Publications by authors named "Joy M Raison"

11 Publications

  • Page 1 of 1

The tuatara genome reveals ancient features of amniote evolution.

Nature 2020 08 5;584(7821):403-409. Epub 2020 Aug 5.

Department of Anatomy, University of Otago, Dunedin, New Zealand.

The tuatara (Sphenodon punctatus)-the only living member of the reptilian order Rhynchocephalia (Sphenodontia), once widespread across Gondwana-is an iconic species that is endemic to New Zealand. A key link to the now-extinct stem reptiles (from which dinosaurs, modern reptiles, birds and mammals evolved), the tuatara provides key insights into the ancestral amniotes. Here we analyse the genome of the tuatara, which-at approximately 5 Gb-is among the largest of the vertebrate genomes yet assembled. Our analyses of this genome, along with comparisons with other vertebrate genomes, reinforce the uniqueness of the tuatara. Phylogenetic analyses indicate that the tuatara lineage diverged from that of snakes and lizards around 250 million years ago. This lineage also shows moderate rates of molecular evolution, with instances of punctuated evolution. Our genome sequence analysis identifies expansions of proteins, non-protein-coding RNA families and repeat elements, the latter of which show an amalgam of reptilian and mammalian features. The sequencing of the tuatara genome provides a valuable resource for deep comparative analyses of tetrapods, as well as for tuatara biology and conservation. Our study also provides important insights into both the technical challenges and the cultural obligations that are associated with genome sequencing.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-020-2561-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7116210PMC
August 2020

Superior ab initio identification, annotation and characterisation of TEs and segmental duplications from genome assemblies.

PLoS One 2018 14;13(3):e0193588. Epub 2018 Mar 14.

School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia.

Transposable Elements (TEs) are mobile DNA sequences that make up significant fractions of amniote genomes. However, they are difficult to detect and annotate ab initio because of their variable features, lengths and clade-specific variants. We have addressed this problem by refining and developing a Comprehensive ab initio Repeat Pipeline (CARP) to identify and cluster TEs and other repetitive sequences in genome assemblies. The pipeline begins with a pairwise alignment using krishna, a custom aligner. Single linkage clustering is then carried out to produce families of repetitive elements. Consensus sequences are then filtered for protein coding genes and then annotated using Repbase and a custom library of retrovirus and reverse transcriptase sequences. This process yields three types of family: fully annotated, partially annotated and unannotated. Fully annotated families reflect recently diverged/young known TEs present in Repbase. The remaining two types of families contain a mixture of novel TEs and segmental duplications. These can be resolved by aligning these consensus sequences back to the genome to assess copy number vs. length distribution. Our pipeline has three significant advantages compared to other methods for ab initio repeat identification: 1) we generate not only consensus sequences, but keep the genomic intervals for the original aligned sequences, allowing straightforward analysis of evolutionary dynamics, 2) consensus sequences represent low-divergence, recently/currently active TE families, 3) segmental duplications are annotated as a useful by-product. We have compared our ab initio repeat annotations for 7 genome assemblies to other methods and demonstrate that CARP compares favourably with RepeatModeler, the most widely used repeat annotation package.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0193588PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5851578PMC
June 2018

A comprehensive genomic history of extinct and living elephants.

Proc Natl Acad Sci U S A 2018 03 26;115(11):E2566-E2574. Epub 2018 Feb 26.

Broad Institute of MIT and Harvard, Cambridge, MA 02142.

Elephantids are the world's most iconic megafaunal family, yet there is no comprehensive genomic assessment of their relationships. We report a total of 14 genomes, including 2 from the American mastodon, which is an extinct elephantid relative, and 12 spanning all three extant and three extinct elephantid species including an ∼120,000-y-old straight-tusked elephant, a Columbian mammoth, and woolly mammoths. Earlier genetic studies modeled elephantid evolution via simple bifurcating trees, but here we show that interspecies hybridization has been a recurrent feature of elephantid evolution. We found that the genetic makeup of the straight-tusked elephant, previously placed as a sister group to African forest elephants based on lower coverage data, in fact comprises three major components. Most of the straight-tusked elephant's ancestry derives from a lineage related to the ancestor of African elephants while its remaining ancestry consists of a large contribution from a lineage related to forest elephants and another related to mammoths. Columbian and woolly mammoths also showed evidence of interbreeding, likely following a latitudinal cline across North America. While hybridization events have shaped elephantid history in profound ways, isolation also appears to have played an important role. Our data reveal nearly complete isolation between the ancestors of the African forest and savanna elephants for ∼500,000 y, providing compelling justification for the conservation of forest and savanna elephants as separate species.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1720554115DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5856550PMC
March 2018

Similar Evolutionary Trajectories for Retrotransposon Accumulation in Mammals.

Genome Biol Evol 2017 09;9(9):2336-2353

Department of Genetics and Evolution, The University of Adelaide, South Australia, Australia.

