Publications by authors named "Jonathan Deeks"

205 Publications

QUADAS-C: A Tool for Assessing Risk of Bias in Comparative Diagnostic Accuracy Studies.

Ann Intern Med 2021 Oct 26. Epub 2021 Oct 26.

Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands (B.Y., M.M.G.L.).

Comparative diagnostic test accuracy studies assess and compare the accuracy of 2 or more tests in the same study. Although these studies have the potential to yield reliable evidence regarding comparative accuracy, shortcomings in the design, conduct, and analysis may bias their results. The currently recommended quality assessment tool for diagnostic test accuracy studies, QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies-2), is not designed for the assessment of test comparisons. The QUADAS-C (Quality Assessment of Diagnostic Accuracy Studies-Comparative) tool was developed as an extension of QUADAS-2 to assess the risk of bias in comparative diagnostic test accuracy studies. Through a 4-round Delphi study involving 24 international experts in test evaluation and a face-to-face consensus meeting, an initial version of the tool was developed that was revised and finalized following a pilot study among potential users. The QUADAS-C tool retains the same 4-domain structure of QUADAS-2 (Patient Selection, Index Test, Reference Standard, and Flow and Timing) and comprises additional questions to each QUADAS-2 domain. A risk-of-bias judgment for comparative accuracy requires a risk-of-bias judgment for the accuracy of each test (resulting from QUADAS-2) and additional criteria specific to test comparisons. Examples of such additional criteria include whether participants either received all index tests or were randomly assigned to index tests, and whether index tests were interpreted with blinding to the results of other index tests. The QUADAS-C tool will be useful for systematic reviews of diagnostic test accuracy addressing comparative questions. Furthermore, researchers may use this tool to identify and avoid risk of bias when designing a comparative diagnostic test accuracy study.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.7326/M21-2234DOI Listing
October 2021

Effect of Exercise on Motor Symptoms in Patients With Parkinson's Disease: A Network Meta-analysis.

J Geriatr Phys Ther 2021 Aug 12. Epub 2021 Aug 12.

Social and Health Research Center, Universidad de Castilla-La Mancha, Cuenca, Spain. Universidad Politécnica y Artística del Paraguay, Asunción, Paraguay. Institute of Applied Health Research, University of Birmingham, Birmingham, England. Rehabilitation in Health Research Center (CIRES), Universidad de las Americas, Santiago, Chile. Universidad Autónoma de Chile, Facultad de Ciencias de la Salud, Talca, Chile.

Background: Although the pharmacological approach may help with motor symptoms in Parkinson's disease (PD), they are clearly not the complete solution. Thus, for the treatment of PD motor symptoms, physical activity has been proposed as an effective intervention.

Methods: A systematic search in MEDLINE, Web of Science, Scopus, and Cochrane Central Register of Controlled Trials databases was conducted to identify randomized controlled trials testing the effectiveness of exercise interventions on motor symptoms of PD. Physical exercise interventions were divided into 9 categories: endurance, resistance, combined, balance, dance, alternative exercises, body weight supported, sensorimotor interventions including endurance exercise, and sensorimotor interventions not including endurance exercise. A pairwise meta-analysis for direct and indirect comparisons between intervention and control/nonintervention groups was carried out.

Results: Fifty-six studies met the inclusion criteria, including 2740 participants, aged between 57.6 and 77.7 years. Results of our analyses showed that sensorimotor training including endurance (effect size [ES]-1.09; 95% confidence interval [CI], -1.68 to -0.50), resistance (ES-0.82; 95% CI, -1.23 to -0.41), and dance (ES-0.64; 95% CI, -1.24 to -0.05) were the most effective physical activity interventions for mitigating PD motor symptoms.

Conclusion: Physical activity interventions are an effective strategy for the management of motor symptoms in patients with PD. Among the different exercise intervention programs, those including more complex and demanding activities (sensorimotor training including endurance, resistance, and dance) seem to be the most effective physical activity interventions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1519/JPT.0000000000000322DOI Listing
August 2021

Point-of-care tests detecting HIV nucleic acids for diagnosis of HIV-1 or HIV-2 infection in infants and children aged 18 months or less.

Cochrane Database Syst Rev 2021 08 12;8:CD013207. Epub 2021 Aug 12.

UCL Centre for Medical Imaging, Division of Medicine, Faculty of Medical Sciences, University College London, London, UK.

Background: The standard method of diagnosing HIV in infants and children less than 18 months is with a nucleic acid amplification test reverse transcriptase polymerase chain reaction test (NAT RT-PCR) detecting viral ribonucleic acid (RNA). Laboratory testing using the RT-PCR platform for HIV infection is limited by poor access, logistical support, and delays in relaying test results and initiating therapy in low-resource settings. The use of rapid diagnostic tests at or near the point-of-care (POC) can increase access to early diagnosis of HIV infection in infants and children less than 18 months of age and timely initiation of antiretroviral therapy (ART).

Objectives: To summarize the diagnostic accuracy of point-of-care nucleic acid-based testing (POC NAT) to detect HIV-1/HIV-2 infection in infants and children aged 18 months or less exposed to HIV infection.

Search Methods: We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (until 2 February 2021), MEDLINE and Embase (until 1 February 2021), and LILACS and Web of Science (until 2 February 2021) with no language or publication status restriction. We also searched conference websites and clinical trial registries, tracked reference lists of included studies and relevant systematic reviews, and consulted experts for potentially eligible studies.

Selection Criteria: We defined POC tests as rapid diagnostic tests conducted at or near the patient site. We included any primary study that compared the results of a POC NAT to a reference standard of laboratory NAT RT-PCR or total nucleic acid testing to detect the presence or absence of HIV infection denoted by HIV viral nucleic acids in infants and children aged 18 months or less who were exposed to HIV-1/HIV-2 infection. We included cross-sectional, prospective, and retrospective study designs and those that provided sufficient data to create the 2 × 2 table to calculate sensitivity and specificity. We excluded diagnostic case control studies with healthy controls.

Data Collection And Analysis: We extracted information on study characteristics using a pretested standardized data extraction form. We used the QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies) tool to assess the risk of bias and applicability concerns of the included studies. Two review authors independently selected and assessed the included studies, resolving any disagreements by consensus. The unit of analysis was the participant. We first conducted preliminary exploratory analyses by plotting estimates of sensitivity and specificity from each study on forest plots and in receiver operating characteristic (ROC) space. For the overall meta-analyses, we pooled estimates of sensitivity and specificity using the bivariate meta-analysis model at a common threshold (presence or absence of infection).

Main Results: We identified a total of 12 studies (15 evaluations, 15,120 participants). All studies were conducted in sub-Saharan Africa. The ages of included infants and children in the evaluations were as follows: at birth (n = 6), ≤ 12 months (n = 3), ≤ 18 months (n = 5), and ≤ 24 months (n = 1). Ten evaluations were field evaluations of the POC NAT test at the point of care, and five were laboratory evaluations of the POC NAT tests.The POC NAT tests evaluated included Alere q HIV-1/2 Detect qualitative test (recently renamed m-PIMA q HIV-1/2 Detect qualitative test) (n = 6), Xpert HIV-1 qualitative test (n = 6), and SAMBA HIV-1 qualitative test (n = 3). POC NAT pooled sensitivity and specificity (95% confidence interval (CI)) against laboratory reference standard tests were 98.6% (96.1 to 99.5) (15 evaluations, 1728 participants) and 99.9% (99.7 to 99.9) (15 evaluations, 13,392 participants) in infants and children ≤ 18 months. Risk of bias in the included studies was mostly low or unclear due to poor reporting. Five evaluations had some concerns for applicability for the index test, as they were POC tests evaluated in a laboratory setting, but there was no difference detected between settings in sensitivity (-1.3% (95% CI -4.1 to 1.5)); and specificity results were similar.

Authors' Conclusions: For the diagnosis of HIV-1/HIV-2 infection, we found the sensitivity and specificity of POC NAT tests to be high in infants and children aged 18 months or less who were exposed to HIV infection.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/14651858.CD013207.pub2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8406580PMC
August 2021

Defining the Role of Cellular Immune Signatures in Diagnostic Evaluation of Suspected Tuberculosis.

J Infect Dis 2021 Jul 31. Epub 2021 Jul 31.

TB Research Centre, National Heart and Lung Institute, Imperial College London, London, United Kingdom.

Background: Diagnosis of paucibacillary tuberculosis (TB) including extrapulmonary TB is a significant challenge, particularly in high-income, low-incidence settings. Measurement of Mycobacterium tuberculosis (Mtb)-specific cellular immune signatures by flow cytometry discriminates active TB from latent TB infection (LTBI) in case-control studies; however, their diagnostic accuracy and clinical utility in routine clinical practice is unknown.

Methods: Using a nested case-control study design within a prospective multicenter cohort of patients presenting with suspected TB in England, we assessed diagnostic accuracy of signatures in 134 patients who tested interferon-gamma release assay (IGRA)-positive and had final diagnoses of TB or non-TB diseases with coincident LTBI. Cellular signatures were measured using flow cytometry.

