Publications by authors named "John P Giesy"

668 Publications

RNA metabarcoding helps reveal zooplankton community response to environmental stressors.

Environ Pollut 2022 Jan 1;292(Pt B):118446. Epub 2021 Nov 1.

IISD Experimental Lakes Area Inc, Winnipeg, Manitoba, Canada; University of Manitoba, Winnipeg, Manitoba, Canada.

DNA metabarcoding can provide a high-throughput and rapid method for characterizing responses of communities to environmental stressors. However, within bulk samples, DNA metabarcoding hardly distinguishes live from the dead organisms. Here, both DNA and RNA metabarcoding were applied and compared in experimental freshwater mesocosms conducted for assessment of ecotoxicological responses of zooplankton communities to remediation treatment until 38 days post oil-spill. Furthermore, a novel indicator of normalized vitality (NV), sequence counts of RNA metabarcoding normalized by that of DNA metabarcoding, was developed for assessment of ecological responses. DNA and RNA metabarcoding detected similar taxa richness and rank of relative abundances. Both DNA and RNA metabarcoding demonstrated slight shifts in measured α-diversities in response to treatments. NV presented relatively greater magnitudes of differential responses of community compositions to treatments compared to DNA or RNA metabarcoding. NV declined from the start of the experiment (3 days pre-spill) to the end (38 days post-spill). NV also differed between Rotifer and Arthropoda, possibly due to differential life histories and sizes of organisms. NV could be a useful indicator for characterizing ecological responses to anthropogenic influence; however, the biology of target organisms and subsequent RNA production need to be considered.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2021.118446DOI Listing
January 2022

16S rRNA metabarcoding unearths responses of rare gut microbiome of fathead minnows exposed to benzo[a]pyrene.

Sci Total Environ 2021 Oct 25:151060. Epub 2021 Oct 25.

Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Environmental Science, Baylor University, Waco, TX, USA.

Activities of gut microbiomes are often overlooked in assessments of ecotoxicological effects of environmental contaminants. Effects of the polycyclic aromatic hydrocarbon, benzo[a]pyrene (BaP) on active gut microbiomes of juvenile fathead minnows (Pimephales promelas) were investigated. Fish were exposed for two weeks, to concentrations of 0, 1, 10, 100, or 1000 μg BaP g in the diet. The active gut microbiome was characterized using 16S rRNA metabarcoding to determine its response to dietary exposure of BaP. BaP reduced alpha-diversity at the greatest exposure concentrations. Additionally, exposure to BaP altered community composition of active microbiome and resulted in differential proportion of taxa associated with hydrocarbon degradation and fish health. Neighborhood selection networks of active microbiomes were not reduced with greater concentrations of BaP, which suggests ecological resistance and/or resilience of gut microbiota. The active gut microbiome had a similar overall biodiversity as that of the genomic gut microbiota, but had a distinct composition from that of the 16S rDNA profile. Responses of alpha- and beta-diversities of the active microbiome to BaP exposure were consistent with that of genomic microbiomes. Normalized activity of microbiome via the ratio of rRNA to rDNA abundance revealed rare taxa that became active or dormant due to exposure to BaP. These differences highlight the need to assess both 16S rDNA and rRNA metabarcoding to fully derive bacterial compositional changes resulting from exposure to contaminants.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.151060DOI Listing
October 2021

Correction to: Tissue-based assessment of hazard posed by mercury and selenium to wild fishes in two shallow Chinese lakes.

Environ Sci Pollut Res Int 2021 Oct 20. Epub 2021 Oct 20.

State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-021-17113-1DOI Listing
October 2021

Dissipation, Fate, and Toxicity of Crop Protection Chemical Safeners in Aquatic Environments.

Rev Environ Contam Toxicol 2021 ;258:27-53

Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada.

