Publications by authors named "Jordi Bové"

26 Publications

  • Page 1 of 1

Bioinspired Theranostic Coordination Polymer Nanoparticles for Intranasal Dopamine Replacement in Parkinson's Disease.

ACS Nano 2021 Apr 22. Epub 2021 Apr 22.

Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193 Bellaterra, Barcelona, Spain.

Dopamine (DA) is one of the main neurotransmitters found in the central nervous system and has a vital role in the function of dopaminergic (DArgic) neurons. A progressive loss of this specific subset of cells is one of the hallmarks of age-related neurodegenerative disorders such as Parkinson's disease (PD). Symptomatic therapy for PD has been centered in the precursor l-DOPA administration, an amino acid precursor of DA that crosses the blood-brain barrier (BBB) while DA does not, although this approach presents medium- to long-term side effects. To overcome this limitation, DA-nanoencapsulation therapies are actively being searched as an alternative for DA replacement. However, overcoming the low yield of encapsulation and/or poor biodistribution/bioavailability of DA is still a current challenge. Herein, we report the synthesis of a family of neuromelanin bioinspired polymeric nanoparticles. Our system is based on the encapsulation of DA within nanoparticles through its reversible coordination complexation to iron metal nodes polymerized with a bis-imidazol ligand. Our methodology, in addition to being simple and inexpensive, results in DA loading efficiencies of up to 60%. , DA nanoscale coordination polymers (DA-NCPs) exhibited lower toxicity, degradation kinetics, and enhanced uptake by BE(2)-M17 DArgic cells compared to free DA. Direct infusion of the particles in the ventricle of rats showed a rapid distribution within the brain of healthy rats, leading to an increase in striatal DA levels. More importantly, after 4 days of nasal administrations with DA-NCPs equivalent to 200 μg of the free drug per day, the number and duration of apomorphine-induced rotations was significantly lower from that in either vehicle or DA-treated rats performed for comparison purposes. Overall, this study demonstrates the advantages of using nanostructured DA for DA-replacement therapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.1c00453DOI Listing
April 2021

The CD200R1 microglial inhibitory receptor as a therapeutic target in the MPTP model of Parkinson's disease.

J Neuroinflammation 2021 Apr 6;18(1):88. Epub 2021 Apr 6.

Department of Cerebral Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas (CSIC), Institut d'Investigacions Biomèdiques August-Pi i Sunyer (IDIBAPS), Barcelona, Spain.

Background: It is suggested that neuroinflammation, in which activated microglial cells play a relevant role, contributes to the development of Parkinson's disease (PD). Consequently, the modulation of microglial activation is a potential therapeutic target to be taken into account to act against the dopaminergic neurodegeneration occurring in this neurological disorder. Several soluble and membrane-associated inhibitory mechanisms contribute to maintaining microglial cells in a quiescent/surveillant phenotype in physiological conditions. However, the presence of activated microglial cells in the brain in PD patients suggests that these mechanisms have been somehow overloaded. We focused our interest on one of the membrane-associated mechanisms, the CD200-CD200R1 ligand-receptor pair.

Methods: The acute MPTP experimental mouse model of PD was used to study the temporal pattern of mRNA expression of CD200 and CD200R1 in the context of MPTP-induced dopaminergic neurodegeneration and neuroinflammation. Dopaminergic damage was assessed by tyrosine hydroxylase (TH) immunoreactivity, and neuroinflammation was evaluated by the mRNA expression of inflammatory markers and IBA1 and GFAP immunohistochemistry. The effect of the modulation of the CD200-CD200R1 system on MPTP-induced damage was determined by using a CD200R1 agonist or CD200 KO mice.

Results: MPTP administration resulted in a progressive decrease in TH-positive fibres in the striatum and TH-positive neurons in the substantia nigra pars compacta, which were accompanied by transient astrogliosis, microgliosis and expression of pro- and anti-inflammatory markers. CD200 mRNA levels rapidly decreased in the ventral midbrain after MPTP treatment, while a transient decrease of CD200R1 mRNA expression was repeatedly observed in this brain area at earlier and later phases. By contrast, a transient increase in CD200R1 expression was observed in striatum. The administration of a CD200R1 agonist resulted in the inhibition of MPTP-induced dopaminergic neurodegeneration, while microglial cells showed signs of earlier activation in CD200-deficient mice.

Conclusions: Collectively, these findings provide evidence for a correlation between CD200-CD200R1 alterations, glial activation and neuronal loss. CD200R1 stimulation reduces MPTP-induced loss of dopaminergic neurons, and CD200 deficiency results in earlier microglial activation, suggesting that the potentiation of CD200R1 signalling is a possible approach to controlling neuroinflammation and neuronal death in PD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12974-021-02132-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8025338PMC
April 2021

CD8 T cell nigral infiltration precedes synucleinopathy in early stages of Parkinson's disease.

Brain 2020 12;143(12):3717-3733

Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain.

