Publications by authors named "Jose de Jesus Sanchez-Gonzalez"

10 Publications

  • Page 1 of 1

Contemporary evolution of maize landraces and their wild relatives influenced by gene flow with modern maize varieties.

Proc Natl Acad Sci U S A 2019 10 30;116(42):21302-21311. Epub 2019 Sep 30.

Departamento de Ecología Evolutiva, Instituto de Ecología, UNAM, 04510 Ciudad de México, México.

Mexico is recognized as the center of origin and domestication of maize. Introduction of modern maize varieties (MVs) into Mexico raised concerns regarding the possible effects of gene flow from MVs into maize landraces (LRs) and their wild relatives (WRs), teosintes. However, after more than 60 y from the release of the first MVs, the impact of the sympatry with LRs and their WRs has not been explored with genetic data. In this work, we assessed changes in the genomes of 7 maize LRs and 2 WR subspecies from collections spanning over 70 y. We compared the genotypes obtained by genotyping by sequencing (GBS) for LRs and WRs before and after the adoption of MVs, and observed introgression from sympatric MVs into LRs and into the WR ssp. sampled after the year 2000. We also found a decrease in the paired divergence index ( ) between MV-LR and MV-WR over the same time frame. Moreover, we determined that LR genetic diversity increased after 2000, probably as a result of gene flow from MVs introduced in the 1990s. Our findings allowed us to identify ongoing changes in the domesticated and wild maize genetic pools, and concur with previous works that have evaluated short-term gene flow from MVs into LRs in other crops. Our approach represents a useful tool for tracking evolutionary change in wild and domesticated genetic resources, as well as for developing strategies for their conservation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1817664116DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6800366PMC
October 2019

The genetic architecture of teosinte catalyzed and constrained maize domestication.

Proc Natl Acad Sci U S A 2019 03 6;116(12):5643-5652. Epub 2019 Mar 6.

Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706;

The process of evolution under domestication has been studied using phylogenetics, population genetics-genomics, quantitative trait locus (QTL) mapping, gene expression assays, and archaeology. Here, we apply an evolutionary quantitative genetic approach to understand the constraints imposed by the genetic architecture of trait variation in teosinte, the wild ancestor of maize, and the consequences of domestication on genetic architecture. Using modern teosinte and maize landrace populations as proxies for the ancestor and domesticate, respectively, we estimated heritabilities, additive and dominance genetic variances, genetic-by-environment variances, genetic correlations, and genetic covariances for 18 domestication-related traits using realized genomic relationships estimated from genome-wide markers. We found a reduction in heritabilities across most traits, and the reduction is stronger in reproductive traits (size and numbers of grains and ears) than vegetative traits. We observed larger depletion in additive genetic variance than dominance genetic variance. Selection intensities during domestication were weak for all traits, with reproductive traits showing the highest values. For 17 of 18 traits, neutral divergence is rejected, suggesting they were targets of selection during domestication. Yield (total grain weight) per plant is the sole trait that selection does not appear to have improved in maize relative to teosinte. From a multivariate evolution perspective, we identified a strong, nonneutral divergence between teosinte and maize landrace genetic variance-covariance matrices (G-matrices). While the structure of G-matrix in teosinte posed considerable genetic constraint on early domestication, the maize landrace G-matrix indicates that the degree of constraint is more unfavorable for further evolution along the same trajectory.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1820997116DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6431195PMC
March 2019

Ecogeography of teosinte.

PLoS One 2018 16;13(2):e0192676. Epub 2018 Feb 16.

Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, Centro de Investigación Regional del Pacífico Centro, Campo Experimental Centro Altos de Jalisco, Guadalajara, Jalisco, Mexico.