Safeners are a group of chemicals applied with herbicides to protect crop plants from potential adverse effects of agricultural products used to kill weeds in monocotyledonous crops. Various routes of dissipation of safeners from their point of applications were evaluated. Despite the large numbers of safeners (over 18) commercially available and the relatively large quantities (~2 × 10 kg/year) used, there is little information on their mobility and fate in the environment and occurrence in various environmental matrices. The only class of safeners for which a significant amount of information is available is dichloroacetamide safeners, which have been observed in some rivers in the USA at concentrations ranging from 42 to 190 ng/L. Given this gap in the literature, there is a clear need to determine the occurrence, fate, and bioavailability of other classes of safeners. Furthermore, since safeners are typically used in commercial formulations, it is useful to study them in relation to their corresponding herbicides. Common routes of dissipation for herbicides and applied safeners are surface run off (erosion), hydrolysis, photolysis, sorption, leaching, volatilization, and microbial degradation. Toxic potencies of safeners vary among organisms and safener compounds, ranging from as low as the LC for fish (Oncorhynchus mykiss) for isoxadifen-ethyl, which was 0.34 mg/L, to as high as the LC for Daphnia magna from dichlormid, which was 161 mg/L. Solubilities and octanol-water partition coefficients seem to be the principal driving force in understanding safener mobilities. This paper provides an up-to-date literature review regarding the occurrence, behaviour, and toxic potency of herbicide safeners and identifies important knowledge gaps in our understanding of these compounds and the potential risks posed to potentially impacted ecosystems.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/398_2021_70DOI Listing
November 2021

Life Cycle Exposure to Environmentally Relevant Concentrations of Diphenyl Phosphate (DPhP) Inhibits Growth and Energy Metabolism of Zebrafish in a Sex-Specific Manner.

Environ Sci Technol 2021 10 15;55(19):13122-13131. Epub 2021 Sep 15.

Toxicology Centre, University of Saskatchewan, Saskatoon S7N 5B3, SK, Canada.

Due to commercial uses and environmental degradation of aryl phosphate esters, diphenyl phosphate (DPhP) is frequently detected in environmental matrices and is thus of growing concern worldwide. However, information on potential adverse effects of chronic exposure to DPhP at environmentally realistic concentrations was lacking. Here, we investigated the effects of life cycle exposure to DPhP on zebrafish at environmentally relevant concentrations of 0.8, 3.9, or 35.6 μg/L and employed a dual-omics approach (metabolomics and transcriptomics) to characterize potential modes of action. Exposure to DPhP at 35.6 μg/L for 120 days resulted in significant reductions in body mass and length of male zebrafish, but did not cause those same effects to females. Predominant toxicological mechanisms, including inhibition of oxidative phosphorylation, down-regulation of fatty acid oxidation, and up-regulation of phosphatidylcholine degradation, were revealed by integrated dual-omics analysis and successfully linked to adverse outcomes. Activity of succinate dehydrogenase and protein content of carnitine -palmitoyltransferase 1 were significantly decreased in livers of male fish exposed to DPhP, which further confirmed the proposed toxicological mechanisms. This study is the first to demonstrate that chronic, low-level exposure to DPhP can retard growth via inhibiting energy output in male zebrafish.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.1c03948DOI Listing
October 2021

Microplastics in the Koshi River, a remote alpine river crossing the Himalayas from China to Nepal.

Environ Pollut 2021 Dec 7;290:118121. Epub 2021 Sep 7.

Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing, 100085, China.

Studies of microplastics (MPs) in remote, trans-boundary and alpine rivers are currently lacking. To understand the sinks and transport mechanisms of MPs, this study investigated the distributions and sources of MPs in the surface waters and sediments of five tributaries of the Koshi River (KR), a typical alpine river in the Himalayas between China and Nepal. Mean abundances of MPs in water and sediment were 202 ± 100 items/m and 58 ± 27 items/kg, dry weight, respectively. The upstream tributary, Pum Qu in China, had the smallest abundance of MPs, while the middle tributary, Sun Koshi in Nepal, had the greatest abundance. Compared to international values in rivers, contamination of the KR with MPs was low to moderate. Fibers represented 98% of all MP particles observed, which consisted of polyethylene, polyethyleneterephthalate, polyamide, polypropylene, and polystyrene. Blue and black MPs were prevalent, and small MPs (<1 mm) accounted for approximately 60% of all MPs. Atmospheric transmission and deposition were considered to be the principal sources of MPs in the upstream tributary. The results imply that point sources associated with mostly untreated sewage effluents and solid wastes from households, major settlements, towns, and cities were most important sources of MPs in the KR. Non-point sources from agricultural runoff and atmospheric transport and deposition in the middle stream tributaries also contribute a part of microplastics, while the least amount was from fishing in the downstream tributary. Urbanization, agriculture, traffic, and tourism contributed to pollution in the KR by MPs. Equations to predict abundances of MPs based on river altitudes revealed that different trends were affected by both natural and human factors within the KR basin. This study presents new insights into the magnitude of MP pollution of a remote alpine river and provides valuable data for developing MP monitoring and mitigation strategies in similar environments worldwide.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2021.118121DOI Listing
December 2021

Effect-directed identification of novel aryl hydrocarbon receptor-active aromatic compounds in coastal sediments collected from a highly industrialized area.