Results: All signatures performed less well than previously reported. Only signatures incorporating measurement of phenotypic markers on functional Mtb-specific CD4 T cells discriminated active TB from non-TB diseases with LTBI. The signatures measuring HLA-DR+IFNγ + CD4 T cells and CD45RA-CCR7-CD127- IFNγ -IL-2-TNFα + CD4 T cells performed best with 95% positive predictive value (95% confidence interval, 90-97) in the clinically challenging subpopulation of IGRA-positive but acid-fast bacillus (AFB) smear-negative TB suspects.

Conclusions: Two cellular immune signatures could improve and accelerate diagnosis in the challenging group of patients who are IGRA-positive, AFB smear-negative, and have paucibacillary TB.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/infdis/jiab311DOI Listing
July 2021

Validation testing to determine the sensitivity of lateral flow testing for asymptomatic SARS-CoV-2 detection in low prevalence settings: Testing frequency and public health messaging is key.

PLoS Biol 2021 04 29;19(4):e3001216. Epub 2021 Apr 29.

Institute of Microbiology and Infection, College of Medical and Dental Science, University of Birmingham, Birmingham, United Kingdom.

Lateral flow devices (LFDs) are quickly being implemented for use in large-scale population surveillance programs for SARS-CoV-2 infection in the United Kingdom. These programs have been piloted in city-wide screening in the city of Liverpool and are now being rolled out to support care home visits and the return home of University students for the Christmas break. Here, we present data on the performance of LFDs to test almost 8,000 students at the University of Birmingham between December 2 and December 9, 2020. The performance is validated against almost 800 samples using PCR performed in the University Pillar 2 testing lab and theoretically validated on thousands of Pillar 2 PCR testing results performed on low-prevalence care home testing samples. Our data show that LFDs do not detect infections presenting with PCR Ct values over 29 to 30 as determined using the Thermo Fisher TaqPath asssay. This may be of particular importance in detecting individuals that are either at the early, or late stages of infection, and reinforces the need for frequent, recurrent testing.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.pbio.3001216DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8112643PMC
April 2021

Comment on "A Modern Assessment of Cancer Risk in Adrenal Incidentalomas: Analysis of 2219 Patients" by Kahramangil B et al.

Ann Surg 2021 Feb 26. Epub 2021 Feb 26.

Institute of Metabolism and Systems Research and Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK Division of Endocrinology, Diabetes, Metabolism and Nutrition3, Mayo Clinic, Rochester, MN, USA Institute of Metabolism and Systems Research and Institute of Metabolism and Systems Research and Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, Groningen, The Netherlands Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK Institute of Metabolism and Systems Research and NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/SLA.0000000000004804DOI Listing
February 2021

Rapid, point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection.

Cochrane Database Syst Rev 2021 03 24;3:CD013705. Epub 2021 Mar 24.

NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK.

Background: Accurate rapid diagnostic tests for SARS-CoV-2 infection could contribute to clinical and public health strategies to manage the COVID-19 pandemic. Point-of-care antigen and molecular tests to detect current infection could increase access to testing and early confirmation of cases, and expediate clinical and public health management decisions that may reduce transmission.

Objectives: To assess the diagnostic accuracy of point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection. We consider accuracy separately in symptomatic and asymptomatic population groups.

Search Methods: Electronic searches of the Cochrane COVID-19 Study Register and the COVID-19 Living Evidence Database from the University of Bern (which includes daily updates from PubMed and Embase and preprints from medRxiv and bioRxiv) were undertaken on 30 Sept 2020. We checked repositories of COVID-19 publications and included independent evaluations from national reference laboratories, the Foundation for Innovative New Diagnostics and the Diagnostics Global Health website to 16 Nov 2020. We did not apply language restrictions.

Selection Criteria: We included studies of people with either suspected SARS-CoV-2 infection, known SARS-CoV-2 infection or known absence of infection, or those who were being screened for infection. We included test accuracy studies of any design that evaluated commercially produced, rapid antigen or molecular tests suitable for a point-of-care setting (minimal equipment, sample preparation, and biosafety requirements, with results within two hours of sample collection). We included all reference standards that define the presence or absence of SARS-CoV-2 (including reverse transcription polymerase chain reaction (RT-PCR) tests and established diagnostic criteria).

Data Collection And Analysis: Studies were screened independently in duplicate with disagreements resolved by discussion with a third author. Study characteristics were extracted by one author and checked by a second; extraction of study results and assessments of risk of bias and applicability (made using the QUADAS-2 tool) were undertaken independently in duplicate. We present sensitivity and specificity with 95% confidence intervals (CIs) for each test and pooled data using the bivariate model separately for antigen and molecular-based tests. We tabulated results by test manufacturer and compliance with manufacturer instructions for use and according to symptom status.

Main Results: Seventy-eight study cohorts were included (described in 64 study reports, including 20 pre-prints), reporting results for 24,087 samples (7,415 with confirmed SARS-CoV-2). Studies were mainly from Europe (n = 39) or North America (n = 20), and evaluated 16 antigen and five molecular assays. We considered risk of bias to be high in 29 (50%) studies because of participant selection; in 66 (85%) because of weaknesses in the reference standard for absence of infection; and in 29 (45%) for participant flow and timing. Studies of antigen tests were of a higher methodological quality compared to studies of molecular tests, particularly regarding the risk of bias for participant selection and the index test. Characteristics of participants in 35 (45%) studies differed from those in whom the test was intended to be used and the delivery of the index test in 39 (50%) studies differed from the way in which the test was intended to be used. Nearly all studies (97%) defined the presence or absence of SARS-CoV-2 based on a single RT-PCR result, and none included participants meeting case definitions for probable COVID-19. Antigen tests Forty-eight studies reported 58 evaluations of antigen tests. Estimates of sensitivity varied considerably between studies. There were differences between symptomatic (72.0%, 95% CI 63.7% to 79.0%; 37 evaluations; 15530 samples, 4410 cases) and asymptomatic participants (58.1%, 95% CI 40.2% to 74.1%; 12 evaluations; 1581 samples, 295 cases). Average sensitivity was higher in the first week after symptom onset (78.3%, 95% CI 71.1% to 84.1%; 26 evaluations; 5769 samples, 2320 cases) than in the second week of symptoms (51.0%, 95% CI 40.8% to 61.0%; 22 evaluations; 935 samples, 692 cases). Sensitivity was high in those with cycle threshold (Ct) values on PCR ≤25 (94.5%, 95% CI 91.0% to 96.7%; 36 evaluations; 2613 cases) compared to those with Ct values >25 (40.7%, 95% CI 31.8% to 50.3%; 36 evaluations; 2632 cases). Sensitivity varied between brands. Using data from instructions for use (IFU) compliant evaluations in symptomatic participants, summary sensitivities ranged from 34.1% (95% CI 29.7% to 38.8%; Coris Bioconcept) to 88.1% (95% CI 84.2% to 91.1%; SD Biosensor STANDARD Q). Average specificities were high in symptomatic and asymptomatic participants, and for most brands (overall summary specificity 99.6%, 95% CI 99.0% to 99.8%). At 5% prevalence using data for the most sensitive assays in symptomatic people (SD Biosensor STANDARD Q and Abbott Panbio), positive predictive values (PPVs) of 84% to 90% mean that between 1 in 10 and 1 in 6 positive results will be a false positive, and between 1 in 4 and 1 in 8 cases will be missed. At 0.5% prevalence applying the same tests in asymptomatic people would result in PPVs of 11% to 28% meaning that between 7 in 10 and 9 in 10 positive results will be false positives, and between 1 in 2 and 1 in 3 cases will be missed. No studies assessed the accuracy of repeated lateral flow testing or self-testing. Rapid molecular assays Thirty studies reported 33 evaluations of five different rapid molecular tests. Sensitivities varied according to test brand. Most of the data relate to the ID NOW and Xpert Xpress assays. Using data from evaluations following the manufacturer's instructions for use, the average sensitivity of ID NOW was 73.0% (95% CI 66.8% to 78.4%) and average specificity 99.7% (95% CI 98.7% to 99.9%; 4 evaluations; 812 samples, 222 cases). For Xpert Xpress, the average sensitivity was 100% (95% CI 88.1% to 100%) and average specificity 97.2% (95% CI 89.4% to 99.3%; 2 evaluations; 100 samples, 29 cases). Insufficient data were available to investigate the effect of symptom status or time after symptom onset.

Authors' Conclusions: Antigen tests vary in sensitivity. In people with signs and symptoms of COVID-19, sensitivities are highest in the first week of illness when viral loads are higher. The assays shown to meet appropriate criteria, such as WHO's priority target product profiles for COVID-19 diagnostics ('acceptable' sensitivity ≥ 80% and specificity ≥ 97%), can be considered as a replacement for laboratory-based RT-PCR when immediate decisions about patient care must be made, or where RT-PCR cannot be delivered in a timely manner. Positive predictive values suggest that confirmatory testing of those with positive results may be considered in low prevalence settings. Due to the variable sensitivity of antigen tests, people who test negative may still be infected. Evidence for testing in asymptomatic cohorts was limited. Test accuracy studies cannot adequately assess the ability of antigen tests to differentiate those who are infectious and require isolation from those who pose no risk, as there is no reference standard for infectiousness. A small number of molecular tests showed high accuracy and may be suitable alternatives to RT-PCR. However, further evaluations of the tests in settings as they are intended to be used are required to fully establish performance in practice. Several important studies in asymptomatic individuals have been reported since the close of our search and will be incorporated at the next update of this review. Comparative studies of antigen tests in their intended use settings and according to test operator (including self-testing) are required.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/14651858.CD013705.pub2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8078597PMC
March 2021

Thoracic imaging tests for the diagnosis of COVID-19.