There is no consensus on the exact role of the adaptive immune system in Parkinson's disease pathogenesis, although there is increasing evidence that it is somehow involved. Moreover, T cell infiltration in the brain has not been thoroughly studied in Parkinson's disease and no study has assessed the infiltration in incidental Lewy body diseases cases that are considered to be early presymptomatic stages of the disease. In this study, we performed an immunohistochemistry/immunofluorescence quantitative and phenotypic assessment of T cell infiltration in human substantia nigra pars compacta and analysed the correlations with neuronal death and synucleinopathy throughout different stages of the disease. We included two groups of incidental Lewy disease in the study. One of the groups, which is believed to be the earliest stage of the disease, showed α-synuclein aggregates only in the olfactory bulb. The second group also presented α-synuclein aggregates in the substantia nigra. We also assessed the formation of different α-synuclein aggregates throughout the different stages of the unified staging system for Lewy body disorders (I to IV). We found that CD8 T cells were increased in diagnosed Parkinson's disease cases compared to the control group and their density positively correlated with neuronal death. Some of the infiltrating CD8 T cells were indeed contacting dopaminergic neurons. No differences were found regarding CD4 T cells. In the earliest stage of the disease, when substantia nigra α-synuclein aggregation is absent, we found a robust CD8 T cell infiltration and no dopaminergic neuronal death yet. Conversely, in the next stage we found neuronal loss and a milder CD8 T cell infiltration. CD8 T cell infiltration paralleled that of α-synuclein accumulation and neuronal death throughout stages II to IV. We also confirmed that CD8 T cells in charge of immune surveillance and involved in the aetiopathogenesis of the disease are equipped with cytolytic enzymes (granzyme A, B and K) and/or proinflammatory cytokines (interferon gamma), and that phenotypic differences were observed between early and late stages of the disease. We also demonstrate that a high proportion of nigral CD8 T cells are tissue resident memory T cells. Our results show that nigral cytotoxic CD8 T cell infiltration is an earlier pathogenic event than α-synuclein aggregation and neuronal death and that it parallels the progression of neuronal death and synucleinopathy in Parkinson's disease. Overall, our study suggests that CD8 T cell cytotoxic attack may initiate and propagate neuronal death and synucleinopathy in Parkinson's disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/brain/awaa269DOI Listing
December 2020

CN133, a Novel Brain-Penetrating Histone Deacetylase Inhibitor, Hampers Tumor Growth in Patient-Derived Pediatric Posterior Fossa Ependymoma Models.

Cancers (Basel) 2020 Jul 16;12(7). Epub 2020 Jul 16.

Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR)-Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain.

Pediatric ependymoma (EPN) is a highly aggressive tumor of the central nervous system that remains incurable in 40% of cases. In children, the majority of cases develop in the posterior fossa and can be classified into two distinct molecular entities: EPN posterior fossa A (PF-EPN-A) and EPN posterior fossa B (PF-EPN-B). Patients with PF-EPN-A have poor outcome and are in demand of new therapies. In general, PF-EPN-A tumors show a balanced chromosome copy number profile and have no recurrent somatic nucleotide variants. However, these tumors present abundant epigenetic deregulations, thereby suggesting that epigenetic therapies could provide new opportunities for PF-EPN-A patients. In vitro epigenetic drug screening of 11 compounds showed that histone deacetylase inhibitors (HDACi) had the highest anti-proliferative activity in two PF-EPN-A patient-derived cell lines. Further screening of 5 new brain-penetrating HDACi showed that CN133 induced apoptosis in vitro, reduced tumor growth in vivo and significantly extended the survival of mice with orthotopically-implanted EPN tumors by modulation of the unfolded protein response, PI3K/Akt/mTOR signaling, and apoptotic pathways among others. In summary, our results provide solid preclinical evidence for the use of CN133 as a new therapeutic agent against PF-EPN-A tumors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/cancers12071922DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7409080PMC
July 2020

Brain tyrosinase overexpression implicates age-dependent neuromelanin production in Parkinson's disease pathogenesis.

Nat Commun 2019 03 7;10(1):973. Epub 2019 Mar 7.

Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain.

In Parkinson's disease (PD) there is a selective degeneration of neuromelanin-containing neurons, especially substantia nigra dopaminergic neurons. In humans, neuromelanin accumulates with age, the latter being the main risk factor for PD. The contribution of neuromelanin to PD pathogenesis remains unknown because, unlike humans, common laboratory animals lack neuromelanin. Synthesis of peripheral melanins is mediated by tyrosinase, an enzyme also present at low levels in the brain. Here we report that overexpression of human tyrosinase in rat substantia nigra results in age-dependent production of human-like neuromelanin within nigral dopaminergic neurons, up to levels reached in elderly humans. In these animals, intracellular neuromelanin accumulation above a specific threshold is associated to an age-dependent PD phenotype, including hypokinesia, Lewy body-like formation and nigrostriatal neurodegeneration. Enhancing lysosomal proteostasis reduces intracellular neuromelanin and prevents neurodegeneration in tyrosinase-overexpressing animals. Our results suggest that intracellular neuromelanin levels may set the threshold for the initiation of PD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-019-08858-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6405777PMC
March 2019

Overexpression of TFEB Drives a Pleiotropic Neurotrophic Effect and Prevents Parkinson's Disease-Related Neurodegeneration.

Mol Ther 2018 06 27;26(6):1552-1567. Epub 2018 Feb 27.

Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain. Electronic address:

The possible implication of transcription factor EB (TFEB) as a therapeutic target in Parkinson's disease has gained momentum since it was discovered that TFEB controls lysosomal biogenesis and autophagy and that its activation might counteract lysosomal impairment and protein aggregation. However, the majority of putative direct targets of TFEB described to date is linked to a range of biological processes that are not related to the lysosomal-autophagic system. Here, we assessed the effect of overexpressing TFEB with an adeno-associated viral vector in mouse substantia nigra dopaminergic neurons. We demonstrate that TFEB overexpression drives a previously unknown bona fide neurotrophic effect, giving rise to cell growth, higher tyrosine hydroxylase levels, and increased dopamine release in the striatum. TFEB overexpression induces the activation of the mitogen-activated protein kinase 1/3 (MAPK1/3) and AKT pro-survival pathways, phosphorylation of mTORC1 effectors 4E-binding protein 1 (4E-BP1) and S6 kinase B1 (S6K1), and increased protein synthesis. We show that TFEB overexpression prevents dopaminergic cell loss and counteracts atrophy and the associated protein synthesis decline in the MPTP mouse model of Parkinson's disease. Our results suggest that increasing TFEB activity might prevent neuronal death and restore neuronal function in Parkinson's disease and other neurodegenerative diseases through different mechanisms.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymthe.2018.02.022DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5986717PMC
June 2018

Lack of pathogenic potential of peripheral α-synuclein aggregates from Parkinson's disease patients.

Acta Neuropathol Commun 2018 02 8;6(1). Epub 2018 Feb 8.

Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain.

In Parkinson's disease (PD) there is widespread accumulation in the brain of abnormal α-synuclein aggregates forming intraneuronal Lewy bodies (LB). It is now well established that LB-type α-synuclein aggregates also occur in the peripheral autonomic nervous system in PD, from where it has been speculated they may progressively spread to the central nervous system through synaptically-connected brain networks and reach the substantia nigra to trigger herein dopaminergic dysfunction/degeneration and subsequent parkinsonism. Supporting a pathogenic role for α-synuclein aggregates we have previously shown that LB purified from postmortem PD brains promote α-synuclein pathology and dopaminergic neurodegeneration when intracerebrally inoculated into wild-type mice. However, the pathogenic capacity of PD-derived peripheral α-synuclein aggregates remains unknown. Here we addressed this question using purified LB-type α-synuclein aggregates from postmortem PD stellate ganglia (SG), a paravertebral sympathetic ganglion that exhibits consistent and conspicuous Lewy pathology in all PD patients. In contrast to our previous findings using nigral LB extracts, intracerebral inoculation of SG-derived LB into mice did not trigger long-term nigrostriatal neurodegeneration nor α-synuclein pathology. The differential pathogenic capacities of central- and peripheral-derived α-synuclein aggregates appear independent of the absolute amount and basic biochemical properties of α-synuclein within these aggregates and may rely instead on differences in α-synuclein conformation and/or yet unrecognized brain region-specific intrinsic factors. Our results argue against a putative pathogenic capacity of peripheral α-synuclein aggregates to promote α-synuclein pathology in the brain, propagate between neuronal networks or induce neurodegeneration.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s40478-018-0509-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5806361PMC
February 2018

Functional Rescue of Dopaminergic Neuron Loss in Parkinson's Disease Mice After Transplantation of Hematopoietic Stem and Progenitor Cells.

EBioMedicine 2016 Jun 19;8:83-95. Epub 2016 Apr 19.

Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Dr Aiguader 88, 08003 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain. Electronic address:

Parkinson's disease is a common neurodegenerative disorder, which is due to the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and for which no definitive cure is currently available. Cellular functions in mouse and human tissues can be restored after fusion of bone marrow (BM)-derived cells with a variety of somatic cells. Here, after transplantation of hematopoietic stem and progenitor cells (HSPCs) in the SNpc of two different mouse models of Parkinson's disease, we significantly ameliorated the dopaminergic neuron loss and function. We show fusion of transplanted HSPCs with neurons and with glial cells in the ventral midbrain of Parkinson's disease mice. Interestingly, the hybrids can undergo reprogramming in vivo and survived up to 4weeks after transplantation, while acquiring features of mature astroglia. These newly generated astroglia produced Wnt1 and were essential for functional rescue of the dopaminergic neurons. Our data suggest that glial-derived hybrids produced upon fusion of transplanted HSPCs in the SNpc can rescue the Parkinson's disease phenotype via a niche-mediated effect, and can be exploited as an efficient cell-therapy approach.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ebiom.2016.04.016DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4919540PMC
June 2016

Cerebellar neurodegeneration in a new rat model of episodic hepatic encephalopathy.

J Cereb Blood Flow Metab 2017 Mar 20;37(3):927-937. Epub 2016 Jul 20.

1 Liver Unit, Institut de Recerca Valld'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Barcelona, Spain.

Hepatic encephalopathy has traditionally been considered a reversible disorder. However, recent studies suggested that repeated episodes of hepatic encephalopathy cause persistent impairment leading to neuronal loss. The aims of our study were the development of a new animal model that reproduces the course of episodic hepatic encephalopathy and the identification of neurodegeneration evidences. Rats with portacaval anastomosis underwent simulated episodes of hepatic encephalopathy, triggered by the regular administration of ammonium acetate, and/or lipopolysaccharide. The neurological status was assessed and neuronal loss stereologically quantified in motor areas. During the simulated episodes, ammonia induced reversible motor impairment in portacaval anastomosis rats. In cerebellum, stereology showed a reduction in Purkinje cell population in portacaval anastomosis and PCA+NH groups and morphological changes. An increase in astrocyte size in PCA+NH group and activated microglia in groups treated with ammonium acetate and/or lipopolysaccharide was observed. A modulation of neurodegeneration-related genes and the presence of apoptosis in Bergmann glia were observed. This new animal model reproduces the clinical course of episodic hepatic encephalopathy when ammonia is the precipitant factor and demonstrates the existence of neuronal loss in cerebellum. The persistence of over-activated microglia and reactive astrocytes could participate in the apoptosis of Bergmann glia and therefore Purkinje cell degeneration.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1177/0271678X16649196DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5363476PMC
March 2017

BAX channel activity mediates lysosomal disruption linked to Parkinson disease.