Sci Total Environ 2022 Jan 28;803:149969. Epub 2021 Aug 28.

School of Earth and Environmental Sciences, Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea. Electronic address:

In this study, we identified major aryl hydrocarbon receptor (AhR) agonists in the sediments from Yeongil Bay (n = 6) using effect-directed analysis. Using the H4IIE-luc bioassays, great AhR-mediated potencies were found in aromatic fractions (F2) of sediment organic extracts from silica gel column chromatography and sub-fractions (F2.6-F2.8) from reverse phase-HPLC. Full-scan mass spectrometric analysis using GC-QTOFMS was conducted to identify novel AhR agonists in highly potent fractions, such as F2.6-F2.8 of S1 (Gumu Creek). Selection criteria for AhR-active compounds consisted of three steps, including matching factor of NIST library (≥70), aromatic structures, and the number of aromatic rings (≥4). Fifty-nine compounds were selected as tentative AhR agonist candidates, with the AhR-mediated activity being assessed for six compounds for which standard materials were available commercially. Of these compounds, 20-methylcholanthrene, 7-methylbenz[a]anthracene, 10-methylbenz[a]pyrene, and 7,12-dimethylbenz[a]anthracene exhibited significant AhR-mediated potency. Relative potency values of these compounds were determined relative to benzo[a]pyrene to be 3.2, 1.4, 1.2, and 0.2, respectively. EPA positive matrix factorization modeling indicated that the sedimentary AhR-active aromatic compounds primarily originated from coal combustion and vehicle emissions. Potency balance analysis indicated that four novel AhR agonists explained 0.007% to 1.7% of bioassay-derived AhR-mediated potencies in samples.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.149969DOI Listing
January 2022

Comparison of approaches to quantify SARS-CoV-2 in wastewater using RT-qPCR: Results and implications from a collaborative inter-laboratory study in Canada.

J Environ Sci (China) 2021 Sep 4;107:218-229. Epub 2021 Mar 4.

Group author details below.

Detection of SARS-CoV-2 RNA in wastewater is a promising tool for informing public health decisions during the COVID-19 pandemic. However, approaches for its analysis by use of reverse transcription quantitative polymerase chain reaction (RT-qPCR) are still far from standardized globally. To characterize inter- and intra-laboratory variability among results when using various methods deployed across Canada, aliquots from a real wastewater sample were spiked with surrogates of SARS-CoV-2 (gamma-radiation inactivated SARS-CoV-2 and human coronavirus strain 229E [HCoV-229E]) at low and high levels then provided "blind" to eight laboratories. Concentration estimates reported by individual laboratories were consistently within a 1.0-log range for aliquots of the same spiked condition. All laboratories distinguished between low- and high-spikes for both surrogates. As expected, greater variability was observed in the results amongst laboratories than within individual laboratories, but SARS-CoV-2 RNA concentration estimates for each spiked condition remained mostly within 1.0-log ranges. The no-spike wastewater aliquots provided yielded non-detects or trace levels (<20 gene copies/mL) of SARS-CoV-2 RNA. Detections appear linked to methods that included or focused on the solids fraction of the wastewater matrix and might represent in-situ SARS-CoV-2 to the wastewater sample. HCoV-229E RNA was not detected in the no-spike aliquots. Overall, all methods yielded comparable results at the conditions tested. Partitioning behavior of SARS-CoV-2 and spiked surrogates in wastewater should be considered to evaluate method effectiveness. A consistent method and laboratory to explore wastewater SARS-CoV-2 temporal trends for a given system, with appropriate quality control protocols and documented in adequate detail should succeed.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jes.2021.01.029DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7929783PMC
September 2021

Toxicokinetic Models for Bioconcentration of Organic Contaminants in Two Life Stages of White Sturgeon ().

Environ Sci Technol 2021 09 12;55(17):11590-11600. Epub 2021 Aug 12.

Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada.