Cochrane Database Syst Rev 2021 03 16;3:CD013639. Epub 2021 Mar 16.

NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK.

Background: The respiratory illness caused by SARS-CoV-2 infection continues to present diagnostic challenges. Our 2020 edition of this review showed thoracic (chest) imaging to be sensitive and moderately specific in the diagnosis of coronavirus disease 2019 (COVID-19). In this update, we include new relevant studies, and have removed studies with case-control designs, and those not intended to be diagnostic test accuracy studies.

Objectives: To evaluate the diagnostic accuracy of thoracic imaging (computed tomography (CT), X-ray and ultrasound) in people with suspected COVID-19.

Search Methods: We searched the COVID-19 Living Evidence Database from the University of Bern, the Cochrane COVID-19 Study Register, The Stephen B. Thacker CDC Library, and repositories of COVID-19 publications through to 30 September 2020. We did not apply any language restrictions.

Selection Criteria: We included studies of all designs, except for case-control, that recruited participants of any age group suspected to have COVID-19 and that reported estimates of test accuracy or provided data from which we could compute estimates.

Data Collection And Analysis: The review authors independently and in duplicate screened articles, extracted data and assessed risk of bias and applicability concerns using the QUADAS-2 domain-list. We presented the results of estimated sensitivity and specificity using paired forest plots, and we summarised pooled estimates in tables. We used a bivariate meta-analysis model where appropriate. We presented the uncertainty of accuracy estimates using 95% confidence intervals (CIs).

Main Results: We included 51 studies with 19,775 participants suspected of having COVID-19, of whom 10,155 (51%) had a final diagnosis of COVID-19. Forty-seven studies evaluated one imaging modality each, and four studies evaluated two imaging modalities each. All studies used RT-PCR as the reference standard for the diagnosis of COVID-19, with 47 studies using only RT-PCR and four studies using a combination of RT-PCR and other criteria (such as clinical signs, imaging tests, positive contacts, and follow-up phone calls) as the reference standard. Studies were conducted in Europe (33), Asia (13), North America (3) and South America (2); including only adults (26), all ages (21), children only (1), adults over 70 years (1), and unclear (2); in inpatients (2), outpatients (32), and setting unclear (17). Risk of bias was high or unclear in thirty-two (63%) studies with respect to participant selection, 40 (78%) studies with respect to reference standard, 30 (59%) studies with respect to index test, and 24 (47%) studies with respect to participant flow. For chest CT (41 studies, 16,133 participants, 8110 (50%) cases), the sensitivity ranged from 56.3% to 100%, and specificity ranged from 25.4% to 97.4%. The pooled sensitivity of chest CT was 87.9% (95% CI 84.6 to 90.6) and the pooled specificity was 80.0% (95% CI 74.9 to 84.3). There was no statistical evidence indicating that reference standard conduct and definition for index test positivity were sources of heterogeneity for CT studies. Nine chest CT studies (2807 participants, 1139 (41%) cases) used the COVID-19 Reporting and Data System (CO-RADS) scoring system, which has five thresholds to define index test positivity. At a CO-RADS threshold of 5 (7 studies), the sensitivity ranged from 41.5% to 77.9% and the pooled sensitivity was 67.0% (95% CI 56.4 to 76.2); the specificity ranged from 83.5% to 96.2%; and the pooled specificity was 91.3% (95% CI 87.6 to 94.0). At a CO-RADS threshold of 4 (7 studies), the sensitivity ranged from 56.3% to 92.9% and the pooled sensitivity was 83.5% (95% CI 74.4 to 89.7); the specificity ranged from 77.2% to 90.4% and the pooled specificity was 83.6% (95% CI 80.5 to 86.4). For chest X-ray (9 studies, 3694 participants, 2111 (57%) cases) the sensitivity ranged from 51.9% to 94.4% and specificity ranged from 40.4% to 88.9%. The pooled sensitivity of chest X-ray was 80.6% (95% CI 69.1 to 88.6) and the pooled specificity was 71.5% (95% CI 59.8 to 80.8). For ultrasound of the lungs (5 studies, 446 participants, 211 (47%) cases) the sensitivity ranged from 68.2% to 96.8% and specificity ranged from 21.3% to 78.9%. The pooled sensitivity of ultrasound was 86.4% (95% CI 72.7 to 93.9) and the pooled specificity was 54.6% (95% CI 35.3 to 72.6). Based on an indirect comparison using all included studies, chest CT had a higher specificity than ultrasound. For indirect comparisons of chest CT and chest X-ray, or chest X-ray and ultrasound, the data did not show differences in specificity or sensitivity.

Authors' Conclusions: Our findings indicate that chest CT is sensitive and moderately specific for the diagnosis of COVID-19. Chest X-ray is moderately sensitive and moderately specific for the diagnosis of COVID-19. Ultrasound is sensitive but not specific for the diagnosis of COVID-19. Thus, chest CT and ultrasound may have more utility for excluding COVID-19 than for differentiating SARS-CoV-2 infection from other causes of respiratory illness. Future diagnostic accuracy studies should pre-define positive imaging findings, include direct comparisons of the various modalities of interest in the same participant population, and implement improved reporting practices.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/14651858.CD013639.pub4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8078565PMC
March 2021

Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev 2021 02 23;2:CD013665. Epub 2021 Feb 23.

NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK.

Background: The clinical implications of SARS-CoV-2 infection are highly variable. Some people with SARS-CoV-2 infection remain asymptomatic, whilst the infection can cause mild to moderate COVID-19 and COVID-19 pneumonia in others. This can lead to some people requiring intensive care support and, in some cases, to death, especially in older adults. Symptoms such as fever, cough, or loss of smell or taste, and signs such as oxygen saturation are the first and most readily available diagnostic information. Such information could be used to either rule out COVID-19, or select patients for further testing. This is an update of this review, the first version of which published in July 2020.

Objectives: To assess the diagnostic accuracy of signs and symptoms to determine if a person presenting in primary care or to hospital outpatient settings, such as the emergency department or dedicated COVID-19 clinics, has COVID-19.

Search Methods: For this review iteration we undertook electronic searches up to 15 July 2020 in the Cochrane COVID-19 Study Register and the University of Bern living search database. In addition, we checked repositories of COVID-19 publications. We did not apply any language restrictions.

Selection Criteria: Studies were eligible if they included patients with clinically suspected COVID-19, or if they recruited known cases with COVID-19 and controls without COVID-19. Studies were eligible when they recruited patients presenting to primary care or hospital outpatient settings. Studies in hospitalised patients were only included if symptoms and signs were recorded on admission or at presentation. Studies including patients who contracted SARS-CoV-2 infection while admitted to hospital were not eligible. The minimum eligible sample size of studies was 10 participants. All signs and symptoms were eligible for this review, including individual signs and symptoms or combinations. We accepted a range of reference standards.

Data Collection And Analysis: Pairs of review authors independently selected all studies, at both title and abstract stage and full-text stage. They resolved any disagreements by discussion with a third review author. Two review authors independently extracted data and resolved disagreements by discussion with a third review author. Two review authors independently assessed risk of bias using the Quality Assessment tool for Diagnostic Accuracy Studies (QUADAS-2) checklist. We presented sensitivity and specificity in paired forest plots, in receiver operating characteristic space and in dumbbell plots. We estimated summary parameters using a bivariate random-effects meta-analysis whenever five or more primary studies were available, and whenever heterogeneity across studies was deemed acceptable.