Autophagy 2014 May 26;10(5):889-900. Epub 2014 Mar 26.

Neurodegenerative Diseases Research Group; Vall d'Hebron Research Institute-CIBERNED; Barcelona, Spain; Department of Biochemistry and Molecular Biology; Autonomous University of Barcelona; Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA); Barcelona, Spain.

Lysosomal disruption is increasingly regarded as a major pathogenic event in Parkinson disease (PD). A reduced number of intraneuronal lysosomes, decreased levels of lysosomal-associated proteins and accumulation of undegraded autophagosomes (AP) are observed in PD-derived samples, including fibroblasts, induced pluripotent stem cell-derived dopaminergic neurons, and post-mortem brain tissue. Mechanistic studies in toxic and genetic rodent PD models attribute PD-related lysosomal breakdown to abnormal lysosomal membrane permeabilization (LMP). However, the molecular mechanisms underlying PD-linked LMP and subsequent lysosomal defects remain virtually unknown, thereby precluding their potential therapeutic targeting. Here we show that the pro-apoptotic protein BAX (BCL2-associated X protein), which permeabilizes mitochondrial membranes in PD models and is activated in PD patients, translocates and internalizes into lysosomal membranes early following treatment with the parkinsonian neurotoxin MPTP, both in vitro and in vivo, within a time-frame correlating with LMP, lysosomal disruption, and autophagosome accumulation and preceding mitochondrial permeabilization and dopaminergic neurodegeneration. Supporting a direct permeabilizing effect of BAX on lysosomal membranes, recombinant BAX is able to induce LMP in purified mouse brain lysosomes and the latter can be prevented by pharmacological blockade of BAX channel activity. Furthermore, pharmacological BAX channel inhibition is able to prevent LMP, restore lysosomal levels, reverse AP accumulation, and attenuate mitochondrial permeabilization and overall nigrostriatal degeneration caused by MPTP, both in vitro and in vivo. Overall, our results reveal that PD-linked lysosomal impairment relies on BAX-induced LMP, and point to small molecules able to block BAX channel activity as potentially beneficial to attenuate both lysosomal defects and neurodegeneration occurring in PD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4161/auto.28286DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5119069PMC
May 2014

Lewy body extracts from Parkinson disease brains trigger α-synuclein pathology and neurodegeneration in mice and monkeys.

Ann Neurol 2014 Mar 18;75(3):351-62. Epub 2014 Feb 18.

Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute-Center for Networked Biomedical Research on Neurodegenerative Diseases, Barcelona, Spain.

Objective: Mounting evidence suggests that α-synuclein, a major protein component of Lewy bodies (LB), may be responsible for initiating and spreading the pathological process in Parkinson disease (PD). Supporting this concept, intracerebral inoculation of synthetic recombinant α-synuclein fibrils can trigger α-synuclein pathology in mice. However, it remains uncertain whether the pathogenic effects of recombinant synthetic α-synuclein may apply to PD-linked pathological α-synuclein and occur in species closer to humans.

Methods: Nigral LB-enriched fractions containing pathological α-synuclein were purified from postmortem PD brains by sucrose gradient fractionation and subsequently inoculated into the substantia nigra or striatum of wild-type mice and macaque monkeys. Control animals received non-LB fractions containing soluble α-synuclein derived from the same nigral PD tissue.

Results: In both mice and monkeys, intranigral or intrastriatal inoculations of PD-derived LB extracts resulted in progressive nigrostriatal neurodegeneration starting at striatal dopaminergic terminals. No neurodegeneration was observed in animals receiving non-LB fractions from the same patients. In LB-injected animals, exogenous human α-synuclein was quickly internalized within host neurons and triggered the pathological conversion of endogenous α-synuclein. At the onset of LB-induced degeneration, host pathological α-synuclein diffusely accumulated within nigral neurons and anatomically interconnected regions, both anterogradely and retrogradely. LB-induced pathogenic effects required both human α-synuclein present in LB extracts and host expression of α-synuclein.

Interpretation: α-Synuclein species contained in PD-derived LB are pathogenic and have the capacity to initiate a PD-like pathological process, including intracellular and presynaptic accumulations of pathological α-synuclein in different brain areas and slowly progressive axon-initiated dopaminergic nigrostriatal neurodegeneration.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ana.24066DOI Listing
March 2014

Accumulation of mitochondrial DNA deletions within dopaminergic neurons triggers neuroprotective mechanisms.

Brain 2013 Aug;136(Pt 8):2369-78

Vall d'Hebron Research Institute and Centre for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain.