The white sturgeon () is an endangered ancient fish species that is known to be particularly sensitive to certain environmental contaminants, partly because of the uptake and subsequent toxicity of lipophilic pollutants prone to bioconcentration as a result of their high lipid content. To better understand the bioconcentration of organic contaminants in this species, toxicokinetic (TK) models were developed for the embryo-larval and subadult life stages. The embryo-larval model was designed as a one-compartment model and validated using whole-body measurements of benzo[]pyrene (B[]P) metabolites from a waterborne exposure to B[]P. A physiologically based TK (PBTK) model was used for the subadult model. The predictive power of the subadult model was validated with an experimental data set of four chemicals. Results showed that the TK models could accurately predict the bioconcentration of organic contaminants for both life stages of white sturgeon within 1 order of magnitude of measured values. These models provide a tool to better understand the impact of environmental contaminants on the health and the survival of endangered white sturgeon populations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.0c06867DOI Listing
September 2021

Exposure to organophosphate esters in elderly people: Relationships of OPE body burdens with indoor air and dust concentrations and food consumption.

Environ Int 2021 12 5;157:106803. Epub 2021 Aug 5.

China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China.

Human exposure to OPEs is pervasive and should be of great concern due to associations with adverse health effects, especially in susceptible populations. In this study, body burdens and exposure pathways of OPEs were investigated for 76 healthy elderly people in Jinan, China based on the measured OPE and metabolite concentrations in human bio-samples (whole blood and urine) and paired environmental matrices (air and dust), as well as food frequency questionnaire. Eight of 16 OPEs and 5 of 11 metabolites were detected in > 50% of whole blood and urine samples, respectively. Tri(1-chloro-2-propyl) phosphate (TCIPP), tris(2-chloroethyl) phosphate (TCEP), tri-phenyl phosphate (TPHP), and 2-ethylhexyl di-phenyl phosphate (EHDPP) were frequently detected and abundant in whole blood, while their corresponding metabolites were detected at low frequencies or levels in urine. The reduced metabolic and/or excretory capacity of elderly people may be an important reason, implying a higher health risk to them. Fourteen OPEs had over 50% detection frequencies in indoor air and dust, while 6 di-esters in indoor dust. Tris(2-ethylhexyl) phosphate (TEHP) in indoor dust and tri-n-butyl phosphate (TnBP) in indoor air were positively correlated with paired levels in blood but not with their metabolites (BEHP and DnBP) in urine. Combined with the direct intakes of BEHP and DBP from dust, blood is indicated as more suitable biomarker for TEHP and TnBP exposure. High consumption frequencies of several foods were associated with higher blood concentrations of three OPEs and urinary levels of four di-OPEs, indicating the importance of dietary exposure pathway. Estimated daily total intakes of OPEs via inhalation, dust ingestion, and dermal absorption ranged from 2.78 to 42.0 ng/kg bw/day, which were far less than the reference dosage values. Further studies were warranted to explore the potential health effects of OPE exposure in the elderly populations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envint.2021.106803DOI Listing
December 2021

Ecotoxicological risk assessment of metal cocktails based on maximum cumulative ratio during multi-generational exposures.

Water Res 2021 Jul 22;200:117274. Epub 2021 May 22.

State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China; Department of Veterinary Biomedical Sciences and Toxicology Center, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada; Department of Environmental Science, Baylor University, Waco, Texas, USA.

Humans and wildlife are frequently exposed to complex mixtures of chemicals, with exposure rarely causing only one dominant effect. Consequently, there is an urgent need to develop strategies to assess exposures to multiple, hazardous chemicals and effects of such combinations. Here, the maximum cumulative ratio was used as part of a tiered approach to evaluate and prioritize risks of co-exposures to metals in 781 samples of surface water from Tai Lake, China. Multiple metals, including copper, lead, cadmium, nickel and zinc dominated the hazardous effects on aquatic organisms. Based on species sensitivity distributions developed from genus mean chronic values, crustaceans were the most susceptible to effects of metals. Results of a multi-generation experiment demonstrated adverse effects of mixtures of metals at environmentally relevant concentrations on growth and reproduction of the cladocerans, Daphnia magna and Moina macrocopa. Specifically, when exposed to metals body length and total number of offspring produced per adult female were less than the controls. Resistance of D. magna populations to mixtures of metals was significantly less, while, under similar conditions, M. macrocopa exhibited greater capacity to recover and the response to adverse effects occurred earlier. Demographic analysis models constructed using a Leslie matrix, used to predict population dynamics of the cladocerans, revealed that various effects of metal cocktails on individual-level endpoints was related to attenuation at the population level. By integrating all the observations, it was recommended that densities of populations of cladocerans in surface waters could be a useful parameter for indicating possible detrimental effects induced by toxic chemicals. Results of this study provide novel insights into risks posed by simultaneous exposure to multiple metals and reveal their potential adverse long-term effects on sensitive aquatic organisms.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2021.117274DOI Listing
July 2021

Are Honey Bees at Risk from Microplastics?