Main Results: We identified 44 studies including 26,884 participants in total. Prevalence of COVID-19 varied from 3% to 71% with a median of 21%. There were three studies from primary care settings (1824 participants), nine studies from outpatient testing centres (10,717 participants), 12 studies performed in hospital outpatient wards (5061 participants), seven studies in hospitalised patients (1048 participants), 10 studies in the emergency department (3173 participants), and three studies in which the setting was not specified (5061 participants). The studies did not clearly distinguish mild from severe COVID-19, so we present the results for all disease severities together. Fifteen studies had a high risk of bias for selection of participants because inclusion in the studies depended on the applicable testing and referral protocols, which included many of the signs and symptoms under study in this review. This may have especially influenced the sensitivity of those features used in referral protocols, such as fever and cough. Five studies only included participants with pneumonia on imaging, suggesting that this is a highly selected population. In an additional 12 studies, we were unable to assess the risk for selection bias. This makes it very difficult to judge the validity of the diagnostic accuracy of the signs and symptoms from these included studies. The applicability of the results of this review update improved in comparison with the original review. A greater proportion of studies included participants who presented to outpatient settings, which is where the majority of clinical assessments for COVID-19 take place. However, still none of the studies presented any data on children separately, and only one focused specifically on older adults. We found data on 84 signs and symptoms. Results were highly variable across studies. Most had very low sensitivity and high specificity. Only cough (25 studies) and fever (7 studies) had a pooled sensitivity of at least 50% but specificities were moderate to low. Cough had a sensitivity of 67.4% (95% confidence interval (CI) 59.8% to 74.1%) and specificity of 35.0% (95% CI 28.7% to 41.9%). Fever had a sensitivity of 53.8% (95% CI 35.0% to 71.7%) and a specificity of 67.4% (95% CI 53.3% to 78.9%). The pooled positive likelihood ratio of cough was only 1.04 (95% CI 0.97 to 1.11) and that of fever 1.65 (95% CI 1.41 to 1.93). Anosmia alone (11 studies), ageusia alone (6 studies), and anosmia or ageusia (6 studies) had sensitivities below 50% but specificities over 90%. Anosmia had a pooled sensitivity of 28.0% (95% CI 17.7% to 41.3%) and a specificity of 93.4% (95% CI 88.3% to 96.4%). Ageusia had a pooled sensitivity of 24.8% (95% CI 12.4% to 43.5%) and a specificity of 91.4% (95% CI 81.3% to 96.3%). Anosmia or ageusia had a pooled sensitivity of 41.0% (95% CI 27.0% to 56.6%) and a specificity of 90.5% (95% CI 81.2% to 95.4%). The pooled positive likelihood ratios of anosmia alone and anosmia or ageusia were 4.25 (95% CI 3.17 to 5.71) and 4.31 (95% CI 3.00 to 6.18) respectively, which is just below our arbitrary definition of a 'red flag', that is, a positive likelihood ratio of at least 5. The pooled positive likelihood ratio of ageusia alone was only 2.88 (95% CI 2.02 to 4.09). Only two studies assessed combinations of different signs and symptoms, mostly combining fever and cough with other symptoms. These combinations had a specificity above 80%, but at the cost of very low sensitivity (< 30%).

Authors' Conclusions: The majority of individual signs and symptoms included in this review appear to have very poor diagnostic accuracy, although this should be interpreted in the context of selection bias and heterogeneity between studies. Based on currently available data, neither absence nor presence of signs or symptoms are accurate enough to rule in or rule out COVID-19. The presence of anosmia or ageusia may be useful as a red flag for COVID-19. The presence of fever or cough, given their high sensitivities, may also be useful to identify people for further testing. Prospective studies in an unselected population presenting to primary care or hospital outpatient settings, examining combinations of signs and symptoms to evaluate the syndromic presentation of COVID-19, are still urgently needed. Results from such studies could inform subsequent management decisions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/14651858.CD013665.pub2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8407425PMC
February 2021

Comparative effect of physical exercise versus statins on improving arterial stiffness in patients with high cardiometabolic risk: A network meta-analysis.

PLoS Med 2021 02 16;18(2):e1003543. Epub 2021 Feb 16.

Universidad de Castilla-La Mancha, Health and Social Research Center, Cuenca, Spain.

Background: The comparative analysis of the effect of several doses of statins against different intensities of physical exercise on arterial stiffness (a measure of cardiovascular risk) could shed light for clinicians on which method is most effective in preventing cardiovascular disease (CVD) and be used to inform shared decision-making between doctors and patients. This study was aimed at analyzing the effect, in high cardiometabolic risk patients, of different statins doses and exercise intensities on arterial stiffness (a measure of cardiovascular risk) by integrating all available direct and indirect evidence in network meta-analyses.

Methods And Findings: We systematically searched MEDLINE, Embase, SPORTDiscus, Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews, and Web of Science databases from their inception to February 28, 2020; for unpublished trials, we also searched ClinicalTrials.gov. We searched for studies concerning the effect of statins or physical exercise on arterial stiffness, measured by pulse wave velocity (PWV). For methodological quality assessment, Cochrane Collaboration's tool for assessing risk of bias (RoB2) was used. A network geometry graph was used to assess the strength of the evidence. Comparative evaluation of the interventions effect was performed by conducting a standard pairwise meta-analysis and a network meta-analysis (NMA) for direct and indirect comparisons between interventions and control/nonintervention. A total of 22 studies were included in the analyses (18 randomized controlled trials (RCTs) and 4 nonrandomized experimental studies), including 1,307 patients with high cardiometabolic risk from Asia (3 studies), Oceania (2 studies), Europe (10 studies), North America (5 studies), and South America (2 studies). The overall risk of bias assessed with RoB2 was high in all included studies. For standard pairwise meta-analysis and NMA, high-intensity exercise versus control (mean difference (MD) -0.56; 95% CI: -1.01, -0.11; p = 0.015 and -0.62; 95% CI: -1.20, -0.04; p = 0.038, respectively) and moderate statin dose versus control (MD -0.80, 95% CI: -1.59, -0.01; p = 0.048 and -0.73, 95% CI: -1.30, -0.15; p = 0.014, respectively) showed significant MDs. When nonrandomized experimental studies were excluded, the effect on high-intensity exercise versus control and moderate statin dose versus was slightly modified. The main limitation of this study was that the magnitude of the effect of the exercise interventions could be underestimated due to regression toward the mean bias because the baseline cardiometabolic risk profile of patients in the physical exercise intervention trials was healthier than those in the statins ones; consequently, more modest improvements in physical exercise interventions compared to statins interventions can be expected. Additionally, we might consider as limitations the small study sizes, the heterogeneous patient groups, the focus on a proxy endpoint (PWV), and the high risk of bias.

Conclusions: In this NMA, we found that although many patients could benefit from statins for reducing CVD risk, our results support that, considering the beneficial effects of high-intensity exercise on arterial stiffness, it would be worthwhile to refocus our attention on this type of exercise as an effective tool for the prevention of CVD.

Systematic Review Registration: PROSPERO CRD42019123120.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.pmed.1003543DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7924736PMC
February 2021

Transcriptomic signatures for diagnosing tuberculosis in clinical practice: a prospective, multicentre cohort study.

Lancet Infect Dis 2021 03 25;21(3):366-375. Epub 2021 Jan 25.

Tuberculosis Research Centre, National Heart and Lung Institute, Imperial College London, London, UK. Electronic address:

Background: Blood transcriptomic signatures for diagnosis of tuberculosis have shown promise in case-control studies, but none have been prospectively designed or validated in adults presenting with the full clinical spectrum of suspected tuberculosis, including extrapulmonary tuberculosis and common differential diagnoses that clinically resemble tuberculosis. We aimed to evaluate the diagnostic accuracy of transcriptomic signatures in patients presenting with clinically suspected tuberculosis in routine practice.

Methods: The Validation of New Technologies for Diagnostic Evaluation of Tuberculosis (VANTDET) study was nested within a prospective, multicentre cohort study in secondary care in England (IDEA 11/H0722/8). Patients (aged ≥16 years) suspected of having tuberculosis in the routine clinical inpatient and outpatient setting were recruited at ten National Health Service hospitals in England for IDEA and were included in VANTDET if they provided consent for genomic analysis. Patients had whole blood taken for microarray analysis to measure abundance of transcripts and were followed up for 6-12 months to determine final diagnoses on the basis of predefined diagnostic criteria. The diagnostic accuracy of six signatures derived from the cohort and three previously published transcriptomic signatures with potentially high diagnostic performance were assessed by calculating area under the receiver-operating characteristic curves (AUC-ROCs), sensitivities, and specificities.

Findings: Between Nov 25, 2011, and Dec 31, 2013, 1162 participants were enrolled. 628 participants (aged ≥16 years) were included in the analysis, of whom 212 (34%) had culture-confirmed tuberculosis, 89 (14%) had highly probable tuberculosis, and 327 (52%) had tuberculosis excluded. The novel signature with highest performance for identifying all active tuberculosis gave an AUC-ROC of 0·87 (95% CI 0·81-0·92), sensitivity of 77% (66-87), and specificity of 84% (74-91). The best-performing published signature gave an AUC-ROC of 0·83 (0·80-0·86), sensitivity of 78% (73-83), and specificity of 76% (70-80). For detecting highly probable tuberculosis, the best novel signature yielded results of 0·86 (0·71-0·95), 77% (56-94%), and 77% (57-95%). None of the relevant cohort-derived or previously published signatures achieved the WHO-defined targets of paired sensitivity and specificity for a non-sputum-based diagnostic test.

Interpretation: In a clinically representative cohort in routine practice in a low-incidence setting, transcriptomic signatures did not have adequate accuracy for diagnosis of tuberculosis, including in patients with highly probable tuberculosis where the unmet need is greatest. These findings suggest that transcriptomic signatures have little clinical utility for diagnostic assessment of suspected tuberculosis.

Funding: National Institute for Health Research.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/S1473-3099(20)30928-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7907671PMC
March 2021

Effect of Digoxin vs Bisoprolol for Heart Rate Control in Atrial Fibrillation on Patient-Reported Quality of Life: The RATE-AF Randomized Clinical Trial.

JAMA 2020 12;324(24):2497-2508

Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, England.

Importance: There is little evidence to support selection of heart rate control therapy in patients with permanent atrial fibrillation, in particular those with coexisting heart failure.

