPR1 flexibility has a key physiological role in its activity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fmolb.2021.684622DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8287036PMC
July 2021

Inactivation of the Euchromatic Histone-Lysine -Methyltransferase 2 Pathway in Pancreatic Epithelial Cells Antagonizes Cancer Initiation and Pancreatitis-Associated Promotion by Altering Growth and Immune Gene Expression Networks.

Front Cell Dev Biol 2021 23;9:681153. Epub 2021 Jun 23.

Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States.

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive, painful disease with a 5-year survival rate of only 9%. Recent evidence indicates that distinct epigenomic landscapes underlie PDAC progression, identifying the H3K9me pathway as important to its pathobiology. Here, we delineate the role of Euchromatic Histone-lysine -Methyltransferase 2 (EHMT2), the enzyme that generates H3K9me, as a downstream effector of oncogenic KRAS during PDAC initiation and pancreatitis-associated promotion. inactivation in pancreatic cells reduces H3K9me2 and antagonizes Kras -mediated acinar-to-ductal metaplasia (ADM) and Pancreatic Intraepithelial Neoplasia (PanIN) formation in both the and mouse models. acinar explants also show impaired EGFR-KRAS-MAPK pathway-mediated ADM upon deletion. Notably, Kras increases EHMT2 protein levels and EHMT2-EHMT1-WIZ complex formation. Transcriptome analysis reveals that inactivation upregulates a cell cycle inhibitory gene expression network that converges on the pathway. Congruently, pancreas tissue from animals with inactivation have increased P21 protein levels and enhanced senescence. Furthermore, loss of reduces inflammatory cell infiltration typically induced during Kras -mediated initiation. The inhibitory effect on Kras -induced growth is maintained in the pancreatitis-accelerated model, while simultaneously modifying immunoregulatory gene networks that also contribute to carcinogenesis. This study outlines the existence of a novel KRAS-EHMT2 pathway that is critical for mediating the growth-promoting and immunoregulatory effects of this oncogene , extending human observations to support a pathophysiological role for the H3K9me pathway in PDAC.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fcell.2021.681153DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8261250PMC
June 2021

TNF-α induces endothelial-mesenchymal transition promoting stromal development of pancreatic adenocarcinoma.

Cell Death Dis 2021 06 25;12(7):649. Epub 2021 Jun 25.

Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France.

Endothelial-mesenchymal transition (EndMT) is an important source of cancer-associated fibroblasts (CAFs), which facilitates tumour progression. PDAC is characterised by abundant CAFs and tumour necrosis factor-α (TNF-α). Here, we show that TNF-α strongly induces human endothelial cells to undergo EndMT. Interestingly, TNF-α strongly downregulates the expression of the endothelial receptor TIE1, and reciprocally TIE1 overexpression partially prevents TNF-α-induced EndMT, suggesting that TNF-α acts, at least partially, through TIE1 regulation in this process. We also show that TNF-α-induced EndMT is reversible. Furthermore, TNF-α treatment of orthotopic mice resulted in an important increase in the stroma, including CAFs. Finally, secretome analysis identified TNFSF12, as a regulator that is also present in PDAC patients. With the aim of restoring normal angiogenesis and better access to drugs, our results support the development of therapies targeting CAFs or inducing the EndMT reversion process in PDAC.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41419-021-03920-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8233393PMC
June 2021

Exploring the Complementarity of Pancreatic Ductal Adenocarcinoma Preclinical Models.

Cancers (Basel) 2021 May 19;13(10). Epub 2021 May 19.

Cancer Research Center of Marseille, CRCM, Inserm, CNRS, Paoli-Calmettes Institut, Aix-Marseille University, 13288 Marseille, France.

