Publications by authors named "Joshua P Lewis"

39 Publications

Whole-genome sequencing in diverse subjects identifies genetic correlates of leukocyte traits: The NHLBI TOPMed program.

Am J Hum Genet 2021 Oct 27;108(10):1836-1851. Epub 2021 Sep 27.

Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

Many common and rare variants associated with hematologic traits have been discovered through imputation on large-scale reference panels. However, the majority of genome-wide association studies (GWASs) have been conducted in Europeans, and determining causal variants has proved challenging. We performed a GWAS of total leukocyte, neutrophil, lymphocyte, monocyte, eosinophil, and basophil counts generated from 109,563,748 variants in the autosomes and the X chromosome in the Trans-Omics for Precision Medicine (TOPMed) program, which included data from 61,802 individuals of diverse ancestry. We discovered and replicated 7 leukocyte trait associations, including (1) the association between a chromosome X, pseudo-autosomal region (PAR), noncoding variant located between cytokine receptor genes (CSF2RA and CLRF2) and lower eosinophil count; and (2) associations between single variants found predominantly among African Americans at the S1PR3 (9q22.1) and HBB (11p15.4) loci and monocyte and lymphocyte counts, respectively. We further provide evidence indicating that the newly discovered eosinophil-lowering chromosome X PAR variant might be associated with reduced susceptibility to common allergic diseases such as atopic dermatitis and asthma. Additionally, we found a burden of very rare FLT3 (13q12.2) variants associated with monocyte counts. Together, these results emphasize the utility of whole-genome sequencing in diverse samples in identifying associations missed by European-ancestry-driven GWASs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2021.08.007DOI Listing
October 2021

Whole genome sequence analysis of platelet traits in the NHLBI trans-omics for precision medicine initiative.

Hum Mol Genet 2021 Sep 6. Epub 2021 Sep 6.

Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.

Platelets play a key role in thrombosis and hemostasis. Platelet count (PLT) and mean platelet volume (MPV) are highly heritable quantitative traits, with hundreds of genetic signals previously identified, mostly in European ancestry populations. We here utilize whole genome sequencing from NHLBI's Trans-Omics for Precision Medicine Initiative (TOPMed) in a large multi-ethnic sample to further explore common and rare variation contributing to PLT (n = 61 200) and MPV (n = 23 485). We identified and replicated secondary signals at MPL (rs532784633) and PECAM1 (rs73345162), both more common in African ancestry populations. We also observed rare variation in Mendelian platelet related disorder genes influencing variation in platelet traits in TOPMed cohorts (not enriched for blood disorders). For example, association of GP9 with lower PLT and higher MPV was partly driven by a pathogenic Bernard-Soulier syndrome variant (rs5030764, p.Asn61Ser), and the signals at TUBB1 and CD36 were partly driven by loss of function variants not annotated as pathogenic in ClinVar (rs199948010 and rs571975065). However, residual signal remained for these gene-based signals after adjusting for lead variants, suggesting that additional variants in Mendelian genes with impacts in general population cohorts remain to be identified. Gene-based signals were also identified at several GWAS identified loci for genes not annotated for Mendelian platelet disorders (PTPRH, TET2, CHEK2), with somatic variation driving the result at TET2. These results highlight the value of whole genome sequencing in populations of diverse genetic ancestry to identify novel regulatory and coding signals, even for well-studied traits like platelet traits.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddab252DOI Listing
September 2021

Genome sequencing unveils a regulatory landscape of platelet reactivity.

Nat Commun 2021 06 15;12(1):3626. Epub 2021 Jun 15.

Division of Intramural Research, Population Sciences Branch, National Heart, Lung and Blood Institute, Bethesda, MD, USA.

Platelet aggregation at the site of atherosclerotic vascular injury is the underlying pathophysiology of myocardial infarction and stroke. To build upon prior GWAS, here we report on 16 loci identified through a whole genome sequencing (WGS) approach in 3,855 NHLBI Trans-Omics for Precision Medicine (TOPMed) participants deeply phenotyped for platelet aggregation. We identify the RGS18 locus, which encodes a myeloerythroid lineage-specific regulator of G-protein signaling that co-localizes with expression quantitative trait loci (eQTL) signatures for RGS18 expression in platelets. Gene-based approaches implicate the SVEP1 gene, a known contributor of coronary artery disease risk. Sentinel variants at RGS18 and PEAR1 are associated with thrombosis risk and increased gastrointestinal bleeding risk, respectively. Our WGS findings add to previously identified GWAS loci, provide insights regarding the mechanism(s) by which genetics may influence cardiovascular disease risk, and underscore the importance of rare variant and regulatory approaches to identifying loci contributing to complex phenotypes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-021-23470-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8206369PMC
June 2021

Whole-genome sequencing association analysis of quantitative red blood cell phenotypes: The NHLBI TOPMed program.

Am J Hum Genet 2021 05 21;108(5):874-893. Epub 2021 Apr 21.

Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA.

Whole-genome sequencing (WGS), a powerful tool for detecting novel coding and non-coding disease-causing variants, has largely been applied to clinical diagnosis of inherited disorders. Here we leveraged WGS data in up to 62,653 ethnically diverse participants from the NHLBI Trans-Omics for Precision Medicine (TOPMed) program and assessed statistical association of variants with seven red blood cell (RBC) quantitative traits. We discovered 14 single variant-RBC trait associations at 12 genomic loci, which have not been reported previously. Several of the RBC trait-variant associations (RPN1, ELL2, MIDN, HBB, HBA1, PIEZO1, and G6PD) were replicated in independent GWAS datasets imputed to the TOPMed reference panel. Most of these discovered variants are rare/low frequency, and several are observed disproportionately among non-European Ancestry (African, Hispanic/Latino, or East Asian) populations. We identified a 3 bp indel p.Lys2169del (g.88717175_88717177TCT[4]) (common only in the Ashkenazi Jewish population) of PIEZO1, a gene responsible for the Mendelian red cell disorder hereditary xerocytosis (MIM: 194380), associated with higher mean corpuscular hemoglobin concentration (MCHC). In stepwise conditional analysis and in gene-based rare variant aggregated association analysis, we identified several of the variants in HBB, HBA1, TMPRSS6, and G6PD that represent the carrier state for known coding, promoter, or splice site loss-of-function variants that cause inherited RBC disorders. Finally, we applied base and nuclease editing to demonstrate that the sentinel variant rs112097551 (nearest gene RPN1) acts through a cis-regulatory element that exerts long-range control of the gene RUVBL1 which is essential for hematopoiesis. Together, these results demonstrate the utility of WGS in ethnically diverse population-based samples and gene editing for expanding knowledge of the genetic architecture of quantitative hematologic traits and suggest a continuum between complex trait and Mendelian red cell disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2021.04.003DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8206199PMC
May 2021

Biomimetic microsystems for cardiovascular studies.