Acquired alterations in mitochondrial DNA are believed to play a pathogenic role in Parkinson's disease. In particular, accumulation of mitochondrial DNA deletions has been observed in substantia nigra pars compacta dopaminergic neurons from patients with Parkinson's disease and aged individuals. Also, mutations in mitochondrial DNA polymerase gamma result in multiple mitochondrial DNA deletions that can be associated with levodopa-responsive parkinsonism and severe substantia nigra pars compacta dopaminergic neurodegeneration. However, whether mitochondrial DNA deletions play a causative role in the demise of dopaminergic neurons remains unknown. Here we assessed the potential pathogenic effects of mitochondrial DNA deletions on the dopaminergic nigrostriatal system by using mutant mice possessing a proofreading-deficient form of mitochondrial DNA polymerase gamma (POLGD257A), which results in a time-dependent accumulation of mitochondrial DNA deletions in several tissues, including the brain. In these animals, we assessed the occurrence of mitochondrial DNA deletions within individual substantia nigra pars compacta dopaminergic neurons, by laser capture microdissection and quantitative real-time polymerase chain reaction, and determined the potential deleterious effects of such mitochondrial DNA alterations on mitochondrial function and dopaminergic neuronal integrity, by cytochrome c oxidase histochemistry and quantitative morphology. Nigral dopaminergic neurons from POLGD257A mice accumulate mitochondrial DNA deletions to a similar extent (∼40-60%) as patients with Parkinson's disease and aged individuals. Despite such high levels of mitochondrial DNA deletions, the majority of substantia nigra pars compacta dopaminergic neurons from these animals did not exhibit mitochondrial dysfunction or degeneration. Only a few individual substantia nigra pars compacta neurons appeared as cytochrome c oxidase-negative, which exhibited higher levels of mitochondrial DNA deletions than cytochrome c oxidase-positive cells (60.38±3.92% versus 45.18±2.83%). Survival of dopaminergic neurons in POLGD257A mice was associated with increased mitochondrial DNA copy number, enhanced mitochondrial cristae network, improved mitochondrial respiration, decreased exacerbation of mitochondria-derived reactive oxygen species, greater striatal dopamine levels and resistance to parkinsonian mitochondrial neurotoxins. These results indicate that primary accumulation of mitochondrial DNA deletions within substantia nigra pars compacta dopaminergic neurons, at an extent similar to that observed in patients with Parkinson's disease, do not kill dopaminergic neurons but trigger neuroprotective compensatory mechanisms at a mitochondrial level that may account for the high pathogenic threshold of mitochondrial DNA deletions in these cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/brain/awt196DOI Listing
August 2013

Fighting neurodegeneration with rapamycin: mechanistic insights.

Nat Rev Neurosci 2011 Jul 20;12(8):437-52. Epub 2011 Jul 20.

Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute-CIBERNED, 08035 Barcelona, Spain.

A growing number of studies point to rapamycin as a pharmacological compound that is able to provide neuroprotection in several experimental models of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease and spinocerebellar ataxia type 3. In addition, rapamycin exerts strong anti-ageing effects in several species, including mammals. By inhibiting the activity of mammalian target of rapamycin (mTOR), rapamycin influences a variety of essential cellular processes, such as cell growth and proliferation, protein synthesis and autophagy. Here, we review the molecular mechanisms underlying the neuroprotective effects of rapamycin and discuss the therapeutic potential of this compound for neurodegenerative diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nrn3068DOI Listing
July 2011

Mitochondria and programmed cell death in Parkinson's disease: apoptosis and beyond.

Antioxid Redox Signal 2012 May 18;16(9):883-95. Epub 2011 Jul 18.

Vall d'Hebron Research Institute-CIBERNED, Barcelona, Spain.

Unlabelled: Abstract Significance: Activation of mitochondrion-dependent programmed cell death (PCD) pathways is instrumental to the demise of substantia nigra pars compacta dopaminergic neurons in experimental mouse models of Parkinson's disease (PD). Supporting the relevance of these findings for PD, key molecular elements of this pathogenic cascade have also been demonstrated in postmortem brain samples of PD patients. Recent Advances and Critical Issues: Mounting evidence indicates that different morphological types of cell death co-exist in the brain of PD patients, all of which may result from the activation of common upstream PCD pathways. Indeed, contrary to initial views, it is now established that the deleterious effects of PCD pathways are not limited to mitochondrion-mediated caspase-dependent apoptosis but also involve caspase-independent nonapoptotic cell death, including necrosis. This notion may help reconcile the observation of both apoptotic and nonapoptotic dopaminergic cell death in postmortem PD samples.

Future Directions: Potential neuroprotective strategies for PD should be aimed at targeting both apoptotic and nonapoptotic pathways, all of which may simultaneously occur in PD patients through activation of common upstream PCD pathways involving the mitochondria. Antioxid. Redox Signal. 16, 883-895.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1089/ars.2011.4074DOI Listing
May 2012

Lysosomal membrane permeabilization in Parkinson disease.

Autophagy 2011 Jan 1;7(1):98-100. Epub 2011 Jan 1.

Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases, Barcelona, Spain.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4161/auto.7.1.13933DOI Listing
January 2011

Pathogenic lysosomal depletion in Parkinson's disease.

J Neurosci 2010 Sep;30(37):12535-44

Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona 08035, Spain.