Adaptation of crops to climate change has motivated an increasing interest in the potential value of novel traits from wild species; maize wild relatives, the teosintes, harbor traits that may be useful to maize breeding. To study the ecogeographic distribution of teosinte we constructed a robust database of 2363 teosinte occurrences from published sources for the period 1842-2016. A geographical information system integrating 216 environmental variables was created for Mexico and Central America and was used to characterize the environment of each teosinte occurrence site. The natural geographic distribution of teosinte extends from the Western Sierra Madre of the State of Chihuahua, Mexico to the Pacific coast of Nicaragua and Costa Rica, including practically the entire western part of Mesoamerica. The Mexican annuals Zea mays ssp. parviglumis and Zea mays ssp. mexicana show a wide distribution in Mexico, while Zea diploperennis, Zea luxurians, Zea perennis, Zea mays ssp. huehuetenangensis, Zea vespertilio and Zea nicaraguensis had more restricted and distinct ranges, representing less than 20% of the total occurrences. Only 11.2% of teosinte populations are found in Protected Natural Areas in Mexico and Central America. Ecogeographical analysis showed that teosinte can cope with extreme levels of precipitation and temperatures during growing season. Modelling teosinte geographic distribution demonstrated congruence between actual and potential distributions; however, some areas with no occurrences appear to be within the range of adaptation of teosintes. Field surveys should be prioritized to such regions to accelerate the discovery of unknown populations. Potential areas for teosintes Zea mays ssp. mexicana races Chalco, Nobogame, and Durango, Zea mays ssp. huehuetenangensis, Zea luxurians, Zea diploperennis and Zea nicaraguensis are geographically separated; however, partial overlapping occurs between Zea mays ssp. parviglumis and Zea perennis, between Zea mays ssp. parviglumis and Zea diploperennis, and between Zea mays ssp. mexicana race Chalco and Zea mays ssp. mexicana race Central Plateau. Assessing priority of collecting for conservation showed that permanent monitoring programs and in-situ conservation projects with participation of local farmer communities are critically needed; Zea mays ssp. mexicana (races Durango and Nobogame), Zea luxurians, Zea diploperennis, Zea perennis and Zea vespertilio should be considered as the highest priority taxa.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0192676PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5815594PMC
April 2018

Genomic estimation of complex traits reveals ancient maize adaptation to temperate North America.

Science 2017 08;357(6350):512-515

Research Group for Ancient Genomics and Evolution, Department of Molecular Biology, Max Planck Institute for Developmental Biology, Spemannstr. 35, 72076 Tübingen, Germany.

By 4000 years ago, people had introduced maize to the southwestern United States; full agriculture was established quickly in the lowland deserts but delayed in the temperate highlands for 2000 years. We test if the earliest upland maize was adapted for early flowering, a characteristic of modern temperate maize. We sequenced fifteen 1900-year-old maize cobs from Turkey Pen Shelter in the temperate Southwest. Indirectly validated genomic models predicted that Turkey Pen maize was marginally adapted with respect to flowering, as well as short, tillering, and segregating for yellow kernel color. Temperate adaptation drove modern population differentiation and was selected in situ from ancient standing variation. Validated prediction of polygenic traits improves our understanding of ancient phenotypes and the dynamics of environmental adaptation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.aam9425DOI Listing
August 2017

Megabase-scale inversion polymorphism in the wild ancestor of maize.

Genetics 2012 Jul 27;191(3):883-94. Epub 2012 Apr 27.

Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN 55108, USA.

Chromosomal inversions are thought to play a special role in local adaptation, through dramatic suppression of recombination, which favors the maintenance of locally adapted alleles. However, relatively few inversions have been characterized in population genomic data. On the basis of single-nucleotide polymorphism (SNP) genotyping across a large panel of Zea mays, we have identified an ∼50-Mb region on the short arm of chromosome 1 where patterns of polymorphism are highly consistent with a polymorphic paracentric inversion that captures >700 genes. Comparison to other taxa in Zea and Tripsacum suggests that the derived, inverted state is present only in the wild Z. mays subspecies parviglumis and mexicana and is completely absent in domesticated maize. Patterns of polymorphism suggest that the inversion is ancient and geographically widespread in parviglumis. Cytological screens find little evidence for inversion loops, suggesting that inversion heterozygotes may suffer few crossover-induced fitness consequences. The inversion polymorphism shows evidence of adaptive evolution, including a strong altitudinal cline, a statistical association with environmental variables and phenotypic traits, and a skewed haplotype frequency spectrum for inverted alleles.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1534/genetics.112.138578DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3389981PMC
July 2012

Genetic signals of origin, spread, and introgression in a large sample of maize landraces.