Am J Physiol Cell Physiol 2021 05 24;320(5):C850-C872. Epub 2021 Mar 24.

Cardiovascular Tissue Engineering Laboratory, Biomedical Engineering Department, Cullen College of Engineering, University of Houston, Houston, Texas.

Traditional tissue culture platforms have been around for several decades and have enabled key findings in the cardiovascular field. However, these platforms failed to recreate the mechanical and dynamic features found within the body. Organs-on-chips (OOCs) are cellularized microfluidic-based devices that can mimic the basic structure, function, and responses of organs. These systems have been successfully utilized in disease, development, and drug studies. OOCs are designed to recapitulate the mechanical, electrical, chemical, and structural features of the in vivo microenvironment. Here, we review cardiovascular-themed OOC studies, design considerations, and techniques used to generate these cellularized devices. Furthermore, we will highlight the advantages of OOC models over traditional cell culture vessels, discuss implementation challenges, and provide perspectives on the state of the field.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpcell.00026.2020DOI Listing
May 2021

Genetic Variation in PEAR1, Cardiovascular Outcomes and Effects of Aspirin in a Healthy Elderly Population.

Clin Pharmacol Ther 2020 12 20;108(6):1289-1298. Epub 2020 Jul 20.

Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.

The platelet endothelial aggregation receptor-1 (PEAR1) rs12041331 variant has been identified as a genetic determinant of platelet aggregation in response to antiplatelet therapies, including aspirin. However, association with atherothrombotic cardiovascular events is less clear, with limited evidence from large trials. Here, we tested association of rs12041331 with cardiovascular events and aspirin use in a randomized trial population of healthy older individuals. We undertook post hoc analysis of 13,547 participants of the ASPirin in Reducing Events in the Elderly (ASPREE) trial, median age 74 years. Participants had no previous diagnosis of atherothrombotic cardiovascular disease at enrollment, and were randomized to either 100 mg daily low-dose aspirin or placebo for median 4.7 years follow-up. We used Cox proportional hazard regression to model the relationship between rs12041331 and the ASPREE primary cardiovascular disease (CVD) end point, and composites of major adverse cardiovascular events (MACE) and ischemic stroke (STROKE); and bleeding events; major hemorrhage (MHEM) and intracranial bleeding (ICB). We performed whole-population analysis using additive and dominant inheritance models, then stratified by treatment group. Interaction effects between genotypes and treatment group were examined. We observed no statistically significant association (P < 0.05) in the population, or by treatment group, between rs12041331 and cardiovascular or bleeding events in either model. We also found no significant interaction effects between rs12041331-A and treatment group, for CVD (P = 0.65), MACE (P = 0.32), STROKE (P = 0.56), MHEM (P = 0.59), or ICB (P = 0.56). The genetic variant PEAR1 rs12041331 is not associated with cardiovascular events in response to low-dose aspirin in a healthy elderly population.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/cpt.1959DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7959328PMC
December 2020

Genomewide Association Study of Platelet Reactivity and Cardiovascular Response in Patients Treated With Clopidogrel: A Study by the International Clopidogrel Pharmacogenomics Consortium.

Clin Pharmacol Ther 2020 11 9;108(5):1067-1077. Epub 2020 Jul 9.

Department of Medicine and Program for Personalized and Genomic Medicine, University of Maryland, Baltimore, Maryland, USA.

Antiplatelet response to clopidogrel shows wide variation, and poor response is correlated with adverse clinical outcomes. CYP2C19 loss-of-function alleles play an important role in this response, but account for only a small proportion of variability in response to clopidogrel. An aim of the International Clopidogrel Pharmacogenomics Consortium (ICPC) is to identify other genetic determinants of clopidogrel pharmacodynamics and clinical response. A genomewide association study (GWAS) was performed using DNA from 2,750 European ancestry individuals, using adenosine diphosphate-induced platelet reactivity and major cardiovascular and cerebrovascular events as outcome parameters. GWAS for platelet reactivity revealed a strong signal for CYP2C19*2 (P value = 1.67e-33). After correction for CYP2C19*2 no other single-nucleotide polymorphism reached genomewide significance. GWAS for a combined clinical end point of cardiovascular death, myocardial infarction, or stroke (5.0% event rate), or a combined end point of cardiovascular death or myocardial infarction (4.7% event rate) showed no significant results, although in coronary artery disease, percutaneous coronary intervention, and acute coronary syndrome subgroups, mutations in SCOS5P1, CDC42BPA, and CTRAC1 showed genomewide significance (lowest P values: 1.07e-09, 4.53e-08, and 2.60e-10, respectively). CYP2C19*2 is the strongest genetic determinant of on-clopidogrel platelet reactivity. We identified three novel associations in clinical outcome subgroups, suggestive for each of these outcomes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/cpt.1911DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7689744PMC
November 2020

Allelic Heterogeneity at the CRP Locus Identified by Whole-Genome Sequencing in Multi-ancestry Cohorts.

Am J Hum Genet 2020 01 26;106(1):112-120. Epub 2019 Dec 26.

Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA.