Mounting evidence suggests a role for autophagy dysregulation in Parkinson's disease (PD). The bulk degradation of cytoplasmic proteins (including α-synuclein) and organelles (such as mitochondria) is mediated by macroautophagy, which involves the sequestration of cytosolic components into autophagosomes (AP) and its delivery to lysosomes. Accumulation of AP occurs in postmortem brain samples from PD patients, which has been widely attributed to an induction of autophagy. However, the cause and pathogenic significance of these changes remain unknown. Here we found in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of PD that AP accumulation and dopaminergic cell death are preceded by a marked decrease in the amount of lysosomes within dopaminergic neurons. Lysosomal depletion was secondary to the abnormal permeabilization of lysosomal membranes induced by increased mitochondrial-derived reactive oxygen species. Lysosomal permeabilization resulted in a defective clearance and subsequent accumulation of undegraded AP and contributed directly to neurodegeneration by the ectopic release of lysosomal proteases into the cytosol. Lysosomal breakdown and AP accumulation also occurred in PD brain samples, where Lewy bodies were strongly immunoreactive for AP markers. Induction of lysosomal biogenesis by genetic or pharmacological activation of lysosomal transcription factor EB restored lysosomal levels, increased AP clearance and attenuated 1-methyl-4-phenylpyridinium-induced cell death. Similarly, the autophagy-enhancer compound rapamycin attenuated PD-related dopaminergic neurodegeneration, both in vitro and in vivo, by restoring lysosomal levels. Our results indicate that AP accumulation in PD results from defective lysosomal-mediated AP clearance secondary to lysosomal depletion. Restoration of lysosomal levels and function may thus represent a novel neuroprotective strategy in PD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1523/JNEUROSCI.1920-10.2010DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6633458PMC
September 2010

Apoptosis-inducing factor deficiency sensitizes dopaminergic neurons to parkinsonian neurotoxins.

Ann Neurol 2010 Aug;68(2):184-92

Vall d'Hebron Research Institute and Center for Networked Biomedical Research on Neurodegenerative Diseases, Barcelona, Spain.

Objective: Mitochondrial complex I deficits have long been associated with Parkinson disease (PD). However, it remains unknown whether such defects represent a primary event in dopaminergic neurodegeneration.

Methods: Apoptosis-inducing factor (AIF) is a mitochondrial protein that, independently of its proapoptotic properties, plays an essential physiologic role in maintaining a fully functional complex I. We used AIF-deficient harlequin (Hq) mice, which exhibit structural deficits in assembled complex I, to determine whether primary complex I defects linked to AIF depletion may cause dopaminergic neurodegeneration.

Results: Despite marked reductions in mitochondrial complex I protein levels, Hq mice did not display apparent alterations in the dopaminergic nigrostriatal system. However, these animals were much more susceptible to exogenous parkinsonian complex I inhibitors, such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Subtoxic doses of MPTP, unable to cause damage to wild-type animals, produced marked nigrostriatal dopaminergic degeneration in Hq mice. This effect was associated with exacerbated complex I inhibition and increased production of mitochondrial-derived reactive oxygen species (ROS) in Hq brain mitochondria. The antioxidant superoxide dismutase-mimetic compound tempol was able to reverse the increased susceptibility of Hq mice to MPTP. Supporting an instrumental role for mitochondrial-derived ROS in PD-related neurodegeneration, transgenic mice overexpressing mitochondrially targeted catalase exhibited an attenuation of MPTP-induced mitochondrial ROS and dopaminergic cell death.

Interpretation: Structural complex I alterations linked to AIF deficiency do not cause dopaminergic neurodegeneration but increase the susceptibility of dopaminergic neurons to exogenous parkinsonian neurotoxins, reinforcing the concept that genetic and environmental factors may interact in a common molecular pathway to trigger PD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ana.22034DOI Listing
August 2010

Persistent MDMA-induced dopaminergic neurotoxicity in the striatum and substantia nigra of mice.

J Neurochem 2008 Nov 24;107(4):1102-12. Epub 2008 Sep 24.

Instituto Cajal, Consejo Superior de Investigaciones Científicas, CSIC, Madrid, Spain.

Acute administration of repeated doses of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) dramatically reduces striatal dopamine (DA) content, tyrosine hydroxylase (TH), and DA transporter-immunoreactivity in mice. In this study, we show for the first time the spatiotemporal pattern of dopaminergic damage and related molecular events produced by MDMA administration in mice. Our results include the novel finding that MDMA produces a significant decrease in the number of TH-immunoreactive neurons in the substantia nigra (SN). This decrease appears 1 day after injection, remains stable for at least 30 days, and is accompanied by a dose-dependent long-lasting decrease in TH- and DA transporter-immunoreactivity in the striatum, which peaked 1 day after treatment and persisted for at least 30 days, however, some recovery was evident from day 3 onwards, evidencing sprouting of TH fibers. No change is observed in the NAc indicating that MDMA causes selective destruction of DA-containing neurons in the nigrostriatal pathway, sparing the mesolimbic pathway. The expression of Mac-1 increased 1 day after MDMA treatment and glial fibrillary acidic protein increased 3 days post-treatment in the striatum and SN but not in the NAc, in strict anatomical correlation with dopaminergic damage. These data provide the first evidence that MDMA causes persistent loss of dopaminergic cell bodies in the SN.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1471-4159.2008.05705.xDOI Listing
November 2008

Two molecular pathways initiate mitochondria-dependent dopaminergic neurodegeneration in experimental Parkinson's disease.

Proc Natl Acad Sci U S A 2007 May 2;104(19):8161-6. Epub 2007 May 2.

Research Institute-University Hospital Vall d'Hebron, 08035 Barcelona, Spain.

