Publications by authors named "Juan Gemez-Mata"

3 Publications

  • Page 1 of 1

Immunogene expression analysis in betanodavirus infected-Senegalese sole using an OpenArray® platform.

Gene 2021 Mar 11;774:145430. Epub 2021 Jan 11.

Universidad de Málaga, Instituto de Biotecnología y Desarrollo Azul, IBYDA, Departamento de Microbiología, Facultad de Ciencias, Málaga, Spain. Electronic address:

The transcriptomic response of Senegalese sole (Solea senegalensis) triggered by two betanodaviruses with different virulence to that fish species has been assessed using an OpenArray® platform based on TaqMan™ quantitative PCR. The transcription of 112 genes per sample has been evaluated at two sampling times in two organs (head kidney and eye/brain-pooled samples). Those genes were involved in several roles or pathways, such as viral recognition, regulation of type I (IFN-1)-dependent immune responses, JAK-STAT cascade, interferon stimulated genes, protein ubiquitination, virus responsive genes, complement system, inflammatory response, other immune system effectors, regulation of T-cell proliferation, and proteolysis and apoptosis. The highly virulent isolate, wSs160.3, a wild type reassortant containing a RGNNV-type RNA1 and a SJNNV-type RNA2 segments, induced the expression of a higher number of genes in both tested organs than the moderately virulent strain, a recombinant harbouring mutations in the protruding domain of the capsid protein. The number of differentially expressed genes was higher 2 days after the infection with the wild type isolate than at 3 days post-inoculation. The wild type isolate also elicited an exacerbated interferon 1 response, which, instead of protecting sole against the infection, increases the disease severity by the induction of apoptosis and inflammation-derived immunopathology, although inflammation seems to be modulated by the complement system. Furthermore, results derived from this study suggest a potential important role for some genes with high expression after infection with the highly virulent virus, such as rtp3, sacs and isg15. On the other hand, the infection with the mutant does not induce immune response, probably due to an altered recognition by the host, which is supported by a different viral recognition pathway, involving myd88 and tbkbp1.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2021.145430DOI Listing
March 2021

Differential immunogene expression profile of European sea bass (Dicentrarchus labrax, L.) in response to highly and low virulent NNV.

Fish Shellfish Immunol 2020 Nov 20;106:56-70. Epub 2020 Jul 20.

Universidad de Málaga, Instituto de Biotecnología y Desarrollo Azul, IBYDA, Departamento de Microbiología, Facultad de Ciencias, 29071, Málaga, Spain. Electronic address:

European sea bass is highly susceptible to the nervous necrosis virus, RGNNV genotype, whereas natural outbreaks caused by the SJNNV genotype have not been recorded. The onset and severity of an infectious disease depend on pathogen virulence factors and the host immune response. The importance of RGNNV capsid protein amino acids 247 and 270 as virulence factors has been previously demonstrated in European sea bass; however, sea bass immune response against nodaviruses with different levels of virulence has been poorly characterized. Knowing the differences between the immune response against both kinds of isolates may be key to get more insight into the host mechanisms responsible for NNV virulence. For this reason, this study analyses the transcription of immunogenes differentially expressed in European sea bass inoculated with nodaviruses with different virulence: a RGNNV virus obtained by reverse genetics (rDl956), highly virulent to sea bass, and a mutated virus (MutDl956, RGNNV virus displaying SJNNV-type amino acids at positions 247 and 270 of the capsid protein), presenting lower virulence. This study has been performed in brain and head kidney, and the main differences between the immunogene responses triggered by both viruses have been observed in brain. The immunogene response in this organ is stronger after inoculation with the most virulent virus, and the main differences involved genes related with IFN I system, inflammatory response, cell-mediated response, and apoptosis. The lower virulence of MutDl956 to European sea bass can be associated with a delayed IFN I response, as well as an early and transitory inflammation and cell-mediated responses, suggesting that those can be pivotal elements in controlling the viral infection, and therefore, their functional activity could be analysed in future studies. In addition, this study supports the role of capsid amino acids at positions 247 and 270 as important determinants of RGNNV virulence to European sea bass.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsi.2020.06.052DOI Listing
November 2020

Comparative analysis of marine and freshwater viral haemorrhagic septicaemia virus (VHSV) isolates antagonistic activity.

Comp Immunol Microbiol Infect Dis 2020 Apr 28;69:101426. Epub 2020 Jan 28.

Universidad de Málaga, Instituto de Biotecnología y Desarrollo Azul, IBYDA, Área De Genética, Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, 29071, Málaga, Spain. Electronic address:

Viral Haemorrhagic Septicaemia Virus (VHSV) isolates virulent to marine fish species can replicate in freshwater species, although producing little or no mortality. Conversely, isolates from freshwater fish do not cause disease in marine species. An inverse relationship between VHSV virulence and host mx gene up-regulation has been described for several fish species, suggesting that differences between the antagonistic activity exerted by these isolates might be involved in the outcome of infections. In this study, the antagonistic activity against the type I interferon system of two representative marine and freshwater VHSV isolates has been characterised using RTG-2 cells stably transfected with the luciferase gene under the control of the Senegalese sole mx (ssmx) promoter, RTG pssmx-luc cells. Both isolates exerted a dose-dependent negative effect on the activation of ssmx promoter, showing a notably different minimal viral dose to exert the antagonism. In particular, an inverse relationship between the minimal MOI required and the viral virulence to sole has been recorded, which suggests this parameter as a possible in vivo VHSV virulence marker. Furthermore, the quantification of the endogenous inf I, mx1 and mx3 mRNA has demonstrated differences between both isolates in their antagonistic activity. Besides, a different nv RNA kinetics, which seems to depend on specific cellular factors, has been recorded for both isolates. This knowledge could contribute to the development of efficient tools to fight against viral infections in fish farming. For that purpose, the RTG pssmx-luc cells may be a suitable in vitro tool to identify the molecular mechanisms underlying VHSV-host interactions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cimid.2020.101426DOI Listing
April 2020