Whole-genome sequencing (WGS) can improve assessment of low-frequency and rare variants, particularly in non-European populations that have been underrepresented in existing genomic studies. The genetic determinants of C-reactive protein (CRP), a biomarker of chronic inflammation, have been extensively studied, with existing genome-wide association studies (GWASs) conducted in >200,000 individuals of European ancestry. In order to discover novel loci associated with CRP levels, we examined a multi-ancestry population (n = 23,279) with WGS (∼38× coverage) from the Trans-Omics for Precision Medicine (TOPMed) program. We found evidence for eight distinct associations at the CRP locus, including two variants that have not been identified previously (rs11265259 and rs181704186), both of which are non-coding and more common in individuals of African ancestry (∼10% and ∼1% minor allele frequency, respectively, and rare or monomorphic in 1000 Genomes populations of East Asian, South Asian, and European ancestry). We show that the minor (G) allele of rs181704186 is associated with lower CRP levels and decreased transcriptional activity and protein binding in vitro, providing a plausible molecular mechanism for this African ancestry-specific signal. The individuals homozygous for rs181704186-G have a mean CRP level of 0.23 mg/L, in contrast to individuals heterozygous for rs181704186 with mean CRP of 2.97 mg/L and major allele homozygotes with mean CRP of 4.11 mg/L. This study demonstrates the utility of WGS in multi-ethnic populations to drive discovery of complex trait associations of large effect and to identify functional alleles in noncoding regulatory regions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2019.12.002DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7042494PMC
January 2020

Pharmacogenomic polygenic response score predicts ischaemic events and cardiovascular mortality in clopidogrel-treated patients.

Eur Heart J Cardiovasc Pharmacother 2020 07;6(4):203-210

Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla, Florence 50055, Italy.

Aims: Clopidogrel is prescribed for the prevention of atherothrombotic events. While investigations have identified genetic determinants of inter-individual variability in on-treatment platelet inhibition (e.g. CYP2C19*2), evidence that these variants have clinical utility to predict major adverse cardiovascular events (CVEs) remains controversial.

Methods And Results: We assessed the impact of 31 candidate gene polymorphisms on adenosine diphosphate (ADP)-stimulated platelet reactivity in 3391 clopidogrel-treated coronary artery disease patients of the International Clopidogrel Pharmacogenomics Consortium (ICPC). The influence of these polymorphisms on CVEs was tested in 2134 ICPC patients (N = 129 events) in whom clinical event data were available. Several variants were associated with on-treatment ADP-stimulated platelet reactivity (CYP2C19*2, P = 8.8 × 10-54; CES1 G143E, P = 1.3 × 10-16; CYP2C19*17, P = 9.5 × 10-10; CYP2B6 1294 + 53 C > T, P = 3.0 × 10-4; CYP2B6 516 G > T, P = 1.0 × 10-3; CYP2C9*2, P = 1.2 × 10-3; and CYP2C9*3, P = 1.5 × 10-3). While no individual variant was associated with CVEs, generation of a pharmacogenomic polygenic response score (PgxRS) revealed that patients who carried a greater number of alleles that associated with increased on-treatment platelet reactivity were more likely to experience CVEs (β = 0.17, SE 0.06, P = 0.01) and cardiovascular-related death (β = 0.43, SE 0.16, P = 0.007). Patients who carried eight or more risk alleles were significantly more likely to experience CVEs [odds ratio (OR) = 1.78, 95% confidence interval (CI) 1.14-2.76, P = 0.01] and cardiovascular death (OR = 4.39, 95% CI 1.35-14.27, P = 0.01) compared to patients who carried six or fewer of these alleles.

Conclusion: Several polymorphisms impact clopidogrel response and PgxRS is a predictor of cardiovascular outcomes. Additional investigations that identify novel determinants of clopidogrel response and validating polygenic models may facilitate future precision medicine strategies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/ehjcvp/pvz045DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7363022PMC
July 2020

Efficient Variant Set Mixed Model Association Tests for Continuous and Binary Traits in Large-Scale Whole-Genome Sequencing Studies.

Am J Hum Genet 2019 02 10;104(2):260-274. Epub 2019 Jan 10.

Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.

With advances in whole-genome sequencing (WGS) technology, more advanced statistical methods for testing genetic association with rare variants are being developed. Methods in which variants are grouped for analysis are also known as variant-set, gene-based, and aggregate unit tests. The burden test and sequence kernel association test (SKAT) are two widely used variant-set tests, which were originally developed for samples of unrelated individuals and later have been extended to family data with known pedigree structures. However, computationally efficient and powerful variant-set tests are needed to make analyses tractable in large-scale WGS studies with complex study samples. In this paper, we propose the variant-set mixed model association tests (SMMAT) for continuous and binary traits using the generalized linear mixed model framework. These tests can be applied to large-scale WGS studies involving samples with population structure and relatedness, such as in the National Heart, Lung, and Blood Institute's Trans-Omics for Precision Medicine (TOPMed) program. SMMATs share the same null model for different variant sets, and a virtue of this null model, which includes covariates only, is that it needs to be fit only once for all tests in each genome-wide analysis. Simulation studies show that all the proposed SMMATs correctly control type I error rates for both continuous and binary traits in the presence of population structure and relatedness. We also illustrate our tests in a real data example of analysis of plasma fibrinogen levels in the TOPMed program (n = 23,763), using the Analysis Commons, a cloud-based computing platform.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2018.12.012DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6372261PMC
February 2019

Increased usual physical activity is associated with a blunting of the triglyceride response to a high-fat meal.

J Clin Lipidol 2019 Jan - Feb;13(1):109-114. Epub 2018 Nov 20.

Program in Personalized and Genomic Medicine, and Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD.

Background: Postprandial lipemia (PPL), defined as a prolonged or elevated rise in triglycerides that accompanies fat feeding, is a significant risk factor for coronary heart disease and associated comorbidities. The impact of PPL on coronary heart disease risk is underscored by the preponderance of each day spent in the postprandial state.

Objective: In this study, we evaluated cross-sectionally the association between usual (ie, noninterventional) physical activity and the 6-hour triglyceride response to a standardized high-fat meal.

