Publications by authors named "Jonathan F Gill"

7 Publications

  • Page 1 of 1

PGC-1β-expressing POMC neurons mediate the effect of leptin on thermoregulation in the mouse.

Sci Rep 2020 10 15;10(1):16888. Epub 2020 Oct 15.

Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056, Basel, Switzerland.

The arcuate nucleus (ARC) of the hypothalamus is a key regulator of food intake, brown adipose tissue (BAT) thermogenesis, and locomotor activity. Whole-body deficiency of the transcriptional coactivator peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1β (PGC-1β) disrupts mouse circadian locomotor activity and BAT-regulated thermogenesis, in association with altered gene expression at the central level. We examined whether PGC-1β expression in the ARC is required for proper energy balance and locomotor behavior by generating mice lacking the PGC-1β gene specifically in pro-opiomelanocortin (POMC) neurons. POMC neuron-specific deletion of PGC-1β did not impact locomotor behavior, food intake, body composition, energy fuel utilization and metabolic rate in fed, 24-h fasted and 24-h refed conditions. In contrast, in the fed state, deletion of PGC-1β in POMC cells elevated core body temperature during the nighttime period. Importantly, this higher body temperature is not associated with changes in BAT function and gene expression. Conversely, we provide evidence that mice lacking PGC-1β in POMC neurons are more sensitive to the effect of leptin on heat dissipation. Our data indicate that PGC-1β-expressing POMC neurons are part of a circuit controlling body temperature homeostasis and that PGC-1β function in these neurons is involved in the thermoregulatory effect of leptin.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-020-73794-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7567876PMC
October 2020

BDNF is a mediator of glycolytic fiber-type specification in mouse skeletal muscle.

Proc Natl Acad Sci U S A 2019 08 18;116(32):16111-16120. Epub 2019 Jul 18.

Biozentrum, University of Basel, CH-4056 Basel, Switzerland;

Brain-derived neurotrophic factor (BDNF) influences the differentiation, plasticity, and survival of central neurons and likewise, affects the development of the neuromuscular system. Besides its neuronal origin, BDNF is also a member of the myokine family. However, the role of skeletal muscle-derived BDNF in regulating neuromuscular physiology in vivo remains unclear. Using gain- and loss-of-function animal models, we show that muscle-specific ablation of BDNF shifts the proportion of muscle fibers from type IIB to IIX, concomitant with elevated slow muscle-type gene expression. Furthermore, BDNF deletion reduces motor end plate volume without affecting neuromuscular junction (NMJ) integrity. These morphological changes are associated with slow muscle function and a greater resistance to contraction-induced fatigue. Conversely, BDNF overexpression promotes a fast muscle-type gene program and elevates glycolytic fiber number. These findings indicate that BDNF is required for fiber-type specification and provide insights into its potential modulation as a therapeutic target in muscle diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1900544116DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6690026PMC
August 2019

Peroxisome proliferator-activated receptor γ coactivator 1α regulates mitochondrial calcium homeostasis, sarcoplasmic reticulum stress, and cell death to mitigate skeletal muscle aging.

Aging Cell 2019 10 10;18(5):e12993. Epub 2019 Jul 10.

Biozentrum, Division of Pharmacology/Neurobiology, University of Basel, Basel, Switzerland.

Age-related impairment of muscle function severely affects the health of an increasing elderly population. While causality and the underlying mechanisms remain poorly understood, exercise is an efficient intervention to blunt these aging effects. We thus investigated the role of the peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a potent regulator of mitochondrial function and exercise adaptation, in skeletal muscle during aging. We demonstrate that PGC-1α overexpression improves mitochondrial dynamics and calcium buffering in an estrogen-related receptor α-dependent manner. Moreover, we show that sarcoplasmic reticulum stress is attenuated by PGC-1α. As a result, PGC-1α prevents tubular aggregate formation and cell death pathway activation in old muscle. Similarly, the pro-apoptotic effects of ceramide and thapsigargin were blunted by PGC-1α in muscle cells. Accordingly, mice with muscle-specific gain-of-function and loss-of-function of PGC-1α exhibit a delayed and premature aging phenotype, respectively. Together, our data reveal a key protective effect of PGC-1α on muscle function and overall health span in aging.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/acel.12993DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6718523PMC
October 2019

Moderate Modulation of Cardiac PGC-1α Expression Partially Affects Age-Associated Transcriptional Remodeling of the Heart.

Front Physiol 2018 21;9:242. Epub 2018 Mar 21.

Biozentrum, University of Basel, Basel, Switzerland.

Aging is associated with a decline in cardiac function due to a decreased myocardial reserve. This adverse cardiac remodeling comprises of a variety of changes, including a reduction in mitochondrial function and a decline in the expression of the peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a central regulator of mitochondrial biogenesis and metabolic adaptation in the myocardium. To study the etiological involvement of PGC-1α in cardiac aging, we used mouse models mimicking the modest down- and upregulation of this coactivator in the old and the exercised heart, respectively. Young mice with reduced cardiac expression of PGC-1α recapitulated part of the age-related impairment in mitochondrial gene expression, but otherwise did not aggravate the aging process. Inversely however, moderate overexpression of PGC-1α counteracts numerous key age-related remodeling changes, e.g., by improving blood pressure, age-associated apoptosis, and collagen accumulation, as well as in the expression of many, but not all cardiac genes involved in mitochondrial biogenesis, dynamics, metabolism, calcium handling and contractility. Thus, while the reduction of PGC-1α in the heart is insufficient to cause an aging phenotype, moderate overexpression reduces pathological remodeling of older hearts and could thereby contribute to the beneficial effects of exercise on cardiac function in aging.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fphys.2018.00242DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5871735PMC
March 2018

PGC-1α affects aging-related changes in muscle and motor function by modulating specific exercise-mediated changes in old mice.