Toxics 2021 May 15;9(5). Epub 2021 May 15.

Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada.

Microplastics (MPs) are ubiquitous and persistent pollutants, and have been detected in a wide variety of media, from soils to aquatic systems. MPs, consisting primarily of polyethylene, polypropylene, and polyacrylamide polymers, have recently been found in 12% of samples of honey collected in Ecuador. Recently, MPs have also been identified in honey bees collected from apiaries in Copenhagen, Denmark, as well as nearby semiurban and rural areas. Given these documented exposures, assessment of their effects is critical for understanding the risks of MP exposure to honey bees. Exposure to polystyrene (PS)-MPs decreased diversity of the honey bee gut microbiota, followed by changes in gene expression related to oxidative damage, detoxification, and immunity. As a result, the aim of this perspective was to investigate whether wide-spread prevalence of MPs might have unintended negative effects on health and fitness of honey bees, as well as to draw the scientific community's attention to the possible risks of MPs to the fitness of honey bees. Several research questions must be answered before MPs can be considered a potential threat to bees.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/toxics9050109DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8156821PMC
May 2021

Transmission of SARS-CoV-2 virus and ambient temperature: a critical review.

Environ Sci Pollut Res Int 2021 Jul 29;28(28):37051-37059. Epub 2021 May 29.

School of Environment & Natural Resources, Renmin University of China, No.59, Zhongguancun Street, Haidian District, Beijing, 100872, China.

The coronavirus disease 2019 (COVID-19) pandemic has brought unprecedented public health, and social and economic challenges. It remains unclear whether seasonal changes in ambient temperature will alter spreading trajectory of the COVID-19 epidemic. The probable mechanism on this is still lacking. This review summarizes the most recent research data on the effect of ambient temperature on the COVID-19 epidemic characteristic. The available data suggest that (i) mesophilic traits of viruses are different due to their molecular composition; (ii) increasing ambient temperature decreases the persistence of some viruses in aquatic media; (iii) a 1°C increase in the average monthly minimum ambient temperatures (AMMAT) was related to a 0.72% fewer mammalian individuals that would be infected by coronavirus; (iv) proportion of zoonotic viruses of mammals including humans is probably related to their body temperature difference; (v) seasonal divergence between the northern and southern hemispheres may be a significant driver in determining a waved trajectory in the next 2 years. Further research is needed to understand its effects and mechanisms of global temperature change so that effective strategies can be adopted to curb its natural effects. This paper mainly explores possible scientific hypothesis and evidences that local communities and authorities should consider to find optimal solutions that can limit the transmission of SARS-CoV-2 virus.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-021-14625-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8164483PMC
July 2021

Proteomic analysis using isobaric tags for relative and absolute quantification technology reveals mechanisms of toxic effects of tris (1,3-dichloro-2-propyl) phosphate on RAW264.7 macrophage cells.

J Appl Toxicol 2021 May 25. Epub 2021 May 25.

Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China.

Tris (1,3-dichloro-2-propyl) phosphate (TDCIPP) is one of the most commonly used organophosphorus flame retardants. Immuno-toxicity induced by TDCIPP is becoming of increasing concern. However, effects of TDCIPP on immune cells and mechanisms resulting in those effects are poorly understood. In this study, it was determined, for the first time, by use of isobaric tags for relative and absolute quantification (iTRAQ) based proteomic techniques expression of global proteins in RAW264.7 cells exposed to 10 μM TDCIPP. A total of 180 significantly differentially expressed proteins (DEPs) were identified. Of these, 127 were up-regulated and 53 were down-regulated. The DEPs associated with toxic effects of TDCIPP were then screened by use of Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes for enrichment analysis. Results showed that these DEPs were involved in a number of pathways including apoptosis, DNA damage, cell cycle arrest, immune-toxicity, and signaling pathways, such as the Toll-like receptor, PPAR and p53 signaling pathways. The complex regulatory relationships between different DEPs, which might play an important role in cell death were also observed in the form of a protein-protein interaction network. Meanwhile, mitochondrial membrane potential (MMP) in RAW264.7 cells after TDCIPP treatment was also analyzed, the collapse of the MMP was speculated to play an important role in TDCIPP induced apoptosis. Moreover, some of the important regulator proteins discovered in this study, such as Chk1, Aurora A, would provide novel insight into the molecular mechanisms involved in toxic responses to TDCIPP.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jat.4201DOI Listing
May 2021

Effects of acute exposure to microcystins on hypothalamic-pituitary-adrenal (HPA), -gonad (HPG) and -thyroid (HPT) axes of female rats.