The factors guiding retrotransposon insertion site preference are not well understood. Different types of retrotransposons share common replication machinery and yet occupy distinct genomic domains. Autonomous long interspersed elements accumulate in gene-poor domains and their nonautonomous short interspersed elements accumulate in gene-rich domains. To determine genomic factors that contribute to this discrepancy we analyzed the distribution of retrotransposons within the framework of chromosomal domains and regulatory elements. Using comparative genomics, we identified large-scale conserved patterns of retrotransposon accumulation across several mammalian genomes. Importantly, retrotransposons that were active after our sample-species diverged accumulated in orthologous regions. This suggested a similar evolutionary interaction between retrotransposon activity and conserved genome architecture across our species. In addition, we found that retrotransposons accumulated at regulatory element boundaries in open chromatin, where accumulation of particular retrotransposon types depended on insertion size and local regulatory element density. From our results, we propose a model where density and distribution of genes and regulatory elements canalize retrotransposon accumulation. Through conservation of synteny, gene regulation and nuclear organization, mammalian genomes with dissimilar retrotransposons follow similar evolutionary trajectories.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/gbe/evx179DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5610350PMC
September 2017

Identification of candidate anti-cancer molecular mechanisms of Compound Kushen Injection using functional genomics.

Oncotarget 2016 10;7(40):66003-66019

Department of Genetics and Evolution, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia.

Compound Kushen Injection (CKI) has been clinically used in China for over 15 years to treat various types of solid tumours. However, because such Traditional Chinese Medicine (TCM) preparations are complex mixtures of plant secondary metabolites, it is essential to explore their underlying molecular mechanisms in a systematic fashion. We have used the MCF-7 human breast cancer cell line as an initial in vitro model to identify CKI induced changes in gene expression. Cells were treated with CKI for 24 and 48 hours at two concentrations (1 and 2 mg/mL total alkaloids), and the effect of CKI on cell proliferation and apoptosis were measured using XTT and Annexin V/Propidium Iodide staining assays respectively. Transcriptome data of cells treated with CKI or 5-Fluorouracil (5-FU) for 24 and 48 hours were subsequently acquired using high-throughput Illumina RNA-seq technology. In this report we show that CKI inhibited MCF-7 cell proliferation and induced apoptosis in a dose-dependent fashion. We integrated and applied a series of transcriptome analysis methods, including gene differential expression analysis, pathway over-representation analysis, de novo identification of long non-coding RNAs (lncRNA) as well as co-expression network reconstruction, to identify candidate anti-cancer molecular mechanisms of CKI. Multiple pathways were perturbed and the cell cycle was identified as the potential primary target pathway of CKI in MCF-7 cells. CKI may also induce apoptosis in MCF-7 cells via a p53 independent mechanism. In addition, we identified novel lncRNAs and showed that many of them might be expressed as a response to CKI treatment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.18632/oncotarget.11788DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5323210PMC
October 2016

In depth analysis of the Sox4 gene locus that consists of sense and natural antisense transcripts.

Data Brief 2016 Jun 17;7:282-90. Epub 2016 Feb 17.

Department of Molecular Pathology, The Institute of Medical and Veterinary Science and The Hanson Institute, P.O. Box 14 Rundle Mall Post Office, Adelaide, SA 5000, Australia; School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, SA 5005, Australia.

SRY (Sex Determining Region Y)-Box 4 or Sox4 is an important regulator of the pan-neuronal gene expression during post-mitotic cell differentiation within the mammalian brain. Sox4 gene locus has been previously characterized with multiple sense and overlapping natural antisense transcripts [1], [2]. Here we provide accompanying data on various analyses performed and described in Ling et al. [2]. The data include a detail description of various features found at Sox4 gene locus, additional experimental data derived from RNA-Fluorescence in situ Hybridization (RNA-FISH), Western blotting, strand-specific reverse-transcription quantitative polymerase chain reaction (RT-qPCR), gain-of-function and in situ hybridization (ISH) experiments. All the additional data provided here support the existence of an endogenous small interfering- or PIWI interacting-like small RNA known as Sox4_sir3, which origin was found within the overlapping region consisting of a sense and a natural antisense transcript known as Sox4ot1.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dib.2016.01.045DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4773576PMC
June 2016

Derivation of an endogenous small RNA from double-stranded Sox4 sense and natural antisense transcripts in the mouse brain.

Genomics 2016 Mar 21;107(2-3):88-99. Epub 2016 Jan 21.