Aging Cell 2018 02 25;17(1). Epub 2017 Oct 25.

Biozentrum, University of Basel, Basel, Switzerland.

The age-related impairment in muscle function results in a drastic decline in motor coordination and mobility in elderly individuals. Regular physical activity is the only efficient intervention to prevent and treat this age-associated degeneration. However, the mechanisms that underlie the therapeutic effect of exercise in this context remain unclear. We assessed whether endurance exercise training in old age is sufficient to affect muscle and motor function. Moreover, as muscle peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) is a key regulatory hub in endurance exercise adaptation with decreased expression in old muscle, we studied the involvement of PGC-1α in the therapeutic effect of exercise in aging. Intriguingly, PGC-1α muscle-specific knockout and overexpression, respectively, precipitated and alleviated specific aspects of aging-related deterioration of muscle function in old mice, while other muscle dysfunctions remained unchanged upon PGC-1α modulation. Surprisingly, we discovered that muscle PGC-1α was not only involved in improving muscle endurance and mitochondrial remodeling, but also phenocopied endurance exercise training in advanced age by contributing to maintaining balance and motor coordination in old animals. Our data therefore suggest that the benefits of exercise, even when performed at old age, extend beyond skeletal muscle and are at least in part mediated by PGC-1α.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/acel.12697DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5770876PMC
February 2018

PGC-1α expression in murine AgRP neurons regulates food intake and energy balance.

Mol Metab 2016 Jul 18;5(7):580-588. Epub 2016 May 18.

Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland. Electronic address:

Objective: Food intake and whole-body energy homeostasis are controlled by agouti-related protein (AgRP) and pro-opiomelanocortin (POMC) neurons located in the arcuate nucleus of the hypothalamus. Key energy sensors, such as the AMP-activated protein kinase (AMPK) or sirtuin 1 (SIRT1), are essential in AgRP and POMC cells to ensure proper energy balance. In peripheral tissues, the transcriptional coactivator PGC-1α closely associates with these sensors to regulate cellular metabolism. The role of PGC-1α in the ARC nucleus, however, remains unknown.

Methods: Using AgRP and POMC neurons specific knockout (KO) mouse models we studied the consequences of PGC-1α deletion on metabolic parameters during fed and fasted states and on ghrelin and leptin responses. We also took advantage of an immortalized AgRP cell line to assess the impact of PGC-1α modulation on fasting induced AgRP expression.

Results: PGC-1α is dispensable for POMC functions in both fed and fasted states. In stark contrast, mice carrying a specific deletion of PGC-1α in AgRP neurons display increased adiposity concomitant with significantly lower body temperature and RER values during nighttime. In addition, the absence of PGC-1α in AgRP neurons reduces food intake in the fed and fasted states and alters the response to leptin. Finally, both in vivo and in an immortalized AgRP cell line, PGC-1α modulates AgRP expression induction upon fasting.

Conclusions: Collectively, our results highlight a role for PGC-1α in the regulation of AgRP neuronal functions in the control of food intake and peripheral metabolism.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molmet.2016.05.008DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4921790PMC
July 2016

Photoaffinity labeling the propofol binding site in GLIC.

Biochemistry 2014 Jan 30;53(1):135-42. Epub 2013 Dec 30.

Department of Neurobiology, Harvard Medical School , Boston, Massachusetts 02115, United States.

Propofol, an intravenous general anesthetic, produces many of its anesthetic effects in vivo by potentiating the responses of GABA type A receptors (GABAAR), members of the superfamily of pentameric ligand-gated ion channels (pLGICs) that contain anion-selective channels. Propofol also inhibits pLGICs containing cation-selective channels, including nicotinic acetylcholine receptors and GLIC, a prokaryotic proton-gated homologue from Gloeobacter violaceus . In the structure of GLIC cocrystallized with propofol at pH 4 (presumed open/desensitized states), propofol was localized to an intrasubunit pocket at the extracellular end of the transmembrane domain within the bundle of transmembrane α-helices (Nury, H, et al. (2011) Nature 469, 428-431). To identify propofol binding sites in GLIC in solution, we used a recently developed photoreactive propofol analogue (2-isopropyl-5-[3-(trifluoromethyl)-3H-diazirin-3-yl]phenol or AziPm) that acts as an anesthetic in vivo and potentiates GABAAR in vitro. For GLIC expressed in Xenopus oocytes, propofol and AziPm inhibited current responses at pH 5.5 (EC20) with IC50 values of 20 and 50 μM, respectively. When [(3)H]AziPm (7 μM) was used to photolabel detergent-solubilized, affinity-purified GLIC at pH 4.4, protein microsequencing identified propofol-inhibitable photolabeling of three residues in the GLIC transmembrane domain: Met-205, Tyr-254, and Asn-307 in the M1, M3, and M4 transmembrane helices, respectively. Thus, for GLIC in solution, propofol and AziPm bind competitively to a site in proximity to these residues, which, in the GLIC crystal structure, are in contact with the propofol bound in the intrasubunit pocket.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi401492kDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3935609PMC
January 2014