: Compare pancreatic ductal adenocarcinoma (PDAC), preclinical models, by their transcriptome and drug response landscapes to evaluate their complementarity. : Three paired PDAC preclinical models-patient-derived xenografts (PDX), xenograft-derived pancreatic organoids (XDPO) and xenograft-derived primary cell cultures (XDPCC)-were derived from 20 patients and analyzed at the transcriptomic and chemosensitivity level. Transcriptomic characterization was performed using the basal-like/classical subtyping and the PDAC molecular gradient (PAMG). Chemosensitivity for gemcitabine, irinotecan, 5-fluorouracil and oxaliplatin was established and the associated biological pathways were determined using independent component analysis (ICA) on the transcriptome of each model. The selection criteria used to identify the different components was the chemosensitivity score (CSS) found for each drug in each model. : PDX was the most dispersed model whereas XDPO and XDPCC were mainly classical and basal-like, respectively. Chemosensitivity scoring determines that PDX and XDPO display a positive correlation for three out of four drugs tested, whereas PDX and XDPCC did not correlate. No match was observed for each tumor chemosensitivity in the different models. Finally, pathway analysis shows a significant association between PDX and XDPO for the chemosensitivity-associated pathways and PDX and XDPCC for the chemoresistance-associated pathways. : Each PDAC preclinical model possesses a unique basal-like/classical transcriptomic phenotype that strongly influences their global chemosensitivity. Each preclinical model is imperfect but complementary, suggesting that a more representative approach of the clinical reality could be obtained by combining them. : The identification of molecular signatures that underpin drug sensitivity to chemotherapy in PDAC remains clinically challenging. Importantly, the vast majority of studies using preclinical in vivo and in vitro models fail when transferred to patients in a clinical setting despite initially promising results. This study presents for the first time a comparison between three preclinical models directly derived from the same patients. We show that their applicability to preclinical studies should be considered with a complementary focus, avoiding tumor-based direct extrapolations, which might generate misleading conclusions and consequently the overlook of clinically relevant features.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/cancers13102473DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8161239PMC
May 2021

Targeting Fibrosis: The Bridge That Connects Pancreatitis and Pancreatic Cancer.

Int J Mol Sci 2021 May 7;22(9). Epub 2021 May 7.

Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13288 Marseille, France.

Pancreatic fibrosis is caused by the excessive deposits of extracellular matrix (ECM) and collagen fibers during repeated necrosis to repair damaged pancreatic tissue. Pancreatic fibrosis is frequently present in chronic pancreatitis (CP) and pancreatic cancer (PC). Clinically, pancreatic fibrosis is a pathological feature of pancreatitis and pancreatic cancer. However, many new studies have found that pancreatic fibrosis is involved in the transformation from pancreatitis to pancreatic cancer. Thus, the role of fibrosis in the crosstalk between pancreatitis and pancreatic cancer is critical and still elusive; therefore, it deserves more attention. Here, we review the development of pancreatic fibrosis in inflammation and cancer, and we discuss the therapeutic strategies for alleviating pancreatic fibrosis. We further propose that cellular stress response might be a key driver that links fibrosis to cancer initiation and progression. Therefore, targeting stress proteins, such as nuclear protein 1 (NUPR1), could be an interesting strategy for pancreatic fibrosis and PC treatment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms22094970DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8124541PMC
May 2021

Prognostic Role of Plasma PD-1, PD-L1, pan-BTN3As and BTN3A1 in Patients Affected by Metastatic Gastrointestinal Stromal Tumors: Can Immune Checkpoints Act as a Sentinel for Short-Term Survival?

Cancers (Basel) 2021 Apr 27;13(9). Epub 2021 Apr 27.

Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy.