Department of Molecular Pathology, The Institute of Medical and Veterinary Science and The Hanson Institute, P.O. Box 14 Rundle Mall Post Office, Adelaide, SA 5000, Australia; School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, SA 5005, Australia. Electronic address:

Natural antisense transcripts (NATs) are involved in cellular development and regulatory processes. Multiple NATs at the Sox4 gene locus are spatiotemporally regulated throughout murine cerebral corticogenesis. In the study, we evaluated the potential functional role of Sox4 NATs at Sox4 gene locus. We demonstrated Sox4 sense and NATs formed dsRNA aggregates in the cytoplasm of brain cells. Over expression of Sox4 NATs in NIH/3T3 cells generally did not alter the level of Sox4 mRNA expression or protein translation. Upregulation of a Sox4 NAT known as Sox4ot1 led to the production of a novel small RNA, Sox4_sir3. Its biogenesis is Dicer1-dependent and has characteristics resemble piRNA. Expression of Sox4_sir3 was observed in the marginal and germinative zones of the developing and postnatal brains suggesting a potential role in regulating neurogenesis. We proposed that Sox4 sense-NATs serve as Dicer1-dependent templates to produce a novel endo-siRNA- or piRNA-like Sox4_sir3.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ygeno.2016.01.006DOI Listing
March 2016

Deep sequencing analysis of the developing mouse brain reveals a novel microRNA.

BMC Genomics 2011 Apr 5;12:176. Epub 2011 Apr 5.

Department of Molecular Pathology, SA Pathology and Centre for Cancer Biology, Adelaide, Australia.

Background: MicroRNAs (miRNAs) are small non-coding RNAs that can exert multilevel inhibition/repression at a post-transcriptional or protein synthesis level during disease or development. Characterisation of miRNAs in adult mammalian brains by deep sequencing has been reported previously. However, to date, no small RNA profiling of the developing brain has been undertaken using this method. We have performed deep sequencing and small RNA analysis of a developing (E15.5) mouse brain.

Results: We identified the expression of 294 known miRNAs in the E15.5 developing mouse brain, which were mostly represented by let-7 family and other brain-specific miRNAs such as miR-9 and miR-124. We also discovered 4 putative 22-23 nt miRNAs: mm_br_e15_1181, mm_br_e15_279920, mm_br_e15_96719 and mm_br_e15_294354 each with a 70-76 nt predicted pre-miRNA. We validated the 4 putative miRNAs and further characterised one of them, mm_br_e15_1181, throughout embryogenesis. Mm_br_e15_1181 biogenesis was Dicer1-dependent and was expressed in E3.5 blastocysts and E7 whole embryos. Embryo-wide expression patterns were observed at E9.5 and E11.5 followed by a near complete loss of expression by E13.5, with expression restricted to a specialised layer of cells within the developing and early postnatal brain. Mm_br_e15_1181 was upregulated during neurodifferentiation of P19 teratocarcinoma cells. This novel miRNA has been identified as miR-3099.

Conclusions: We have generated and analysed the first deep sequencing dataset of small RNA sequences of the developing mouse brain. The analysis revealed a novel miRNA, miR-3099, with potential regulatory effects on early embryogenesis, and involvement in neuronal cell differentiation/function in the brain during late embryonic and early neonatal development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/1471-2164-12-176DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3088569PMC
April 2011

Characterization and distribution of retrotransposons and simple sequence repeats in the bovine genome.

Proc Natl Acad Sci U S A 2009 Aug 22;106(31):12855-60. Epub 2009 Jul 22.

School of Molecular and Biomedical Science, University of Adelaide, North Terrace, Adelaide, South Australia, 5005, Australia.

Interspersed repeat composition and distribution in mammals have been best characterized in the human and mouse genomes. The bovine genome contains typical eutherian mammal repeats, but also has a significant number of long interspersed nuclear element RTE (BovB) elements proposed to have been horizontally transferred from squamata. Our analysis of the BovB repeats has indicated that only a few of them are currently likely to retrotranspose in cattle. However, bovine L1 repeats (L1 BT) have many likely active copies. Comparison of substitution rates for BovB and L1 BT indicates that L1 BT is a younger repeat family than BovB. In contrast to mouse and human, L1 occurrence is not negatively correlated with G+C content. However, BovB, Bov A2, ART2A, and Bov-tA are negatively correlated with G+C, although Bov-tAs correlation is weaker. Also, by performing genome wide correlation analysis of interspersed and simple sequence repeats, we have identified genome territories by repeat content that appear to define ancestral vs. ruminant-specific genomic regions. These ancestral regions, enriched with L2 and MIR repeats, are largely conserved between bovine and human.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.0901282106DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2722308PMC
August 2009

The genome sequence of taurine cattle: a window to ruminant biology and evolution.

Science 2009 Apr;324(5926):522-8

To understand the biology and evolution of ruminants, the cattle genome was sequenced to about sevenfold coverage. The cattle genome contains a minimum of 22,000 genes, with a core set of 14,345 orthologs shared among seven mammalian species of which 1217 are absent or undetected in noneutherian (marsupial or monotreme) genomes. Cattle-specific evolutionary breakpoint regions in chromosomes have a higher density of segmental duplications, enrichment of repetitive elements, and species-specific variations in genes associated with lactation and immune responsiveness. Genes involved in metabolism are generally highly conserved, although five metabolic genes are deleted or extensively diverged from their human orthologs. The cattle genome sequence thus provides a resource for understanding mammalian evolution and accelerating livestock genetic improvement for milk and meat production.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.1169588DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2943200PMC
April 2009
-->