Proc Natl Acad Sci U S A 2011 Jan 28;108(3):1088-92. Epub 2010 Dec 28.

Department of Plant Sciences, University of California, Davis, CA 95616, USA.

The last two decades have seen important advances in our knowledge of maize domestication, thanks in part to the contributions of genetic data. Genetic studies have provided firm evidence that maize was domesticated from Balsas teosinte (Zea mays subspecies parviglumis), a wild relative that is endemic to the mid- to lowland regions of southwestern Mexico. An interesting paradox remains, however: Maize cultivars that are most closely related to Balsas teosinte are found mainly in the Mexican highlands where subspecies parviglumis does not grow. Genetic data thus point to primary diffusion of domesticated maize from the highlands rather than from the region of initial domestication. Recent archeological evidence for early lowland cultivation has been consistent with the genetics of domestication, leaving the issue of the ancestral position of highland maize unresolved. We used a new SNP dataset scored in a large number of accessions of both teosinte and maize to take a second look at the geography of the earliest cultivated maize. We found that gene flow between maize and its wild relatives meaningfully impacts our inference of geographic origins. By analyzing differentiation from inferred ancestral gene frequencies, we obtained results that are fully consistent with current ecological, archeological, and genetic data concerning the geography of early maize cultivation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1013011108DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3024656PMC
January 2011

Fine scale genetic structure in the wild ancestor of maize (Zea mays ssp. parviglumis).

Mol Ecol 2010 Mar 15;19(6):1162-73. Epub 2010 Feb 15.

Department of Plant Sciences, University of California, Davis, CA 95616, USA.

Analysis of fine scale genetic structure in continuous populations of outcrossing plant species has traditionally been limited by the availability of sufficient markers. We used a set of 468 SNPs to characterize fine-scale genetic structure within and between two dense stands of the wild ancestor of maize, teosinte (Zea mays ssp. parviglumis). Our analyses confirmed that teosinte is highly outcrossing and showed little population structure over short distances. We found that the two populations were clearly genetically differentiated, although the actual level of differentiation was low. Spatial autocorrelation of relatedness was observed within both sites but was somewhat stronger in one of the populations. Using principal component analysis, we found evidence for significant local differentiation in the population with stronger spatial autocorrelation. This differentiation was associated with pronounced shifts in the first two principal components along the field. These shifts corresponded to changes in allele frequencies, potentially due to local topographical features. There was little evidence for selection at individual loci as a contributing factor to differentiation. Our results demonstrate that significant local differentiation may, but need not, co-occur with spatial autocorrelation of relatedness. The present study represents one of the most detailed analyses of local genetic structure to date and provides a benchmark for future studies dealing with fine scale patterns of genetic diversity in natural plant populations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-294X.2010.04559.xDOI Listing
March 2010

The genetic architecture of complex traits in teosinte (Zea mays ssp. parviglumis): new evidence from association mapping.

Genetics 2008 Oct 14;180(2):1221-32. Epub 2008 Sep 14.

University of Wisconsin, Madison, Wisconsin 53706, USA.

Previous association analyses showed that variation at major regulatory genes contributes to standing variation for complex traits in Balsas teosinte, the progenitor of maize. This study expands our previous association mapping effort in teosinte by testing 123 markers in 52 candidate genes for association with 31 traits in a population of 817 individuals. Thirty-three significant associations for markers from 15 candidate genes and 10 traits survive correction for multiple testing. Our analyses suggest several new putative causative relationships between specific genes and trait variation in teosinte. For example, two ramosa genes (ra1 and ra2) associate with ear structure, and the MADS-box gene, zagl1, associates with ear shattering. Since zagl1 was previously shown to be a target of selection during maize domestication, we suggest that this gene was under selection for its effect on the loss of ear shattering, a key domestication trait. All observed effects were relatively small in terms of the percentage of phenotypic variation explained (<10%). We also detected several epistatic interactions between markers in the same gene that associate with the same trait. Candidate-gene-based association mapping appears to be a promising method for investigating the inheritance of complex traits in teosinte.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1534/genetics.108.090134DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2567369PMC
October 2008

Major regulatory genes in maize contribute to standing variation in teosinte (Zea mays ssp. parviglumis).