Gastrointestinal stromal tumors (GISTs) represent 1% of all primary gastrointestinal tumors. Immune surveillance is often overcome by cancer cells due to the activation of immunoregulatory molecules such as programmed death protein (PD-1) and its ligand PD-L1, and butyrophilin sub-family 3A/CD277 receptors (BTN3A). Because several studies demonstrated that tumor PD-1 and PD-L1 expression may have a prominent prognostic function, this investigation aimed to discover if soluble forms of these molecules may be useful in predicting survival of metastatic GIST (mGIST) patients. Through specific ad hoc developed ELISA assays not yet available on the market, the circulating PD-1, PD-L1, BTN3A1, and pan-BTN3As levels were examined in 30 exon 11-mutated mGIST patients, prior to imatinib therapy. Using specific thresholds derived by ROC analysis, we found that high baseline levels of sPD-1 (>8.1 ng/mL), sPD-L1 (>0.7 ng/mL), sBTN3A1 (>7.0 ng/mL), and pan-BTN3As (>5.0 ng/mL) were correlated with shorter progression-free survival (PFS) and poor prognosis. Contrariwise, subjects with lower plasma concentrations exhibited a median PFS about 20 months longer than to the earlier. Finally, an additional multivariate analysis revealed that circulating levels of sPD-L1 ≤ 0.7 ng/mL and pan-sBTN3As ≤ 5.0 ng/mL, and the absence of exon 11 deletions or delins at codons 557 and/or 558 were associated with a longer PFS in mGIST patients. Our investigation, for the first time, revealed that evaluating the plasma concentration of some immune checkpoints may help prognosticate survival in mGIST patients, suggesting their potential use as prognostic biomarkers beyond the presence of exon 11 Del or Delins at codons 557/558.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/cancers13092118DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8125172PMC
April 2021

Human Endogenous Retrovirus (HERV)-K Gene Knockout Affects Tumorigenic Characteristics of Gene in DLD-1 Colorectal Cancer Cells.

Int J Mol Sci 2021 Apr 11;22(8). Epub 2021 Apr 11.

Department of Parasitology and Genetics, Kosin University College of Medicine, Busan 49267, Korea.

Human endogenous retroviruses (HERVs) are suggested to be involved in the development of certain diseases, especially cancers. To elucidate the function of HERV-K Env protein in cancers, an HERV-K gene knockout (KO) in DLD-1 colorectal cancer cell lines was generated using the CRISPR-Cas9 system. Transcriptome analysis of HERV-K KO cells using next-generation sequencing (NGS) was performed to identify the key genes associated with the function of HERV-K Env protein. The proliferation of HERV-K KO cells was significantly reduced in in vitro culture as well as in in vivo nude mouse model. Tumorigenic characteristics, including migration, invasion, and tumor colonization, were also significantly reduced in HERV-K KO cells. Whereas, they were enhanced in HERV-K over-expressing DLD-1 cells. The expression of nuclear protein-1 (NUPR1), an ER-stress response factor that plays an important role in cell proliferation, migration, and reactive oxygen species (ROS) generation in cancer cells, significantly reduced in HERV-K KO cells. ROS levels and ROS-related gene expression was also significantly reduced in HERV-K KO cells. Cells transfected with NUPR1 siRNA (small interfering RNA) exhibited the same phenotype as HERV-K KO cells. These results suggest that the HERV-K gene affects tumorigenic characteristics, including cell proliferation, migration, and tumor colonization through NUPR1 related pathway.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms22083941DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8070087PMC
April 2021

Metabolomic profiling of pancreatic adenocarcinoma reveals key features driving clinical outcome and drug resistance.

EBioMedicine 2021 Apr 13;66:103332. Epub 2021 Apr 13.

Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France. Electronic address:

Background: Although significant advances have been made recently to characterize the biology of pancreatic ductal adenocarcinoma (PDAC), more efforts are needed to improve our understanding and to face challenges related to the aggressiveness, high mortality rate and chemoresistance of this disease.

Methods: In this study, we perform the metabolomics profiling of 77 PDAC patient-derived tumor xenografts (PDTX) to investigate the relationship of metabolic profiles with overall survival (OS) in PDAC patients, tumor phenotypes and resistance to five anticancer drugs (gemcitabine, oxaliplatin, docetaxel, SN-38 and 5-Fluorouracil).

Findings: We identified a metabolic signature that was able to predict the clinical outcome of PDAC patients (p < 0.001, HR=2.68 [95% CI: 1.5-4.9]). The correlation analysis showed that this metabolomic signature was significantly correlated with the PDAC molecular gradient (PAMG) (R = 0.44 and p < 0.001) indicating significant association to the transcriptomic phenotypes of tumors. Resistance score established, based on growth rate inhibition metrics using 35 PDTX-derived primary cells, allowed to identify several metabolites related to drug resistance which was globally accompanied by accumulation of several diacy-phospholipids and decrease in lysophospholipids. Interestingly, targeting glycerophospholipid synthesis improved sensitivity to the three tested cytotoxic drugs indicating that interfering with metabolism could be a promising therapeutic strategy to overcome the challenging resistance of PDAC.