Objective: To compare low-dose digoxin with bisoprolol (a β-blocker).

Design, Setting, And Participants: Randomized, open-label, blinded end-point clinical trial including 160 patients aged 60 years or older with permanent atrial fibrillation (defined as no plan to restore sinus rhythm) and dyspnea classified as New York Heart Association class II or higher. Patients were recruited from 3 hospitals and primary care practices in England from 2016 through 2018; last follow-up occurred in October 2019.

Interventions: Digoxin (n = 80; dose range, 62.5-250 μg/d; mean dose, 161 μg/d) or bisoprolol (n = 80; dose range, 1.25-15 mg/d; mean dose, 3.2 mg/d).

Main Outcomes And Measures: The primary end point was patient-reported quality of life using the 36-Item Short Form Health Survey physical component summary score (SF-36 PCS) at 6 months (higher scores are better; range, 0-100), with a minimal clinically important difference of 0.5 SD. There were 17 secondary end points (including resting heart rate, modified European Heart Rhythm Association [EHRA] symptom classification, and N-terminal pro-brain natriuretic peptide [NT-proBNP] level) at 6 months, 20 end points at 12 months, and adverse event (AE) reporting.

Results: Among 160 patients (mean age, 76 [SD, 8] years; 74 [46%] women; mean baseline heart rate, 100/min [SD, 18/min]), 145 (91%) completed the trial and 150 (94%) were included in the analysis for the primary outcome. There was no significant difference in the primary outcome of normalized SF-36 PCS at 6 months (mean, 31.9 [SD, 11.7] for digoxin vs 29.7 [11.4] for bisoprolol; adjusted mean difference, 1.4 [95% CI, -1.1 to 3.8]; P = .28). Of the 17 secondary outcomes at 6 months, there were no significant between-group differences for 16 outcomes, including resting heart rate (a mean of 76.9/min [SD, 12.1/min] with digoxin vs a mean of 74.8/min [SD, 11.6/min] with bisoprolol; difference, 1.5/min [95% CI, -2.0 to 5.1/min]; P = .40). The modified EHRA class was significantly different between groups at 6 months; 53% of patients in the digoxin group reported a 2-class improvement vs 9% of patients in the bisoprolol group (adjusted odds ratio, 10.3 [95% CI, 4.0 to 26.6]; P < .001). At 12 months, 8 of 20 outcomes were significantly different (all favoring digoxin), with a median NT-proBNP level of 960 pg/mL (interquartile range, 626 to 1531 pg/mL) in the digoxin group vs 1250 pg/mL (interquartile range, 847 to 1890 pg/mL) in the bisoprolol group (ratio of geometric means, 0.77 [95% CI, 0.64 to 0.92]; P = .005). Adverse events were less common with digoxin; 20 patients (25%) in the digoxin group had at least 1 AE vs 51 patients (64%) in the bisoprolol group (P < .001). There were 29 treatment-related AEs and 16 serious AEs in the digoxin group vs 142 and 37, respectively, in the bisoprolol group.

Conclusions And Relevance: Among patients with permanent atrial fibrillation and symptoms of heart failure treated with low-dose digoxin or bisoprolol, there was no statistically significant difference in quality of life at 6 months. These findings support potentially basing decisions about treatment on other end points.

Trial Registration: ClinicalTrials.gov Identifier: NCT02391337 and clinicaltrialsregister.eu Identifier: 2015-005043-13.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1001/jama.2020.23138DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7756234PMC
December 2020

Lateral flow tests cannot rule out SARS-CoV-2 infection.

BMJ 2020 12 11;371:m4787. Epub 2020 Dec 11.

Bristol Medical School Population Health Sciences, University of Bristol, UK.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1136/bmj.m4787DOI Listing
December 2020

Test evaluation trials present different challenges for trial managers compared to intervention trials.

Trials 2020 Nov 30;21(1):987. Epub 2020 Nov 30.

Birmingham Clinical Trials Unit, University of Birmingham, Birmingham, UK.

Introduction: Test evaluation trials present different challenges for trial managers compared to intervention trials. There has been very little research on the management of test evaluation trials and how this impacts on trial success, in comparison with intervention trials. Evaluations of medical tests present specific challenges, because they are a pivot point bridging the complexities of pathways prompting testing with treatment decision-making. We systematically explored key differences in the trial design and management of test evaluation trials compared to intervention trials at the different stages of study design and delivery. We identified challenges in test evaluation trials that were more pronounced than in intervention trials, based on experience from 10 test evaluation trials.

Methods: We formed a focus group of 7 trial managers and a statistician who had been involved in the day-to-day management of both test evaluation trials and intervention trials. We used discussion and content analysis to group challenges from 10 trials into a structured thematic format. The trials covered a range of medical conditions, diagnostic tests, clinical pathways and conditions including chronic kidney disease, chronic pelvic pain, colitis, detrusor over-activity, group B streptococcal colonisation, tuberculosis and colorectal, lung, ovarian and thyroid cancers.

Results: We identified 10 common themes underlying challenges that are more pronounced in test evaluation compared to intervention trials. We illustrate these themes with examples from 10 trials, including with 31 specific challenges we experienced. The themes were ethics/governance; accessing patient populations; recruitment; patient preference; test processes, clinical pathways and samples storage; uncertainty of diagnostic results; verifying diagnosis (reference standard); follow-up; adverse effects; and diagnostic impact.

Conclusion: We present 10 common themes, including 31 challenges, in test evaluation trials that will be helpful to others designing and managing future test evaluation trials. Proactive identification of potential challenges at the design and planning stages of test evaluation trials will enable strategies to improve trial design and management that may be different from standard strategies used for intervention trials. Future work could extend this topic to include challenges for other trial stakeholders including participants, clinicians, statisticians and funders.

Trial Registration: All trials reviewed in this project were registered and are provided in Table 1.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13063-020-04861-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7706229PMC
November 2020

Thoracic imaging tests for the diagnosis of COVID-19.

Cochrane Database Syst Rev 2020 11 26;11:CD013639. Epub 2020 Nov 26.

NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK.

Background: The respiratory illness caused by SARS-CoV-2 infection continues to present diagnostic challenges. Early research showed thoracic (chest) imaging to be sensitive but not specific in the diagnosis of coronavirus disease 2019 (COVID-19). However, this is a rapidly developing field and these findings need to be re-evaluated in the light of new research. This is the first update of this 'living systematic review'. This update focuses on people suspected of having COVID-19 and excludes studies with only confirmed COVID-19 participants.

Objectives: To evaluate the diagnostic accuracy of thoracic imaging (computed tomography (CT), X-ray and ultrasound) in people with suspected COVID-19.

Search Methods: We searched the COVID-19 Living Evidence Database from the University of Bern, the Cochrane COVID-19 Study Register, The Stephen B. Thacker CDC Library, and repositories of COVID-19 publications through to 22 June 2020. We did not apply any language restrictions.

Selection Criteria: We included studies of all designs that recruited participants of any age group suspected to have COVID-19, and which reported estimates of test accuracy, or provided data from which estimates could be computed. When studies used a variety of reference standards, we retained the classification of participants as COVID-19 positive or negative as used in the study.

Data Collection And Analysis: We screened studies, extracted data, and assessed the risk of bias and applicability concerns using the QUADAS-2 domain-list independently, in duplicate. We categorised included studies into three groups based on classification of index test results: studies that reported specific criteria for index test positivity (group 1); studies that did not report specific criteria, but had the test reader(s) explicitly classify the imaging test result as either COVID-19 positive or negative (group 2); and studies that reported an overview of index test findings, without explicitly classifying the imaging test as either COVID-19 positive or negative (group 3). We presented the results of estimated sensitivity and specificity using paired forest plots, and summarised in tables. We used a bivariate meta-analysis model where appropriate. We presented uncertainty of the accuracy estimates using 95% confidence intervals (CIs).

Main Results: We included 34 studies: 30 were cross-sectional studies with 8491 participants suspected of COVID-19, of which 4575 (54%) had a final diagnosis of COVID-19; four were case-control studies with 848 cases and controls in total, of which 464 (55%) had a final diagnosis of COVID-19. Chest CT was evaluated in 31 studies (8014 participants, 4224 (53%) cases), chest X-ray in three studies (1243 participants, 784 (63%) cases), and ultrasound of the lungs in one study (100 participants, 31 (31%) cases). Twenty-six per cent (9/34) of all studies were available only as preprints. Nineteen studies were conducted in Asia, 10 in Europe, four in North America and one in Australia. Sixteen studies included only adults, 15 studies included both adults and children and one included only children. Two studies did not report the ages of participants. Twenty-four studies included inpatients, four studies included outpatients, while the remaining six studies were conducted in unclear settings. The majority of included studies had a high or unclear risk of bias with respect to participant selection, index test, reference standard, and participant flow. For chest CT in suspected COVID-19 participants (31 studies, 8014 participants, 4224 (53%) cases) the sensitivity ranged from 57.4% to 100%, and specificity ranged from 0% to 96.0%. The pooled sensitivity of chest CT in suspected COVID-19 participants was 89.9% (95% CI 85.7 to 92.9) and the pooled specificity was 61.1% (95% CI 42.3 to 77.1). Sensitivity analyses showed that when the studies from China were excluded, the studies from other countries demonstrated higher specificity compared to the overall included studies. When studies that did not classify index tests as positive or negative for COVID-19 (group 3) were excluded, the remaining studies (groups 1 and 2) demonstrated higher specificity compared to the overall included studies. Sensitivity analyses limited to cross-sectional studies, or studies where at least two reverse transcriptase polymerase chain reaction (RT-PCR) tests were conducted if the first was negative, did not substantively alter the accuracy estimates. We did not identify publication status as a source of heterogeneity. For chest X-ray in suspected COVID-19 participants (3 studies, 1243 participants, 784 (63%) cases) the sensitivity ranged from 56.9% to 89.0% and specificity from 11.1% to 88.9%. The sensitivity and specificity of ultrasound of the lungs in suspected COVID-19 participants (1 study, 100 participants, 31 (31%) cases) were 96.8% and 62.3%, respectively. We could not perform a meta-analysis for chest X-ray or ultrasound due to the limited number of included studies.