Genetics 2007 Dec 18;177(4):2349-59. Epub 2007 Oct 18.

Laboratory of Genetics, University of Wisconsin, Madison 53706, USA.

In plants, many major regulatory genes that control plant growth and development have been identified and characterized. Despite a detailed knowledge of the function of these genes little is known about how they contribute to the natural variation for complex traits. To determine whether major regulatory genes of maize contribute to standing variation in Balsas teosinte we conducted association mapping in 584 Balsas teosinte individuals. We tested 48 markers from nine candidate regulatory genes against 13 traits for plant and inflorescence architecture. We identified significant associations using a mixed linear model that controls for multiple levels of relatedness. Ten associations involving five candidate genes were significant after correction for multiple testing, and two survive the conservative Bonferroni correction. zfl2, the maize homolog of FLORICAULA of Antirrhinum, was associated with plant height. zap1, the maize homolog of APETALA1 of Arabidopsis, was associated with inflorescence branching. Five SNPs in the maize domestication gene, teosinte branched1, were significantly associated with either plant or inflorescence architecture. Our data suggest that major regulatory genes in maize do play a role in the natural variation for complex traits in teosinte and that some of the minor variants we identified may have been targets of selection during domestication.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1534/genetics.107.080424DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2219500PMC
December 2007

Pollination between maize and teosinte: an important determinant of gene flow in Mexico.

Theor Appl Genet 2005 Feb 9;110(3):519-26. Epub 2004 Dec 9.

Pioneer Hi-Bred International, Camino Viejo a Valle de Banderas, Km. 3, No. 19, Tapachula, Nayarit, Mexico.

Gene flow between maize [Zea mays (L.)] and its wild relatives does occur, but at very low frequencies. Experiments were undertaken in Tapachula, Nayarit, Mexico to investigate gene flow between a hybrid maize, landraces of maize and teosinte (Z. mays ssp. mexicana, races Chalco and Central Plateau). Hybridization, flowering synchrony, pollen size and longevity, silk elongation rates, silk and trichome lengths and tassel diameter and morphology were measured. Hybrid and open-pollinated maize ears produced a mean of 8 and 11 seeds per ear, respectively, when hand-pollinated with teosinte pollen, which is approximately 1-2% of the ovules normally produced on a hybrid maize ear. Teosinte ears produced a mean of 0.2-0.3 seeds per ear when pollinated with maize pollen, which is more than one-fold fewer seeds than produced on a maize ear pollinated with teosinte pollen. The pollination rate on a per plant basis was similar in the context of a maize plant with 400-500 seeds and a teosinte plant with 30-40 inflorescences and 9-12 fruitcases per inflorescence. A number of other factors also influenced gene-flow direction: (1) between 90% and 95% of the fruitcases produced on teosinte that was fertilized by maize pollen were sterile; (2) teosinte collections were made in an area where incompatibility systems that limit fertilization are present; (3) silk longevity was much shorter for teosinte than for maize (approx. 4 days vs. approx. 11 days); (4) teosinte produced more pollen on a per plant basis than the landraces and commercial hybrid maize; (5) teosinte frequently produced lateral branches with silks close to a terminal tassel producing pollen. Collectively these factors tend to favor crossing in the direction of teosinte to maize. Our results support the hypothesis that gene flow and the subsequent introgression of maize genes into teosinte populations most probably results from crosses where teosinte first pollinates maize. The resultant hybrids then backcross with teosinte to introgress the maize genes into the teosinte genome. This approach would slow introgression and may help explain why teosinte continues to co-exist as a separate entity even though it normally grows in the vicinity of much larger populations of maize.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00122-004-1859-6DOI Listing
February 2005
-->