Interpretation: In conclusion, this study shows that the metabolomic profile of pancreatic PDTX models is strongly associated to clinical outcome, transcriptomic phenotypes and drug resistance. We also showed that targeting the lipidomic profile could be used in combinatory therapies against chemoresistance in PDAC.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ebiom.2021.103332DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8054161PMC
April 2021

Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition).

Autophagy 2021 Jan 8;17(1):1-382. Epub 2021 Feb 8.

University of Crete, School of Medicine, Laboratory of Clinical Microbiology and Microbial Pathogenesis, Voutes, Heraklion, Crete, Greece; Foundation for Research and Technology, Institute of Molecular Biology and Biotechnology (IMBB), Heraklion, Crete, Greece.

In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/15548627.2020.1797280DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7996087PMC
January 2021

NUPR1 protects liver from lipotoxic injury by improving the endoplasmic reticulum stress response.

FASEB J 2021 03;35(3):e21395

Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France.

Non-alcoholic fatty liver (NAFL) and related syndromes affect one-third of the adult population in industrialized and developing countries. Lifestyle and caloric oversupply are the main causes of such array of disorders, but the molecular mechanisms underlying their etiology remain elusive. Nuclear Protein 1 (NUPR1) expression increases upon cell injury in all organs including liver. Recently, we reported NUPR1 actively participates in the activation of the Unfolded Protein Response (UPR). The UPR typically maintains protein homeostasis, but downstream mediators of the pathway regulate metabolic functions including lipid metabolism. As increases in UPR and NUPR1 in obesity and liver disease have been well documented, the goal of this study was to investigate the roles of NUPR1 in this context. To establish whether NUPR1 is involved in these liver conditions we used patient-derived liver biopsies and in vitro and in vivo NUPR1 loss of functions models. First, we analyzed NUPR1 expression in a cohort of morbidly obese patients (MOPs), with simple fatty liver (NAFL) or more severe steatohepatitis (NASH). Next, we explored the metabolic roles of NUPR1 in wild-type (Nupr1 ) or Nupr1 knockout mice (Nupr1 ) fed with a high-fat diet (HFD) for 15 weeks. Immunohistochemical and mRNA analysis revealed NUPR1 expression is inversely correlated to hepatic steatosis progression. Mechanistically, we found NUPR1 participates in the activation of PPAR-α signaling via UPR. As PPAR-α signaling is controlled by UPR, collectively, these findings suggest a novel function for NUPR1 in protecting liver from metabolic distress by controlling lipid homeostasis, possibly through the UPR.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.202002413RRDOI Listing
March 2021

Combating pancreatic cancer chemoresistance by triggering multiple cell death pathways.

Pancreatology 2021 Apr 22;21(3):522-529. Epub 2021 Jan 22.

Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France.

Pancreatic cancer is the fourth most common cause of cancer-associated death in western countries, where the incidence and number of deaths are increasing every year. Intrinsic or acquired resistance of tumor cells to chemotherapy agents is the major reason for failure of traditional cancer treatment. Several factors are implicated in this impressive resistance; however, of these, it is important to highlight the extensive cellular heterogeneity of these tumors. This heterogeneity is linked to a wide range of sensitivity that different clones in the same tumor display to chemotherapeutic agents. Accordingly, recent findings in this field have discovered new therapeutic targets in order to develop new combinatory treatments, as well as to induce several cell death pathways and reduce therapy-threshold and likelihood of future resistance. Accordingly, recent research has focused on targeting mitochondria, an organelle with key roles regulating cell death signaling pathways, such as apoptosis, necroptosis, autophagy, ferroptosis, or parthanatos. These findings - identifying new compounds, alone or in combination, that can target pancreatic ductal adenocarcinoma cell resistance - could be the key to future treatments.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pan.2021.01.010DOI Listing
April 2021

NUPR1 interacts with eIF2α and is required for resolution of the ER stress response in pancreatic tissue.