Methods: The high-fat meal intervention was carried out in 671 apparently healthy individuals as part of the Heredity and Phenotype Intervention Heart Study. Triglyceride levels were measured in the fasting state and during 6 hours after administration of a standardized fat challenge. We defined PPL response as the triglyceride area under the fat load curve (AUC) and measured physical activity using accelerometers that were worn continuously over a 7-day period.

Results: Physical activity levels decreased with increasing age and were higher in men than women (both P < .001). The triglyceride AUC increased with increasing age in both men and women (both P < .001) and was also higher in men than in women (age-adjusted P = 9.2 × 10). Higher physical activity levels were associated with a lower triglyceride AUC (P = .003), adjusting for age, sex, body mass index, and fasting low-density lipoprotein.

Conclusion: These results suggest that the protective benefits of physical activity on cardiovascular health may operate, at least in part, through reduction of the PPL triglyceride response.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jacl.2018.11.006DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6379118PMC
May 2020

Genome-wide and candidate gene approaches of clopidogrel efficacy using pharmacodynamic and clinical end points-Rationale and design of the International Clopidogrel Pharmacogenomics Consortium (ICPC).

Am Heart J 2018 04 17;198:152-159. Epub 2017 Dec 17.

Department of Cardiology and Cardiac Catheterization Laboratory, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.

Rationale: The P2Y receptor inhibitor clopidogrel is widely used in patients with acute coronary syndrome, percutaneous coronary intervention, or ischemic stroke. Platelet inhibition by clopidogrel shows wide interpatient variability, and high on-treatment platelet reactivity is a risk factor for atherothrombotic events, particularly in high-risk populations. CYP2C19 polymorphism plays an important role in this variability, but heritability estimates suggest that additional genetic variants remain unidentified. The aim of the International Clopidogrel Pharmacogenomics Consortium (ICPC) is to identify genetic determinants of clopidogrel pharmacodynamics and clinical response.

Study Design: Based on the data published on www.clinicaltrials.gov, clopidogrel intervention studies containing genetic and platelet function data were identified for participation. Lead investigators were invited to share DNA samples, platelet function test results, patient characteristics, and cardiovascular outcomes to perform candidate gene and genome-wide studies.

Results: In total, 17 study sites from 13 countries participate in the ICPC, contributing individual patient data from 8,829 patients. Available adenosine diphosphate-stimulated platelet function tests included vasodilator-stimulated phosphoprotein assay, light transmittance aggregometry, and the VerifyNow P2Y assay. A proof-of-principle analysis based on genotype data provided by each group showed a strong and consistent association between CYP2C19*2 and platelet reactivity (P value=5.1 × 10).

Conclusion: The ICPC aims to identify new loci influencing clopidogrel efficacy by using state-of-the-art genetic approaches in a large cohort of clopidogrel-treated patients to better understand the genetic basis of on-treatment response variability.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ahj.2017.12.010DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5903579PMC
April 2018

Implementation of Genotype-Guided Antiplatelet Therapy: Feasible but Not Without Obstacles.

Authors:
Joshua P Lewis

Circ Genom Precis Med 2018 04;11(4):e002118

Division of Endocrinology, Diabetes, and Nutrition, Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCGEN.118.002118DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5886747PMC
April 2018

Exome-chip meta-analysis identifies association between variation in ANKRD26 and platelet aggregation.

Platelets 2019 29;30(2):164-173. Epub 2017 Nov 29.

h GeneSTAR Research Program, Department of Anesthesiology & Critical Care Medicine , Johns Hopkins University School of Medicine , Baltimore , MD , USA.

Previous genome-wide association studies (GWAS) have identified several variants associated with platelet function phenotypes; however, the proportion of variance explained by the identified variants is mostly small. Rare coding variants, particularly those with high potential for impact on protein structure/function, may have substantial impact on phenotype but are difficult to detect by GWAS. The main purpose of this study was to identify low frequency or rare variants associated with platelet function using genotype data from the Illumina HumanExome Bead Chip. Three family-based cohorts of European ancestry, including ~4,000 total subjects, comprised the discovery cohort and two independent cohorts, one of European and one of African American ancestry, were used for replication. Optical aggregometry in platelet-rich plasma was performed in all the discovery cohorts in response to adenosine diphosphate (ADP), epinephrine, and collagen. Meta-analyses were performed using both gene-based and single nucleotide variant association methods. The gene-based meta-analysis identified a significant association (P = 7.13 × 10) between rare genetic variants in ANKRD26 and ADP-induced platelet aggregation. One of the ANKRD26 SNVs - rs191015656, encoding a threonine to isoleucine substitution predicted to alter protein structure/function, was replicated in Europeans. Aggregation increases of ~20-50% were observed in heterozygotes in all cohorts. Novel genetic signals in ABCG1 and HCP5 were also associated with platelet aggregation to ADP in meta-analyses, although only results for HCP5 could be replicated. The SNV in HCP5 intersects epigenetic signatures in CD41+ megakaryocytes suggesting a new functional role in platelet biology for HCP5. This is the first study to use gene-based association methods from SNV array genotypes to identify rare variants related to platelet function. The molecular mechanisms and pathophysiological relevance for the identified genetic associations requires further study.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/09537104.2017.1384538DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6214797PMC
April 2019

Genetic Variants of PEAR1 are Associated with Platelet Function and Antiplatelet Drug Efficacy: A Systematic Review and Meta-Analysis.

Curr Pharm Des 2017 ;23(44):6815-6827

Department of Pharmacy, Base for Clinical Trial, Peking University First Hospital, Beijing 100034, China.

Background: Platelet endothelial aggregation receptor 1 (PEAR1) may affect platelet-platelet contact and aggregation. The aim of this study was to assess the association between PEAR1 polymorphisms and risks of platelet aggregation.

Methods: We searched the PubMed, EmBase, and Cochrane Library electronic databases for articles published through November 30th. 2016. Meta-analysis was performed to examine the relationship between PEAR1 and platelet aggregation and sensitivity analysis by removing individual study from meta-analysis. We collected and analyzed the results of 5 trials involving 5466 patients.