Dysfunction of mitochondrial complex I is associated with a wide spectrum of neurodegenerative disorders, including Parkinson's disease (PD). In rodents, inhibition of complex I leads to degeneration of dopaminergic neurons of the substantia nigra pars compacta (SNpc), as seen in PD, through activation of mitochondria-dependent apoptotic molecular pathways. In this scenario, complex I blockade increases the soluble pool of cytochrome c in the mitochondrial intermembrane space through oxidative mechanisms, whereas activation of pro-cell death protein Bax is actually necessary to trigger neuronal death by permeabilizing the outer mitochondrial membrane and releasing cytochrome c into the cytosol. Activation of Bax after complex I inhibition relies on its transcriptional induction and translocation to the mitochondria. How complex I deficiency leads to Bax activation is currently unknown. Using gene-targeted mice, we show that the tumor suppressor p53 mediates Bax transcriptional induction after PD-related complex I blockade in vivo, but it does not participate in Bax mitochondrial translocation in this model, either by a transcription-independent mechanism or through the induction of BH3-only proteins Puma or Noxa. Instead, Bax mitochondrial translocation in this model relies mainly on the JNK-dependent activation of the BH3-only protein Bim. Targeting either Bax transcriptional induction or Bax mitochondrial translocation results in a marked attenuation of SNpc dopaminergic cell death caused by complex I inhibition. These results provide further insight into the pathogenesis of PD neurodegeneration and identify molecular targets of potential therapeutic significance for this disabling neurological illness.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.0609874104DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1876588PMC
May 2007

Alpha-synuclein overexpression increases cytosolic catecholamine concentration.

J Neurosci 2006 Sep;26(36):9304-11

Department of Neurology, Columbia University Medical Center, New York, New York 10032, USA.

Dysregulation of dopamine homeostasis and elevation of the cytosolic level of the transmitter have been suggested to underlie the vulnerability of catecholaminergic neurons in Parkinson's disease. Because several known mutations in alpha-synuclein or overexpression of the wild-type (WT) protein causes familial forms of Parkinson's disease, we investigated possible links between alpha-synuclein pathogenesis and dopamine homeostasis. Chromaffin cells isolated from transgenic mice that overexpress A30P alpha-synuclein displayed significantly increased cytosolic catecholamine levels as measured by intracellular patch electrochemistry, whereas cells overexpressing the WT protein and those from knock-out animals were not different from controls. Likewise, catechol concentrations were higher in L-DOPA-treated PC12 cells overexpressing A30P or A53T compared with those expressing WT alpha-synuclein, although the ability of cells to maintain a low cytosolic dopamine level after L-DOPA challenge was markedly inhibited by either protein. We also found that incubation with low-micromolar concentrations of WT, A30P, or A53T alpha-synuclein inhibited ATP-dependent maintenance of pH gradients in isolated chromaffin vesicles and that the WT protein was significantly less potent in inducing the proton leakage. In summary, we demonstrate that overexpression of different types of alpha-synuclein disrupts vesicular pH and leads to a marked increase in the levels of cytosolic catechol species, an effect that may in turn trigger cellular oxyradical damage. Although multiple molecular mechanisms may be responsible for the perturbation of cytosolic catecholamine homeostasis, this study provides critical evidence about how alpha-synuclein might exert its cytotoxicity and selectively damage catecholaminergic cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1523/JNEUROSCI.0519-06.2006DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6674515PMC
September 2006

Proteasome inhibition and Parkinson's disease modeling.

Ann Neurol 2006 Aug;60(2):260-4

Department of Neurology, Columbia University, New York, NY, USA.

Impaired proteasome function is a potential mechanism for dopaminergic neuron degeneration. To model this molecular defect, we administered systemically the reversible lipophilic proteasome inhibitor, carbobenzoxy-L-isoleucyl-gamma-t-butyl-L-glutamyl-L-alanyl-L-leucinal (PSI), to rodents. In contrast to a previous report, this approach failed to cause any detectable behavioral or neuropathological abnormality in either rats or mice. Although theoretically appealing, this specific model of Parkinson's disease appears to exhibit poor reproducibility.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ana.20937DOI Listing
August 2006

Toxin-induced models of Parkinson's disease.

NeuroRx 2005 Jul;2(3):484-94

Department of Neurology, Columbia University, New York, New York 10032, USA.

Parkinson's disease (PD) is a common neurodegenerative disease that appears essentially as a sporadic condition. It results mainly from the death of dopaminergic neurons in the substantia nigra. PD etiology remains mysterious, whereas its pathogenesis begins to be understood as a multifactorial cascade of deleterious factors. Most insights into PD pathogenesis come from investigations performed in experimental models of PD, especially those produced by neurotoxins. Although a host of natural and synthetic molecules do exert deleterious effects on dopaminergic neurons, only a handful are used in living laboratory animals to recapitulate some of the hallmarks of PD. In this review, we discuss what we believe are the four most popular parkinsonian neurotoxins, namely 6-hydroxydopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), rotenone, and paraquat. The main goal is to provide an updated summary of the main characteristics of each of these four neurotoxins. However, we also try to provide the reader with an idea about the various strengths and the weaknesses of these neurotoxic models.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1144492PMC
http://dx.doi.org/10.1602/neurorx.2.3.484DOI Listing
July 2005

Neuroprotection induced by the adenosine A2A antagonist CSC in the 6-OHDA rat model of parkinsonism: effect on the activity of striatal output pathways.