Authors' Conclusions: Our findings indicate that chest CT is sensitive and moderately specific for the diagnosis of COVID-19 in suspected patients, meaning that CT may have limited capability in differentiating SARS-CoV-2 infection from other causes of respiratory illness. However, we are limited in our confidence in these results due to the poor study quality and the heterogeneity of included studies. Because of limited data, accuracy estimates of chest X-ray and ultrasound of the lungs for the diagnosis of suspected COVID-19 cases should be carefully interpreted. Future diagnostic accuracy studies should pre-define positive imaging findings, include direct comparisons of the various modalities of interest on the same participant population, and implement improved reporting practices. Planned updates of this review will aim to: increase precision around the accuracy estimates for chest CT (ideally with low risk of bias studies); obtain further data to inform accuracy of chest X-rays and ultrasound; and obtain data to further fulfil secondary objectives (e.g. 'threshold' effects, comparing accuracy estimates across different imaging modalities) to inform the utility of imaging along different diagnostic pathways.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/14651858.CD013639.pub3DOI Listing
November 2020

Routine laboratory testing to determine if a patient has COVID-19.

Cochrane Database Syst Rev 2020 11 19;11:CD013787. Epub 2020 Nov 19.

NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK.

Background: Specific diagnostic tests to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and resulting COVID-19 disease are not always available and take time to obtain results. Routine laboratory markers such as white blood cell count, measures of anticoagulation, C-reactive protein (CRP) and procalcitonin, are used to assess the clinical status of a patient. These laboratory tests may be useful for the triage of people with potential COVID-19 to prioritize them for different levels of treatment, especially in situations where time and resources are limited.

Objectives: To assess the diagnostic accuracy of routine laboratory testing as a triage test to determine if a person has COVID-19.

Search Methods: On 4 May 2020 we undertook electronic searches in the Cochrane COVID-19 Study Register and the COVID-19 Living Evidence Database from the University of Bern, which is updated daily with published articles from PubMed and Embase and with preprints from medRxiv and bioRxiv. In addition, we checked repositories of COVID-19 publications. We did not apply any language restrictions.

Selection Criteria: We included both case-control designs and consecutive series of patients that assessed the diagnostic accuracy of routine laboratory testing as a triage test to determine if a person has COVID-19. The reference standard could be reverse transcriptase polymerase chain reaction (RT-PCR) alone; RT-PCR plus clinical expertise or and imaging; repeated RT-PCR several days apart or from different samples; WHO and other case definitions; and any other reference standard used by the study authors.

Data Collection And Analysis: Two review authors independently extracted data from each included study. They also assessed the methodological quality of the studies, using QUADAS-2. We used the 'NLMIXED' procedure in SAS 9.4 for the hierarchical summary receiver operating characteristic (HSROC) meta-analyses of tests for which we included four or more studies. To facilitate interpretation of results, for each meta-analysis we estimated summary sensitivity at the points on the SROC curve that corresponded to the median and interquartile range boundaries of specificities in the included studies.

Main Results: We included 21 studies in this review, including 14,126 COVID-19 patients and 56,585 non-COVID-19 patients in total. Studies evaluated a total of 67 different laboratory tests. Although we were interested in the diagnotic accuracy of routine tests for COVID-19, the included studies used detection of SARS-CoV-2 infection through RT-PCR as reference standard. There was considerable heterogeneity between tests, threshold values and the settings in which they were applied. For some tests a positive result was defined as a decrease compared to normal vaues, for other tests a positive result was defined as an increase, and for some tests both increase and decrease may have indicated test positivity. None of the studies had either low risk of bias on all domains or low concerns for applicability for all domains. Only three of the tests evaluated had a summary sensitivity and specificity over 50%. These were: increase in interleukin-6, increase in C-reactive protein and lymphocyte count decrease. Blood count Eleven studies evaluated a decrease in white blood cell count, with a median specificity of 93% and a summary sensitivity of 25% (95% CI 8.0% to 27%; very low-certainty evidence). The 15 studies that evaluated an increase in white blood cell count had a lower median specificity and a lower corresponding sensitivity. Four studies evaluated a decrease in neutrophil count. Their median specificity was 93%, corresponding to a summary sensitivity of 10% (95% CI 1.0% to 56%; low-certainty evidence). The 11 studies that evaluated an increase in neutrophil count had a lower median specificity and a lower corresponding sensitivity. The summary sensitivity of an increase in neutrophil percentage (4 studies) was 59% (95% CI 1.0% to 100%) at median specificity (38%; very low-certainty evidence). The summary sensitivity of an increase in monocyte count (4 studies) was 13% (95% CI 6.0% to 26%) at median specificity (73%; very low-certainty evidence). The summary sensitivity of a decrease in lymphocyte count (13 studies) was 64% (95% CI 28% to 89%) at median specificity (53%; low-certainty evidence). Four studies that evaluated a decrease in lymphocyte percentage showed a lower median specificity and lower corresponding sensitivity. The summary sensitivity of a decrease in platelets (4 studies) was 19% (95% CI 10% to 32%) at median specificity (88%; low-certainty evidence). Liver function tests The summary sensitivity of an increase in alanine aminotransferase (9 studies) was 12% (95% CI 3% to 34%) at median specificity (92%; low-certainty evidence). The summary sensitivity of an increase in aspartate aminotransferase (7 studies) was 29% (95% CI 17% to 45%) at median specificity (81%) (low-certainty evidence). The summary sensitivity of a decrease in albumin (4 studies) was 21% (95% CI 3% to 67%) at median specificity (66%; low-certainty evidence). The summary sensitivity of an increase in total bilirubin (4 studies) was 12% (95% CI 3.0% to 34%) at median specificity (92%; very low-certainty evidence). Markers of inflammation The summary sensitivity of an increase in CRP (14 studies) was 66% (95% CI 55% to 75%) at median specificity (44%; very low-certainty evidence). The summary sensitivity of an increase in procalcitonin (6 studies) was 3% (95% CI 1% to 19%) at median specificity (86%; very low-certainty evidence). The summary sensitivity of an increase in IL-6 (four studies) was 73% (95% CI 36% to 93%) at median specificity (58%) (very low-certainty evidence). Other biomarkers The summary sensitivity of an increase in creatine kinase (5 studies) was 11% (95% CI 6% to 19%) at median specificity (94%) (low-certainty evidence). The summary sensitivity of an increase in serum creatinine (four studies) was 7% (95% CI 1% to 37%) at median specificity (91%; low-certainty evidence). The summary sensitivity of an increase in lactate dehydrogenase (4 studies) was 25% (95% CI 15% to 38%) at median specificity (72%; very low-certainty evidence).

Authors' Conclusions: Although these tests give an indication about the general health status of patients and some tests may be specific indicators for inflammatory processes, none of the tests we investigated are useful for accurately ruling in or ruling out COVID-19 on their own. Studies were done in specific hospitalized populations, and future studies should consider non-hospital settings to evaluate how these tests would perform in people with milder symptoms.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/14651858.CD013787DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8078159PMC
November 2020

Information given by websites selling home self-sampling COVID-19 tests: an analysis of accuracy and completeness.

BMJ Open 2020 11 6;10(11):e042453. Epub 2020 Nov 6.

Institute of Applied Health Research, University of Birmingham, Birmingham, UK.

Objectives: To assess the accuracy and completeness of information provided by websites selling home self-sampling and testing kits for COVID-19.

Design: Cross-sectional observational study.

Setting: All websites (n=27) selling direct to user home self-sampling and testing kits for COVID-19 (41 tests) in the UK (39 tests) and USA (two tests) identified by a website search on 23 May 2020.

Main Outcome Measures: Thirteen predefined basic information items to communicate to a user, including who should be tested, when and how testing should be done, test accuracy, and interpretation of results.

Results: Many websites did not provide the name or manufacturer of the test (32/41; 78%), when to use the test (10/41; 24%), test accuracy (12/41; 29%), and how to interpret results (21/41; 51%). Sensitivity and specificity were the most commonly reported test accuracy measures (either reported for 27/41 [66%] tests): we could only link these figures to manufacturers' documents or publications for four (10%) tests. Predictive values, most relevant to users, were rarely reported (five [12%] tests reported positive predictive values). For molecular virus tests, 9/23 (39%) websites explained that test positives should self-isolate, and 8/23 (35%) explained that test negatives may still have the disease. For antibody tests, 12/18 (67%) websites explained that testing positive does not necessarily infer immunity from future infection. Seven (39%) websites selling antibody tests claimed the test had a CE mark, when they were for a different intended use (venous blood rather than finger-prick samples).