Results: Our results demonstrated that the G allele of rs12041331 was associated with a greater platelet aggregation by multiple agonists, both in the presence and absence of antiplatelet drugs, in several separate cohorts of different ethnicities along with an apparent allelic dose-response effect. However, the results of studies on rs2768759 locus were inconsistent and further studies are required. In the presence or absence of antiplatelet drugs treatment, the lowest platelet aggregation was observed in rs2768759 wild-type (AA) patients, followed by heterozygous (AC) and homozygous mutant (CC).

Conclusion: PEAR1 rs12041331 is associated with platelet function and antiplatelet drug pharmacodynamics. Future studies on relationship between single nucleotide polymorphisms of PEAR1 and incidence of cardiovascular diseases are required.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2174/1381612823666170817122043DOI Listing
July 2019

A comparative study of different methods for automatic identification of clopidogrel-induced bleedings in electronic health records.

AMIA Jt Summits Transl Sci Proc 2017 26;2017:185-192. Epub 2017 Jul 26.

University of Texas Health Science Center at Houston, Houston, TX.

Electronic health records (EHRs) linked with biobanks have been recognized as valuable data sources for pharmacogenomic studies, which require identification of patients with certain adverse drug reactions (ADRs) from a large population. Since manual chart review is costly and time-consuming, automatic methods to accurately identify patients with ADRs have been called for. In this study, we developed and compared different informatics approaches to identify ADRs from EHRs, using clopidogrel-induced bleeding as our case study. Three different types of methods were investigated: 1) rule-based methods; 2) machine learning-based methods; and 3) scoring function-based methods. Our results show that both machine learning and scoring methods are effective and the scoring method can achieve a high precision with a reasonable recall. We also analyzed the contributions of different types of features and found that the temporality information between clopidogrel and bleeding events, as well as textual evidence from physicians' assertion of the adverse events are helpful. We believe that our findings are valuable in advancing EHR-based pharmacogenomic studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5543340PMC
July 2017

Genome-wide analysis of clopidogrel active metabolite levels identifies novel variants that influence antiplatelet response.

Pharmacogenet Genomics 2017 04;27(4):159-163

aSchool of Medicine, Division of Endocrinology, Diabetes and Nutrition, and Program for Personalized and Genomic Medicine, University of Maryland, Baltimore bGeriatric Research and Education Clinical Center, Veterans Administration Medical Center, Baltimore cClinical Pharmacology Program, National Cancer Institute, Bethesda dApplied and Developmental Research, SAIC-Frederick Inc., National Cancer Institute, Frederick, Maryland, USA.

Clopidogrel is one of the most commonly used therapeutics for the secondary prevention of cardiovascular events in patients with acute coronary syndromes. However, considerable interindividual variation in clopidogrel response has been documented, resulting in suboptimal therapy and an increased risk of recurrent events for some patients. In this investigation, we carried out the first genome-wide association study of circulating clopidogrel active metabolite levels in 513 healthy participants to directly measure clopidogrel pharmacokinetics. We observed that the CYP2C19 locus was the strongest genetic determinant of active metabolite formation (P=9.5×10). In addition, we identified novel genome-wide significant variants on chromosomes 3p25 (rs187941554, P=3.3×10) and 17q11 (rs80343429, P=1.3×10), as well as six additional loci that showed suggestive evidence of association (P≤1.0×10). Four of these loci showed nominal associations with on-clopidogrel ADP-stimulated platelet aggregation (P≤0.05). Evaluation of clopidogrel active metabolite concentration may help identify novel genetic determinants of clopidogrel response, which has implications for the development of novel therapeutics and improved antiplatelet treatment for at-risk patients in the future.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/FPC.0000000000000272DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5346037PMC
April 2017

Clopidogrel Improves Skin Microcirculatory Endothelial Function in Persons With Heightened Platelet Aggregation.

J Am Heart Assoc 2016 10 31;5(11). Epub 2016 Oct 31.

Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD.

Background: Platelet activation can lead to enhanced oxidative stress, inflammatory response, and endothelial dysfunction. To quantify the effects of platelet inhibition on endothelial function, we assessed platelet activity of healthy persons before and after clopidogrel administration and evaluated its effects on endothelial function. We hypothesized that clopidogrel, by attenuating platelet activity, would result in enhanced endothelial function.

Methods And Results: Microcirculatory endothelial function was quantified by laser Doppler flowmetry (LDF) mediated by thermal hyperemia (TH) and postocclusive reactive hyperemia, respectively, in 287 and 241 relatively healthy and homogenous Old Order Amish persons. LDF and platelet aggregation measures were obtained at baseline and after 7 days of clopidogrel administration. Our primary outcome was percentage change in post- versus preclopidogrel LDF measures. Preclopidogrel TH-LDF and platelet aggregation were higher in women than in men (P<0.001). Clopidogrel administration was associated with ≈2-fold higher percentage change in TH-LDF in participants with high versus low baseline platelet aggregation (39.4±10.1% versus 17.4±5.6%, P=0.03). Clopidogrel also increased absolute TH-LDF measures in persons with high platelet aggregation (1757±766 to 2154±1055, P=0.03), with a more prominent effect in women (1909±846 to 2518±1048, P=0.001). There was no evidence that clopidogrel influenced postocclusive reactive hyperemia LDF measures.

Conclusions: The administration of clopidogrel in healthy persons with high baseline platelet aggregation results in improved TH-induced microcirculatory endothelial function. These data suggest that clopidogrel may have a beneficial effect on microcirculatory endothelial function, presumably through antiplatelet activity, and may confer additional vascular benefits.

Clinical Trial Registration: URL: https://www.clinicaltrials.gov. Unique identifier: NCT00799396.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/JAHA.116.003751DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5210318PMC
October 2016

Effect of Two Lipoprotein (a)-Associated Genetic Variants on Plasminogen Levels and Fibrinolysis.

G3 (Bethesda) 2016 Nov 8;6(11):3525-3532. Epub 2016 Nov 8.

Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland 21201

Two genetic variants (rs3798220 and rs10455872) in the apolipoprotein (a) gene () have been implicated in cardiovascular disease (CVD), presumably through their association with lipoprotein (a) [Lp(a)] levels. While Lp(a) is recognized as a lipoprotein with atherogenic and thrombogenic characteristics, it is unclear whether or not the two Lp(a)-associated genetic variants are also associated with markers of thrombosis (, plasminogen levels and fibrinolysis). In the present study, we genotyped the two genetic variants in 2919 subjects of the Old Order Amish (OOA) and recruited 146 subjects according to the carrier and noncarrier status for rs3798220 and rs10455872, and also matched for gender and age. We measured plasma Lp(a) and plasminogen levels in these subjects, and found that the concentrations of plasma Lp(a) were 2.62- and 1.73-fold higher in minor allele carriers of rs3798220 and rs10455872, respectively, compared with noncarriers ( = 2.04 × 10 and = 1.64 × 10, respectively). By contrast, there was no difference in plasminogen concentrations between carriers and noncarriers of rs3798220 and rs10455872. Furthermore, we observed no association between carrier status of rs3798220 or rs10455872 with clot lysis time. Finally, plasminogen mRNA expression in liver samples derived from 76 Caucasian subjects was not significantly different between carriers and noncarriers of these two genetic variants. Our results provide further insight into the mechanism of action behind two genetic variants previously implicated in CVD risk and show that these polymorphisms are not major modulating factors for plasma plasminogen levels and fibrinolysis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1534/g3.116.034702DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5100851PMC
November 2016

Genome-Wide Association Study of the Modified Stumvoll Insulin Sensitivity Index Identifies BCL2 and FAM19A2 as Novel Insulin Sensitivity Loci.

Diabetes 2016 10 14;65(10):3200-11. Epub 2016 Jul 14.

Cardiovascular Health Research Unit, University of Washington, Seattle, WA Department of Biostatistics, University of Washington, Seattle, WA.

Genome-wide association studies (GWAS) have found few common variants that influence fasting measures of insulin sensitivity. We hypothesized that a GWAS of an integrated assessment of fasting and dynamic measures of insulin sensitivity would detect novel common variants. We performed a GWAS of the modified Stumvoll Insulin Sensitivity Index (ISI) within the Meta-Analyses of Glucose and Insulin-Related Traits Consortium. Discovery for genetic association was performed in 16,753 individuals, and replication was attempted for the 23 most significant novel loci in 13,354 independent individuals. Association with ISI was tested in models adjusted for age, sex, and BMI and in a model analyzing the combined influence of the genotype effect adjusted for BMI and the interaction effect between the genotype and BMI on ISI (model 3). In model 3, three variants reached genome-wide significance: rs13422522 (NYAP2; P = 8.87 × 10(-11)), rs12454712 (BCL2; P = 2.7 × 10(-8)), and rs10506418 (FAM19A2; P = 1.9 × 10(-8)). The association at NYAP2 was eliminated by conditioning on the known IRS1 insulin sensitivity locus; the BCL2 and FAM19A2 associations were independent of known cardiometabolic loci. In conclusion, we identified two novel loci and replicated known variants associated with insulin sensitivity. Further studies are needed to clarify the causal variant and function at the BCL2 and FAM19A2 loci.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2337/db16-0199DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5033262PMC
October 2016

From Genotype to Phenotype: Nonsense Variants in SLC13A1 Are Associated with Decreased Serum Sulfate and Increased Serum Aminotransferases.

G3 (Bethesda) 2016 09 8;6(9):2909-18. Epub 2016 Sep 8.

Program for Personalized and Genomic Medicine and Division of Endocrinology, Diabetes and Nutrition, and University of Maryland School of Medicine, Baltimore, Maryland 21201.

Using genomic applications to glean insights into human biology, we systematically searched for nonsense single nucleotide variants (SNVs) that are rare in the general population but enriched in the Old Order Amish (Amish) due to founder effect. We identified two nonlinked, nonsense SNVs (R12X and W48X) in SLC13A1 (allele frequencies 0.29% and 0.74% in the Amish; enriched 1.2-fold and 3.7-fold, compared to the outbred Caucasian population, respectively). SLC13A1 encodes the apical sodium-sulfate cotransporter (NaS1) responsible for sulfate (re)absorption in the kidneys and intestine. SLC13A1 R12X and W48X were independently associated with a 27.6% (P = 2.7 × 10(-8)) and 27.3% (P = 6.9 × 10(-14)) decrease in serum sulfate, respectively (P = 8.8 × 10(-20) for carriers of either SLC13A1 nonsense SNV). We further performed the first exome- and genome-wide association study (ExWAS/GWAS) of serum sulfate and identified a missense variant (L348P) in SLC26A1, which encodes the basolateral sulfate-anion transporter (Sat1), that was associated with decreased serum sulfate (P = 4.4 × 10(-12)). Consistent with sulfate's role in xenobiotic detoxification and protection against acetaminophen-induced hepatotoxicity, SLC13A1 nonsense SNV carriers had higher aminotransferase levels compared to noncarriers. Furthermore, SLC26A1 L348P was associated with lower whole-body bone mineral density (BMD) and higher serum calcium, consistent with the osteochondrodysplasia exhibited by dogs and sheep with naturally occurring, homozygous, loss-of-function mutations in Slc13a1 This study demonstrates the power and translational potential of systematic identification and characterization of rare, loss-of-function variants and warrants additional studies to better understand the importance of sulfate in human physiology, disease, and drug toxicity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1534/g3.116.032979DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5015947PMC
September 2016

Development of a physiology-directed population pharmacokinetic and pharmacodynamic model for characterizing the impact of genetic and demographic factors on clopidogrel response in healthy adults.

Eur J Pharm Sci 2016 Jan 30;82:64-78. Epub 2015 Oct 30.

Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, University of Florida at Lake Nona, Orlando, FL, USA. Electronic address:

Clopidogrel (Plavix®), is a widely used antiplatelet agent, which shows high inter-individual variability in treatment response in patients following the standard dosing regimen. In this study, a physiology-directed population pharmacokinetic/pharmacodynamic (PK/PD) model was developed based on clopidogrel and clopidogrel active metabolite (clop-AM) data from the PAPI and the PGXB2B studies using a step-wise approach in NONMEM (version 7.2). The developed model characterized the in vivo disposition of clopidogrel, its bioactivation into clop-AM in the liver and subsequent platelet aggregation inhibition in the systemic circulation reasonably well. It further allowed the identification of covariates that significantly impact clopidogrel's dose-concentration-response relationship. In particular, CYP2C19 intermediate and poor metabolizers converted 26.2% and 39.5% less clopidogrel to clop-AM, respectively, compared to extensive metabolizers. In addition, CES1 G143E mutation carriers have a reduced CES1 activity (82.9%) compared to wild-type subjects, which results in a significant increase in clop-AM formation. An increase in BMI was found to significantly decrease clopidogrel's bioactivation, whereas increased age was associated with increased platelet reactivity. Our PK/PD model analysis suggests that, in order to optimize clopidogrel dosing on a patient-by-patient basis, all of these factors have to be considered simultaneously, e.g. by using quantitative clinical pharmacology tools.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejps.2015.10.024DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5798599PMC
January 2016

Oxylipid Profile of Low-Dose Aspirin Exposure: A Pharmacometabolomics Study.

J Am Heart Assoc 2015 Oct 26;4(10):e002203. Epub 2015 Oct 26.

Duke University Medical Center, Durham, NC (A.G., R.K.D.) Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC (R.K.D.) Duke Institute for Brain Sciences, Duke University, Durham, NC (R.K.D.) Institute of Genome Science and Policy, Durham, NC (R.K.D.).

Background: While aspirin is a well-established and generally effective anti-platelet agent, considerable inter-individual variation in drug response exists, for which mechanisms are not completely understood. Metabolomics allows for extensive measurement of small molecules in biological samples, enabling detailed mapping of pathways involved in drug response.

Methods And Results: We used a mass-spectrometry-based metabolomics platform to investigate the changes in the serum oxylipid metabolome induced by an aspirin intervention (14 days, 81 mg/day) in healthy subjects (n=156). We observed a global decrease in serum oxylipids in response to aspirin (25 metabolites decreased out of 30 measured) regardless of sex. This decrease was concomitant with a significant decrease in serum linoleic acid levels (-19%, P=1.3×10(-5)), one of the main precursors for oxylipid synthesis. Interestingly, several linoleic acid-derived oxylipids were not significantly associated with arachidonic-induced ex vivo platelet aggregation, a widely accepted marker of aspirin response, but were significantly correlated with platelet reactivity in response to collagen.

Conclusions: Together, these results suggest that linoleic acid-derived oxylipids may contribute to the non-COX1 mediated variability in response to aspirin. Pharmacometabolomics allowed for more comprehensive interrogation of mechanisms of action of low dose aspirin and of variation in aspirin response.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/JAHA.115.002203DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4845113PMC
October 2015

Genetic Variation in the Platelet Endothelial Aggregation Receptor 1 Gene Results in Endothelial Dysfunction.

PLoS One 2015 25;10(9):e0138795. Epub 2015 Sep 25.

Division of Endocrinology, Diabetes, and Nutrition, and Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America.

Platelet Endothelial Aggregation Receptor 1 (PEAR1) is a newly identified membrane protein reported to be involved in multiple vascular and thrombotic processes. While most studies to date have focused on the effects of this receptor in platelets, PEAR1 is located in multiple tissues including the endothelium, where it is most highly expressed. Our first objective was to evaluate the role of PEAR1 in endothelial function by examining flow-mediated dilation of the brachial artery in 641 participants from the Heredity and Phenotype Intervention Heart Study. Our second objective was to further define the impact of PEAR1 on cardiovascular disease computationally through meta-analysis of 75,000 microarrays, yielding insights regarding PEAR1 function, and predictions of phenotypes and diseases affected by PEAR1 dysregulation. Based on the results of this meta-analysis we examined whether genetic variation in PEAR1 influences endothelial function using an ex vivo assay of endothelial cell migration. We observed a significant association between rs12041331 and flow-mediated dilation in participants of the Heredity and Phenotype Intervention Heart Study (P = 0.02). Meta-analysis results revealed that PEAR1 expression is highly correlated with several genes (e.g. ANG2, ACVRL1, ENG) and phenotypes (e.g. endothelial cell migration, angiogenesis) that are integral to endothelial function. Functional validation of these results revealed that PEAR1 rs12041331 is significantly associated with endothelial migration (P = 0.04). Our results suggest for the first time that genetic variation of PEAR1 is a significant determinant of endothelial function through pathways implicated in cardiovascular disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0138795PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4583223PMC
May 2016

The Pharmacogenomics of Anti-Platelet Intervention (PAPI) Study: Variation in Platelet Response to Clopidogrel and Aspirin.

Curr Vasc Pharmacol 2016 ;14(1):116-24

University of Maryland Baltimore, 685 W. Baltimore St., MSTF 357, Baltimore, MD 21201, USA.

Clopidogrel and aspirin are commonly prescribed anti-platelet medications indicated for patients who have experienced, or are at risk for, ischemic cardiovascular events. The Pharmacogenomics of Anti-Platelet Intervention (PAPI) Study was designed to characterize determinants of clopidogrel and dual anti-platelet therapy (DAPT) response in a healthy cohort of Old Order Amish from Lancaster, PA. Following a loading dose, clopidogrel was taken once a day for 7 days. One hour after the last dose of clopidogrel, 325 mg of aspirin was given. Ex vivo platelet aggregometry was performed at baseline, post-clopidogrel, and post-DAPT. Platelet aggregation measurements were significantly lower after both interventions for all agonists tested (p <0.05), although there was large inter-individual variation in the magnitude of anti-platelet response. Female sex and older age were associated with higher platelet aggregation at all three time-points. Change in aggregation was correlated among the various agonists at each time point. Heritability (h2) of change in platelet aggregation was significant for most traits at all time-points (range h2=0.14-0.57). Utilization of a standardized, short-term intervention provided a powerful approach to investigate sources of variation in platelet aggregation response due to drug therapy. Further, this short-term intervention approach may provide a useful paradigm for pharmacogenomics studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4842002PMC
http://dx.doi.org/10.2174/1570161113666150916094829DOI Listing
September 2016

The pharmacogenetic control of antiplatelet response: candidate genes and CYP2C19.