Exp Brain Res 2005 Sep 21;165(3):362-74. Epub 2005 Jun 21.

Laboratori de Neurologia Experimental, Area de Neurociències, Fundació Clinic-Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villarroel 170, 08036 Barcelona, Spain.

In Parkinson's disease (PD), the striatal dopamine depletion and the following overactivation of the indirect pathway of the basal ganglia leads to very early disinhibition of the subthalamic nucleus (STN) that may contribute to the progression of PD by glutamatergic overstimulation of the dopaminergic neurons in the substantia nigra. Adenosine A2A antagonism has been demonstrated to attenuate the overactivity of the striatopallidal pathway. To investigate whether neuroprotection exerted by the A2A antagonist 8-(3-chlorostyryl)caffeine (CSC) correlates with a diminution of the striatopallidal pathway activity, we have examined the changes in the mRNA encoding for enkephalin, dynorphin, and adenosine A2A receptors by in situ hybridization induced by subacute systemic pretreatment with CSC in rats with striatal 6-hydroxydopamine(6-OHDA) administration. Animals received CSC for 7 days until 30 min before 6-OHDA intrastriatal administration. Vehicle-treated group received a solution of dimethyl sulfoxide. CSC pretreatment partially attenuated the decrease in nigral tyrosine hydroxylase immunoreactivity induced by 6-OHDA, whereas no modification of the increase in preproenkephalin mRNA expression in the dorsolateral striatum was observed. The neuroprotective effect of the adenosine A2A antagonist CSC in striatal 6-OHDA-lesioned rats does not result from a normalization of the increase in striatal PPE mRNA expression in the DL striatum, suggesting that other different mechanisms may be involved.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00221-005-2302-1DOI Listing
September 2005

Bilateral subthalamic nucleus lesion reverses L-dopa-induced motor fluctuations and facilitates dyskinetic movements in hemiparkinsonian rats.

Synapse 2004 Feb;51(2):140-50

Laboratori de Neurologia Experimental, Fundació Clínic-Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.

Glutamatergic overactivity might be involved in L-dopa-induced motor complications since glutamate antagonists reverse and prevent L-dopa-induced shortening in motor response duration in 6-hydroxydopamine-lesioned (6-OHDA) rats and improve L-dopa-induced dyskinesias in parkinsonian monkeys and in patients with Parkinson's disease (PD). An increase in the subthalamic nucleus (STN) glutamatergic activity is believed to contribute to the pathophysiology of PD. However, the role of STN activity in L-dopa-induced motor complications is not so clear. In this study, the effect of STN lesions on L-dopa-induced motor response complications was investigated in rats with a nigrostriatal pathway lesion induced by 6-OHDA. Animals were injected with 6-OHDA in the medial forebrain bundle and treated with L-dopa or saline for 22 days. On day 16, animals were randomly distributed in groups that underwent surgery in the STN ipsilateral or contralateral to 6-OHDA lesion, or bilateral. Rotational behavior was measured on days 1, 15, and 22. Attenuation of STN activity by contralateral and bilateral, but not ipsilateral, STN lesion reversed the shortening in motor response duration induced by L-dopa. L-dopa administration, but not saline, induced prominent dyskinesias in 6-OHDA-lesioned rats with additional bilateral STN lesions. The results indicate that bilateral lesions of STN potentiate the duration of L-dopa-induced motor response and facilitate chronic L-dopa-induced abnormal involuntary movements in 6-OHDA-lesioned rats. The characteristics of the abnormal involuntary movements observed in these animals are similar to L-dopa-induced dyskinesias in parkinsonian patients and might be useful as an experimental model for the study of L-dopa-induced dyskinesia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/syn.10291DOI Listing
February 2004

Intranigral infusion of interleukin-1beta activates astrocytes and protects from subsequent 6-hydroxydopamine neurotoxicity.

J Neurochem 2003 May;85(3):651-61

Experimental Neurology Laboratory, Neurological Service, Fundació Clínic, IDIBAPS, Barcelona, Spain.

Activation of glial cells is a prevalent response to neuronal damage in brain disease and ageing, with potential neuroprotective and neurotoxic consequences. We were interested in studying the role of glial activation on dopaminergic neurons of the substantia nigra in an animal model of Parkinson's disease. Thus, we evaluated the effect of a pre-existing glial activation on the dopaminergic neuronal death induced by striatal infusion of 6-hydroxydopamine. We established a model of local glial activation by stereotaxic infusion of interleukin-1beta in the substantia nigra of adult rats. Interleukin-1beta (20 ng) induced a marked activation of astrocytes at days 2, 5 and 10, revealed by heat-shock protein 27 and glial fibrillary acid protein immunohistochemistry, but did not affect the microglial markers OX-42 and heat-shock proteins 32 or 47. Intranigral infusion of interleukin-1beta 5 days before a striatal injection of 6-hydroxydopamine significantly protected nigral dopaminergic cell bodies, but not striatal terminals from the 6-hydroxydopamine lesion. Also, in the animals pre-treated with interleukin-1beta, a significant prevention of 6-hydroxydopamine-induced reduction of adjusting steps, but not of 6-hydroxydopamine-induced amphetamine rotations, were observed. These data show the characterization of a novel model of local astroglial activation in the substantia nigra and support the hypothesis of a neuroprotective role of activated astrocytes in Parkinson's disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1471-4159.2003.01676.xDOI Listing
May 2003