Conclusions: At the point of online purchase of home self-sampling COVID-19 tests, users in the UK are provided with incomplete, and, in some cases, misleading information on test accuracy, intended use, and test interpretation. Best practice guidance for communication about tests to the public should be developed and enforced for online sales of COVID-19 tests.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1136/bmjopen-2020-042453DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7650079PMC
November 2020

Urine metabolomic phenotyping for detection of adrenocortical carcinoma: still a long way to go - Authors' reply.

Lancet Diabetes Endocrinol 2020 11;8(11):877-878

Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, UK; Department of Endocrinology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK; NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK. Electronic address:

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/S2213-8587(20)30345-4DOI Listing
November 2020

Thoracic imaging tests for the diagnosis of COVID-19.

Cochrane Database Syst Rev 2020 09 30;9:CD013639. Epub 2020 Sep 30.

Department of Radiology, University of Ottawa, Ottawa, Canada.

Background: The diagnosis of infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) presents major challenges. Reverse transcriptase polymerase chain reaction (RT-PCR) testing is used to diagnose a current infection, but its utility as a reference standard is constrained by sampling errors, limited sensitivity (71% to 98%), and dependence on the timing of specimen collection. Chest imaging tests are being used in the diagnosis of COVID-19 disease, or when RT-PCR testing is unavailable.

Objectives: To determine the diagnostic accuracy of chest imaging (computed tomography (CT), X-ray and ultrasound) in people with suspected or confirmed COVID-19.

Search Methods: We searched the COVID-19 Living Evidence Database from the University of Bern, the Cochrane COVID-19 Study Register, and The Stephen B. Thacker CDC Library. In addition, we checked repositories of COVID-19 publications. We did not apply any language restrictions. We conducted searches for this review iteration up to 5 May 2020.

Selection Criteria: We included studies of all designs that produce estimates of test accuracy or provide data from which estimates can be computed. We included two types of cross-sectional designs: a) where all patients suspected of the target condition enter the study through the same route and b) where it is not clear up front who has and who does not have the target condition, or where the patients with the target condition are recruited in a different way or from a different population from the patients without the target condition. When studies used a variety of reference standards, we included all of them.

Data Collection And Analysis: We screened studies and extracted data independently, in duplicate. We also assessed the risk of bias and applicability concerns independently, in duplicate, using the QUADAS-2 checklist and presented the results of estimated sensitivity and specificity, using paired forest plots, and summarised in tables. We used a hierarchical meta-analysis model where appropriate. We presented uncertainty of the accuracy estimates using 95% confidence intervals (CIs).

Main Results: We included 84 studies, falling into two categories: studies with participants with confirmed diagnoses of COVID-19 at the time of recruitment (71 studies with 6331 participants) and studies with participants suspected of COVID-19 (13 studies with 1948 participants, including three case-control studies with 549 cases and controls). Chest CT was evaluated in 78 studies (8105 participants), chest X-ray in nine studies (682 COVID-19 cases), and chest ultrasound in two studies (32 COVID-19 cases). All evaluations of chest X-ray and ultrasound were conducted in studies with confirmed diagnoses only. Twenty-five per cent (21/84) of all studies were available only as preprints, 15/71 studies in the confirmed cases group and 6/13 of the studies in the suspected group. Among 71 studies that included confirmed cases, 41 studies had included symptomatic cases only, 25 studies had included cases regardless of their symptoms, five studies had included asymptomatic cases only, three of which included a combination of confirmed and suspected cases. Seventy studies were conducted in Asia, 2 in Europe, 2 in North America and one in South America. Fifty-one studies included inpatients while the remaining 24 studies were conducted in mixed or unclear settings. Risk of bias was high in most studies, mainly due to concerns about selection of participants and applicability. Among the 13 studies that included suspected cases, nine studies were conducted in Asia, and one in Europe. Seven studies included inpatients while the remaining three studies were conducted in mixed or unclear settings. In studies that included confirmed cases the pooled sensitivity of chest CT was 93.1% (95%CI: 90.2 - 95.0 (65 studies, 5759 cases); and for X-ray 82.1% (95%CI: 62.5 to 92.7 (9 studies, 682 cases). Heterogeneity judged by visual assessment of the ROC plots was considerable. Two studies evaluated the diagnostic accuracy of point-of-care ultrasound and both reported zero false negatives (with 10 and 22 participants having undergone ultrasound, respectively). These studies only reported True Positive and False Negative data, therefore it was not possible to pool and derive estimates of specificity. In studies that included suspected cases, the pooled sensitivity of CT was 86.2% (95%CI: 71.9 to 93.8 (13 studies, 2346 participants) and specificity was 18.1% (95%CI: 3.71 to 55.8). Heterogeneity judged by visual assessment of the forest plots was high. Chest CT may give approximately the same proportion of positive results for patients with and without a SARS-CoV-2 infection: the chances of getting a positive CT result are 86% (95% CI: 72 to 94) in patient with a SARS-CoV-2 infection and 82% (95% CI: 44 to 96) in patients without.

Authors' Conclusions: The uncertainty resulting from the poor study quality and the heterogeneity of included studies limit our ability to confidently draw conclusions based on our results. Our findings indicate that chest CT is sensitive but not specific for the diagnosis of COVID-19 in suspected patients, meaning that CT may not be capable of differentiating SARS-CoV-2 infection from other causes of respiratory illness. This low specificity could also be the result of the poor sensitivity of the reference standard (RT-PCR), as CT could potentially be more sensitive than RT-PCR in some cases. Because of limited data, accuracy estimates of chest X-ray and ultrasound of the lungs for the diagnosis of COVID-19 should be carefully interpreted. Future diagnostic accuracy studies should avoid cases-only studies and pre-define positive imaging findings. Planned updates of this review will aim to: increase precision around the accuracy estimates for CT (ideally with low risk of bias studies); obtain further data to inform accuracy of chest X rays and ultrasound; and continue to search for studies that fulfil secondary objectives to inform the utility of imaging along different diagnostic pathways.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/14651858.CD013639.pub2DOI Listing
September 2020

Operation Moonshot proposals are scientifically unsound.

BMJ 2020 09 22;370:m3699. Epub 2020 Sep 22.

Newcastle University, Newcastle, UK.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1136/bmj.m3699DOI Listing
September 2020

Spironolactone in Atrial Fibrillation With Preserved Cardiac Fraction: The IMPRESS-AF Trial.

J Am Heart Assoc 2020 09 10;9(18):e016239. Epub 2020 Sep 10.

Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool United Kingdom.

Background Patients with permanent atrial fibrillation have poor outcomes, exercise capacity, and quality of life even on optimal anticoagulation. Based on mechanistic and observational data, we tested whether the mineralocorticoid receptor antagonist spironolactone can improve exercise capacity, E/e' ratio, and quality of life in patients with permanent atrial fibrillation and preserved ejection fraction. Methods and Results The double-masked, placebo-controlled IMPRESS-AF (Improved Exercise Tolerance in Heart Failure With Preserved Ejection Fraction by Spironolactone on Myocardial Fibrosis in Atrial Fibrillation) trial (NCT02673463) randomized 250 stable patients with permanent atrial fibrillation and preserved left ventricular ejection fraction to spironolactone 25 mg daily or placebo. Patients were followed for 2 years. The primary efficacy outcome was peak oxygen consumption on cardiopulmonary exercise testing at 2 years. Secondary end points included 6-minute walk distance, E/e' ratio, quality of life, and hospital admissions. Spironolactone therapy did not improve peak oxygen consumption at 2 years (14.0 mL/min per kg [SD, 5.4]) compared with placebo (14.5 [5.1], adjusted treatment effect, -0.28; 95% CI, -1.27 to 0.71]; =0.58). The findings were consistent across all sensitivity analyses. There were no differences in the 6-minute walking distance (adjusted treatment effect, -8.47 m; -31.9 to 14.9; =0.48), E/e' ratio (adjusted treatment effect, -0.68; -1.52 to 0.17, =0.12), or quality of life (=0.74 for EuroQol-5 Dimensions, 5-level version quality of life questionnaire and =0.84 for Minnesota Living with Heart Failure). At least 1 hospitalization occurred in 15% of patients in the spironolactone group and 23% in the placebo group (=0.15). Estimated glomerular filtration rate was reduced by 6 mL/min in the spironolactone group with <1-unit reduction in controls (<0.001). Systolic blood pressure was reduced by 7.2 mm Hg (95% CI, 2.2-12.3) in the spironolactone group versus placebo (=0.005). Conclusions Spironolactone therapy does not improve exercise capacity, E/e' ratio, or quality of life in patients with chronic atrial fibrillation and preserved ejection fraction. Registration UTL: https://www.clini​caltr​ial.gov; Unique identifier: NCT02673463. EudraCT number 2014-003702-33.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/JAHA.119.016239DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7726985PMC
September 2020

Testing for SARS-CoV-2 antibodies.