Expert Opin Drug Metab Toxicol 2015 14;11(10):1599-617. Epub 2015 Jul 14.

a 1 Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences , New York, NY, USA +1 212 241 3780 ; +1 212 241 0139 ;

Introduction: Aspirin, clopidogrel, prasugrel and ticagrelor are antiplatelet agents for the prevention of ischemic events in patients with acute coronary syndromes (ACS), percutaneous coronary intervention (PCI) and other indications. Variability in response is observed to different degrees with these agents, which can translate to increased risks for adverse cardiovascular events. As such, potential pharmacogenetic determinants of antiplatelet pharmacokinetics, pharmacodynamics and clinical outcomes have been actively studied.

Areas Covered: This article provides an overview of the available antiplatelet pharmacogenetics literature. Evidence supporting the significance of candidate genes and their potential influence on antiplatelet response and clinical outcomes are summarized and evaluated. Additional focus is directed at CYP2C19 and clopidogrel response, including the availability of clinical testing and genotype-directed antiplatelet therapy.

Expert Opinion: The reported aspirin response candidate genes have not been adequately replicated and few candidate genes have thus far been implicated in prasugrel or ticagrelor response. However, abundant data support the clinical validity of CYP2C19 and clopidogrel response variability among ACS/PCI patients. Although limited prospective trial data are available to support the utility of routine CYP2C19 testing, the increased risks for reduced clopidogrel efficacy among ACS/PCI patients that carry CYP2C19 loss-of-function alleles should be considered when genotype results are available.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1517/17425255.2015.1068757DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4829114PMC
May 2016

CYP2C19 metabolizer status and clopidogrel efficacy in the Secondary Prevention of Small Subcortical Strokes (SPS3) study.

J Am Heart Assoc 2015 May 27;4(6):e001652. Epub 2015 May 27.

Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, MD (B.D.M., R.B.H., J.P.L., A.R.S.) Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD (B.D.M., R.B.H., J.P.L., A.R.S.) Geriatric Research and Education Clinical Center, Veterans Administration Medical Center, Baltimore, MD (B.D.M., A.R.S.).

Background: The role of the CYP2C19 genotype on clopidogrel efficacy has been studied widely, with data suggesting reduced clopidogrel efficacy in loss-of-function variant carriers taking clopidogrel after percutaneous coronary intervention; however, data are limited regarding the association between CYP2C19 genetic variants and outcomes in stroke patients. We investigated whether CYP2C19 metabolizer status affects the risk of recurrent stroke or major bleeding in subcortical stroke patients taking dual antiplatelet therapy with aspirin and clopidogrel.

Methods And Results: CYP2C19*2 and CYP2C19*17 were genotyped in 522 patients treated with dual antiplatelet therapy from the Secondary Prevention of Small Subcortical Strokes (SPS3) study. CYP2C19 metabolizer status was inferred from genotype, and associations with the risk of recurrent stroke and major bleeding were assessed in the overall cohort and by race/ethnic group with logistic regression modeling. In the overall cohort, there were no differences in outcomes by CYP2C19 metabolizer status (recurrent stroke, odds ratio 1.81 [95% CI 0.76 to 4.30]; major bleeding, odds ratio 0.67 [95% CI 0.22 to 2.03]). In white participants, those with CYP2C19 intermediate or poor metabolizer status had higher odds of recurrent stroke (odds ratio 5.19 [95% CI 1.08 to 24.90]) than those with extensive or ultrarapid metabolizer status, but there was no evidence of difference in major bleeding.

Conclusions: There were significant differences in recurrent stroke by CYP2C19 genotype-inferred metabolizer status in white subcortical stroke patients receiving dual antiplatelet therapy with aspirin and clopidogrel, consistent with cardiovascular studies on CYP2C19 and clopidogrel; however, the bleeding risk that led to early termination of the antiplatelet arm of the SPS3 trial does not appear to be explained by CYP2C19 genotype. This study was relatively underpowered; therefore, these findings should be interpreted with caution and warrant replication.

Clinical Trial Registration: URL: www.clinicaltrials.gov. Unique identifier: NCT00059306.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/JAHA.114.001652DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4599525PMC
May 2015

Personalized antiplatelet and anticoagulation therapy: applications and significance of pharmacogenomics.

Pharmgenomics Pers Med 2015 9;8:43-61. Epub 2015 Feb 9.

Program for Personalized and Genomic Medicine and Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA.

In recent years, substantial effort has been made to better understand the influence of genetic factors on the efficacy and safety of numerous medications. These investigations suggest that the use of pharmacogenetic data to inform physician decision-making has great potential to enhance patient care by reducing on-treatment clinical events, adverse drug reactions, and health care-related costs. In fact, integration of such information into the clinical setting may be particularly applicable for antiplatelet and anticoagulation therapeutics, given the increasing body of evidence implicating genetic variation in variable drug response. In this review, we summarize currently available pharmacogenetic information for the most commonly used antiplatelet (ie, clopidogrel and aspirin) and anticoagulation (ie, warfarin) medications. Furthermore, we highlight the currently known role of genetic variability in response to next-generation antiplatelet (prasugrel and ticagrelor) and anticoagulant (dabigatran) agents. While compelling evidence suggests that genetic variants are important determinants of antiplatelet and anticoagulation therapy response, significant barriers to clinical implementation of pharmacogenetic testing exist and are described herein. In addition, we briefly discuss development of new diagnostic targets and therapeutic strategies as well as implications for enhanced patient care. In conclusion, pharmacogenetic testing can provide important information to assist clinicians with prescribing the most personalized and effective antiplatelet and anticoagulation therapy. However, several factors may limit its usefulness and should be considered.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2147/PGPM.S52900DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4397717PMC
April 2015
-->