Publications by authors named "Jordan Quenneville"

2 Publications

  • Page 1 of 1

A hydride transfer complex reprograms NAD metabolism and bypasses senescence.

Mol Cell 2021 09;81(18):3848-3865.e19

CRCHUM, 900 Saint-Denis St, Montréal, QC H2X 0A9, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3C 3J7, Canada. Electronic address:

Metabolic rewiring and redox balance play pivotal roles in cancer. Cellular senescence is a barrier for tumorigenesis circumvented in cancer cells by poorly understood mechanisms. We report a multi-enzymatic complex that reprograms NAD metabolism by transferring reducing equivalents from NADH to NADP. This hydride transfer complex (HTC) is assembled by malate dehydrogenase 1, malic enzyme 1, and cytosolic pyruvate carboxylase. HTC is found in phase-separated bodies in the cytosol of cancer or hypoxic cells and can be assembled in vitro with recombinant proteins. HTC is repressed in senescent cells but induced by p53 inactivation. HTC enzymes are highly expressed in mouse and human prostate cancer models, and their inactivation triggers senescence. Exogenous expression of HTC is sufficient to bypass senescence, rescue cells from complex I inhibitors, and cooperate with oncogenic RAS to transform primary cells. Altogether, we provide evidence for a new multi-enzymatic complex that reprograms metabolism and overcomes cellular senescence.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molcel.2021.08.028DOI Listing
September 2021

The sequence features that define efficient and specific hAGO2-dependent miRNA silencing guides.

Nucleic Acids Res 2018 09;46(16):8181-8196

Institut de recherche en immunologie et en cancérologie (IRIC), Université de Montréal, Montréal, Québec H3C 3J7, Canada.

MicroRNAs (miRNAs) are ribonucleic acids (RNAs) of ∼21 nucleotides that interfere with the translation of messenger RNAs (mRNAs) and play significant roles in development and diseases. In bilaterian animals, the specificity of miRNA targeting is determined by sequence complementarity involving the seed. However, the role of the remaining nucleotides (non-seed) is only vaguely defined, impacting negatively on our ability to efficiently use miRNAs exogenously to control gene expression. Here, using reporter assays, we deciphered the role of the base pairs formed between the non-seed region and target mRNA. We used molecular modeling to reveal that this mechanism corresponds to the formation of base pairs mediated by ordered motions of the miRNA-induced silencing complex. Subsequently, we developed an algorithm based on this distinctive recognition to predict from sequence the levels of mRNA downregulation with high accuracy (r2 > 0.5, P-value < 10-12). Overall, our discovery improves the design of miRNA-guide sequences used to simultaneously downregulate the expression of multiple predetermined target genes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/nar/gky546DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6144789PMC
September 2018
-->