FEBS J 2021 07 25;288(13):4081-4097. Epub 2021 Jan 25.

Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Marseille, France.

Nuclear protein 1 (NUPR1) is a stress response protein overexpressed upon cell injury in virtually all organs including the exocrine pancreas. Despite NUPR1's well-established role in the response to cell stress, the molecular and structural machineries triggered by NUPR1 activation remain largely debated. In this study, we uncover a new role for NUPR1, participating in the unfolded protein response (UPR) and the integrated stress response. Biochemical results and ultrastructural morphological observations revealed alterations in the UPR of acinar cells of germline-deleted NUPR1 murine models, consistent with the inability to restore general protein synthesis after stress induction. Bioinformatic analysis of NUPR1-interacting partners showed significant enrichment in translation initiation factors, including eukaryotic initiation factor (eIF) 2α. Co-immunoprecipitation and proximity ligation assays confirmed the interaction between NUPR1 and eIF2α and its phosphorylated form (p-eIF2α). Furthermore, our data suggest loss of NUPR1 in cells results in maintained eIF2α phosphorylation and evaluation of nascent proteins by click chemistry revealed that NUPR1-depleted PANC-1 cells displayed a slower poststress protein synthesis recovery when compared to wild-type. Combined, these data propose a novel role for NUPR1 in the integrated stress response pathway, at least partially through promoting efficient PERK branch activity and resolution through a unique interaction with eIF2α.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/febs.15700DOI Listing
July 2021

Intrinsically disordered protein NUPR1 binds to the armadillo-repeat domain of Plakophilin 1.

Int J Biol Macromol 2021 Feb 29;170:549-560. Epub 2020 Dec 29.

IDIBE, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain; Instituto de Biocomputación y Física de Sistemas Complejos, Joint Units IQFR-CSIC-BIFI, GBsC-CSIC-BIFI, Universidad de Zaragoza, 50009 Zaragoza, Spain. Electronic address:

Plakophilin 1 (PKP1), a member of the armadillo repeat family of proteins, is a scaffold component of desmosomes, which are key structural components for cell-cell adhesion. However, PKP1 can be also found in the nucleus of several cells. NUPR1 is an intrinsically disordered protein (IDP) that localizes throughout the whole cell, and intervenes in the development and progression of several cancers. In this work, we studied the binding between PKP1 and NUPR1 by using several in vitro biophysical techniques and in cellulo approaches. The interaction occurred with an affinity in the low micromolar range (~10 μM), and involved the participation of at least one of the tryptophan residues of PKP1 (as shown by fluorescence and molecular docking). The binding region of NUPR1, mapped by NMR and molecular modelling, was a polypeptide patch at the 30s region of its sequence. The association between PKP1 and NUPR1 also occurred in cellulo and was localized in the nucleus, as tested by protein ligation assays (PLAs). We hypothesize that NUPR1 plays an active role in carcinogenesis modulating the function of PKP1.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2020.12.193DOI Listing
February 2021

Soluble forms of PD-L1 and PD-1 as prognostic and predictive markers of sunitinib efficacy in patients with metastatic clear cell renal cell carcinoma.

Oncoimmunology 2020 11 25;9(1):1846901. Epub 2020 Nov 25.

Biomedical Department, Centre Scientifique De Monaco, principally of Monaco.

Metastatic clear cell renal cell carcinoma (mccRCC) benefits from several treatment options in the first-line setting with VEGFR inhibitors and/or immunotherapy including anti-PD-L1 or anti-PD1 agents. Identification of predictive biomarkers is highly needed to optimize patient care. Circulating markers could reflect the biology of metastatic disease. Therefore, we evaluated soluble forms of PD-L1 (sPD-L1) and PD-1 (sPD-1) in mccRCC patients. The levels of sPD-L1 and sPD-1 were evaluated from plasma samples of mccRCC patients before they received a first-line treatment (T0) by the VEGFR inhibitor sunitinib (50 patients) or by the anti-VEGF bevacizumab (37 patients). The levels of sPD-L1 and sPD-1 were correlated to clinical parameters and progression-free survival (PFS). High levels of sPD-1 or sPDL1 were not correlated to PFS under bevacizumab while they were independent prognostic factors of PFS in the sunitinib group. Patients with high T0 plasmatic levels of sPD-L1 had a shorter PFS (11.3 vs 22.5 months, = .011) in the sunitinib group. Equivalent shorter PFS was found with high levels of sPD-1 (8.6 vs 14.1 months, = .009). mccRCC patients with high plasmatic levels of sPD-L1 or sPD-1 are poor responders to sunitinib. sPD-L1 or sPD-1 could be a valuable tool to guide the optimal treatment strategy including VEGFR inhibitor.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/2162402X.2020.1846901DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7714499PMC
November 2020