BMJ 2020 09 8;370:m3325. Epub 2020 Sep 8.

Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1136/bmj.m3325DOI Listing
September 2020

Rapid, point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection.

Cochrane Database Syst Rev 2020 08 26;8:CD013705. Epub 2020 Aug 26.

NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK.

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the resulting COVID-19 pandemic present important diagnostic challenges. Several diagnostic strategies are available to identify or rule out current infection, identify people in need of care escalation, or to test for past infection and immune response. Point-of-care antigen and molecular tests to detect current SARS-CoV-2 infection have the potential to allow earlier detection and isolation of confirmed cases compared to laboratory-based diagnostic methods, with the aim of reducing household and community transmission.

Objectives: To assess the diagnostic accuracy of point-of-care antigen and molecular-based tests to determine if a person presenting in the community or in primary or secondary care has current SARS-CoV-2 infection.

Search Methods: On 25 May 2020 we undertook electronic searches in the Cochrane COVID-19 Study Register and the COVID-19 Living Evidence Database from the University of Bern, which is updated daily with published articles from PubMed and Embase and with preprints from medRxiv and bioRxiv. In addition, we checked repositories of COVID-19 publications. We did not apply any language restrictions.

Selection Criteria: We included studies of people with suspected current SARS-CoV-2 infection, known to have, or not to have SARS-CoV-2 infection, or where tests were used to screen for infection. We included test accuracy studies of any design that evaluated antigen or molecular tests suitable for a point-of-care setting (minimal equipment, sample preparation, and biosafety requirements, with results available within two hours of sample collection). We included all reference standards to define the presence or absence of SARS-CoV-2 (including reverse transcription polymerase chain reaction (RT-PCR) tests and established clinical diagnostic criteria).

Data Collection And Analysis: Two review authors independently screened studies and resolved any disagreements by discussion with a third review author. One review author independently extracted study characteristics, which were checked by a second review author. Two review authors independently extracted 2x2 contingency table data and assessed risk of bias and applicability of the studies using the QUADAS-2 tool. We present sensitivity and specificity, with 95% confidence intervals (CIs), for each test using paired forest plots. We pooled data using the bivariate hierarchical model separately for antigen and molecular-based tests, with simplifications when few studies were available. We tabulated available data by test manufacturer.

Main Results: We included 22 publications reporting on a total of 18 study cohorts with 3198 unique samples, of which 1775 had confirmed SARS-CoV-2 infection. Ten studies took place in North America, two in South America, four in Europe, one in China and one was conducted internationally. We identified data for eight commercial tests (four antigen and four molecular) and one in-house antigen test. Five of the studies included were only available as preprints. We did not find any studies at low risk of bias for all quality domains and had concerns about applicability of results across all studies. We judged patient selection to be at high risk of bias in 50% of the studies because of deliberate over-sampling of samples with confirmed COVID-19 infection and unclear in seven out of 18 studies because of poor reporting. Sixteen (89%) studies used only a single, negative RT-PCR to confirm the absence of COVID-19 infection, risking missing infection. There was a lack of information on blinding of index test (n = 11), and around participant exclusions from analyses (n = 10). We did not observe differences in methodological quality between antigen and molecular test evaluations. Antigen tests Sensitivity varied considerably across studies (from 0% to 94%): the average sensitivity was 56.2% (95% CI 29.5 to 79.8%) and average specificity was 99.5% (95% CI 98.1% to 99.9%; based on 8 evaluations in 5 studies on 943 samples). Data for individual antigen tests were limited with no more than two studies for any test. Rapid molecular assays Sensitivity showed less variation compared to antigen tests (from 68% to 100%), average sensitivity was 95.2% (95% CI 86.7% to 98.3%) and specificity 98.9% (95% CI 97.3% to 99.5%) based on 13 evaluations in 11 studies of on 2255 samples. Predicted values based on a hypothetical cohort of 1000 people with suspected COVID-19 infection (with a prevalence of 10%) result in 105 positive test results including 10 false positives (positive predictive value 90%), and 895 negative results including 5 false negatives (negative predictive value 99%). Individual tests We calculated pooled results of individual tests for ID NOW (Abbott Laboratories) (5 evaluations) and Xpert Xpress (Cepheid Inc) (6 evaluations). Summary sensitivity for the Xpert Xpress assay (99.4%, 95% CI 98.0% to 99.8%) was 22.6 (95% CI 18.8 to 26.3) percentage points higher than that of ID NOW (76.8%, (95% CI 72.9% to 80.3%), whilst the specificity of Xpert Xpress (96.8%, 95% CI 90.6% to 99.0%) was marginally lower than ID NOW (99.6%, 95% CI 98.4% to 99.9%; a difference of -2.8% (95% CI -6.4 to 0.8)) AUTHORS' CONCLUSIONS: This review identifies early-stage evaluations of point-of-care tests for detecting SARS-CoV-2 infection, largely based on remnant laboratory samples. The findings currently have limited applicability, as we are uncertain whether tests will perform in the same way in clinical practice, and according to symptoms of COVID-19, duration of symptoms, or in asymptomatic people. Rapid tests have the potential to be used to inform triage of RT-PCR use, allowing earlier detection of those testing positive, but the evidence currently is not strong enough to determine how useful they are in clinical practice. Prospective and comparative evaluations of rapid tests for COVID-19 infection in clinically relevant settings are urgently needed. Studies should recruit consecutive series of eligible participants, including both those presenting for testing due to symptoms and asymptomatic people who may have come into contact with confirmed cases. Studies should clearly describe symptomatic status and document time from symptom onset or time since exposure. Point-of-care tests must be conducted on samples according to manufacturer instructions for use and be conducted at the point of care. Any future research study report should conform to the Standards for Reporting of Diagnostic Accuracy (STARD) guideline.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/14651858.CD013705DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8078202PMC
August 2020

Urine steroid metabolomics for the differential diagnosis of adrenal incidentalomas in the EURINE-ACT study: a prospective test validation study.

Lancet Diabetes Endocrinol 2020 09 23;8(9):773-781. Epub 2020 Jul 23.

Medizinische Klinik and Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany.

Background: Cross-sectional imaging regularly results in incidental discovery of adrenal tumours, requiring exclusion of adrenocortical carcinoma (ACC). However, differentiation is hampered by poor specificity of imaging characteristics. We aimed to validate a urine steroid metabolomics approach, using steroid profiling as the diagnostic basis for ACC.

Methods: We did a prospective multicentre study in adult participants (age ≥18 years) with newly diagnosed adrenal masses. We assessed the accuracy of diagnostic imaging strategies based on maximum tumour diameter (≥4 cm vs <4 cm), imaging characteristics (positive vs negative), and urine steroid metabolomics (low, medium, or high risk of ACC), separately and in combination, using a reference standard of histopathology and follow-up investigations. With respect to imaging characteristics, we also assessed the diagnostic utility of increasing the unenhanced CT tumour attenuation threshold from the recommended 10 Hounsfield units (HU) to 20 HU.

Findings: Of 2169 participants recruited between Jan 17, 2011, and July 15, 2016, we included 2017 from 14 specialist centres in 11 countries in the final analysis. 98 (4·9%) had histopathologically or clinically and biochemically confirmed ACC. Tumours with diameters of 4 cm or larger were identified in 488 participants (24·2%), including 96 of the 98 with ACC (positive predictive value [PPV] 19·7%, 95% CI 16·2-23·5). For imaging characteristics, increasing the unenhanced CT tumour attenuation threshold to 20 HU from the recommended 10 HU increased specificity for ACC (80·0% [95% CI 77·9-82·0] vs 64·0% [61·4-66.4]) while maintaining sensitivity (99·0% [94·4-100·0] vs 100·0% [96·3-100·0]; PPV 19·7%, 16·3-23·5). A urine steroid metabolomics result indicating high risk of ACC had a PPV of 34·6% (95% CI 28·6-41·0). When the three tests were combined, in the order of tumour diameter, positive imaging characteristics, and urine steroid metabolomics, 106 (5·3%) participants had the result maximum tumour diameter of 4 cm or larger, positive imaging characteristics (with the 20 HU cutoff), and urine steroid metabolomics indicating high risk of ACC, for which the PPV was 76·4% (95% CI 67·2-84·1). 70 (3·5%) were classified as being at moderate risk of ACC and 1841 (91·3%) at low risk (negative predictive value 99·7%, 99·4-100·0).

Interpretation: An unenhanced CT tumour attenuation cutoff of 20 HU should replace that of 10 HU for exclusion of ACC. A triple test strategy of tumour diameter, imaging characteristics, and urine steroid metabolomics improves detection of ACC, which could shorten time to surgery for patients with ACC and help to avoid unnecessary surgery in patients with benign tumours.

Funding: European Commission, UK Medical Research Council, Wellcome Trust, and UK National Institute for Health Research, US National Institutes of Health, the Claire Khan Trust Fund at University Hospitals Birmingham Charities, and the Mayo Clinic Foundation for Medical Education and Research.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/S2213-8587(20)30218-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7447976PMC
September 2020
-->