Targeting Mitochondrial Complex I Overcomes Chemoresistance in High OXPHOS Pancreatic Cancer.

Cell Rep Med 2020 Nov 17;1(8):100143. Epub 2020 Nov 17.

Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), F-13009 Marseille, France.

Mitochondrial respiration (oxidative phosphorylation, OXPHOS) is an emerging target in currently refractory cancers such as pancreatic ductal adenocarcinoma (PDAC). However, the variability of energetic metabolic adaptations between PDAC patients has not been assessed in functional investigations. In this work, we demonstrate that OXPHOS rates are highly heterogeneous between patient tumors, and that high OXPHOS tumors are enriched in mitochondrial respiratory complex I at protein and mRNA levels. Therefore, we treated PDAC cells with phenformin (complex I inhibitor) in combination with standard chemotherapy (gemcitabine), showing that this treatment is synergistic specifically in high OXPHOS cells. Furthermore, phenformin cooperates with gemcitabine in high OXPHOS tumors in two orthotopic mouse models (xenografts and syngeneic allografts). In conclusion, this work proposes a strategy to identify PDAC patients likely to respond to the targeting of mitochondrial energetic metabolism in combination with chemotherapy, and that phenformin should be clinically tested in appropriate PDAC patient subpopulations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.xcrm.2020.100143DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7691450PMC
November 2020

Response to the Letter to the editor regarding "Targeting NUPR1 with the small compound ZZW-115 is an efficient strategy to treat hepatocellular carcinoma" by Jiong Lin.

Cancer Lett 2021 03 5;500:161-162. Epub 2020 Dec 5.

Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13288, Marseille, France. Electronic address:

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.canlet.2020.12.001DOI Listing
March 2021

Implementing biological markers as a tool to guide clinical care of patients with pancreatic cancer.

Authors:
Juan Iovanna

Transl Oncol 2021 Jan 25;14(1):100965. Epub 2020 Nov 25.

Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13288 Marseille, France. Electronic address:

A major obstacle for the effective treatment of pancreatic ductal adenocarcinoma (PDAC) is its molecular heterogeneity, reflected by the diverse clinical outcomes and responses to therapies that occur. The tumors of patients with PDAC must therefore be closely examined and classified before treatment initiation in order to predict the natural evolution of the disease and the response to therapy. To stratify patients, it is absolutely necessary to identify biological markers that are highly specific and reproducible, and easily measurable by inexpensive sensitive techniques. Several promising strategies to find biomarkers are already available or under development, such as the use of liquid biopsies to detect circulating tumor cells, circulating free DNA, methylated DNA, circulating RNA, and exosomes and extracellular vesicles, as well as immunological markers and molecular markers. Such biomarkers are capable of classifying patients with PDAC and predicting their therapeutic sensitivity. Interestingly, developing chemograms using primary cell lines or organoids and analyzing the resulting high-throughput data via artificial intelligence would be highly beneficial to patients. How can exploiting these biomarkers benefit patients with resectable, borderline resectable, locally advanced, and metastatic PDAC? In fact, the utility of these biomarkers depends on the patient's clinical situation. At the early stages of the disease, the clinician's priority lies in rapid diagnosis, so that the patient receives surgery without delay; at advanced disease stages, where therapeutic possibilities are severely limited, the priority is to determine the PDAC tumor subtype so as to estimate the clinical outcome and select a suitable effective treatment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tranon.2020.100965DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7704461PMC
January 2021
-->