Sci Total Environ 2021 Jul 10;778:145196. Epub 2021 Feb 10.

Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China.

Microcystins (MCs) are common, well-known cyanobacterial toxins that can affect health of humans. Recently, it has been reported that MCs affect endocrine functions. In the present study, for the first time, histopathology, concentrations of hormones and transcription of genes along the hypothalamic-pituitary-adrenal (HPA), hypothalamic-pituitary-gonad (HPG) and hypothalamic-pituitary-thyroid (HPT) axes were examined in rats exposed to microcystin-LR (MC-LR). Female, Sprague-Dawley (SD) rats were exposed acutely to MC-LR by a single intraperitoneal (i.p.) injection at doses of 0.5, 0.75, or 1 median lethal dose (LD), i.e. 36.5, 54.75, or 73 μg MC-LR/kg body mass (bm) then euthanized 24 hours after exposure. Acute exposure to MC-LR significantly increased relative mass of adrenal in a dose-dependent manner, but relative mass of hypothalamus, pituitary, ovary and thyroid were not significantly different from respective mass in controls. However, damage to all these tissues was observed by histology. Along the HPA axis, lesser concentrations of corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH) and corticosterone (CORT) were observed in blood serum of exposed individuals, relative to controls. For the HPG axis, concentrations of gonadotropin-releasing hormone (GnRH) and estradiol (E2) were significantly less in rats treated with MC-LR, but greater concentrations of luteinizing hormone (LH), follicle-stimulating hormone (FSH) and testosterone (T) were observed. Along the HPT axis, MC-LR caused greater concentrations of thyroid-stimulating hormone (TSH), but lesser concentrations of thyrotropin-releasing hormone (TRH), free tetra-iodothyronine (fT4) and tri-iodothyronine (fT3). Significant positive/negative correlations of concentrations of hormones were observed among the HPA, HPG and HPT axes. In addition, profiles of transcription of genes for synthesis of hormones along the endocrine axes and nuclear hormone receptors in adrenal, ovary and thyroid were significantly altered. Therefore, these results suggested that MC-LR affected HPA, HPG and HPT axes and exerted endocrine-disrupting effects. Effects of MC-LR on crosstalk among these three axes need further studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.145196DOI Listing
July 2021

Novel polar AhR-active chemicals detected in sediments of an industrial area using effect-directed analysis based on in vitro bioassays with full-scan high resolution mass spectrometric screening.

Sci Total Environ 2021 Jul 17;779:146566. Epub 2021 Mar 17.

School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea. Electronic address:

Studies investigating aryl hydrocarbon receptor (AhR)-active compounds in the environment typically focus on non- and mid-polar substances, such as PAHs; while, information on polar AhR agonists remains limited. Here, we identified polar AhR agonists in sediments collected from the inland creeks of an industrialized area (Lake Sihwa, Korea) using effect-directed analysis combined with full-scan screening analysis (FSA; using LC-QTOFMS). Strong AhR-mediated potencies were observed for the polar and latter fractions of RP-HPLC (F3.5-F3.8) from sediment organic extracts in the H4IIE-luc in vitro bioassays. FSA was performed on the corresponding fractions. Twenty-eight tentative AhR agonists were chosen using a five-step process. Toxicological confirmation using bioassay revealed that canrenone, rutaecarpine, ciprofloxacin, mepanipyrim, genistein, protopine, hydrocortisone, and medroxyprogesterone were significantly active. The relative potencies of these AhR-active compounds compared to that of benzo[a]pyrene ranged from 0.00002 to 2.0. Potency balance analysis showed that polar AhR agonists explained, on average, ~6% of total AhR-mediated potencies in samples. Some novel polar AhR agonists also exhibited endocrine-disrupting potentials capable of binding to estrogen and glucocorticoid receptors, as identified by QSAR modeling. In conclusion, the focused studies on distributions, sources, fate, and ecotoxicological effects of novel polar AhR agonists in the environment are necessary.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.146566DOI Listing
July 2021

Using zooplankton metabarcoding to assess the efficacy of different techniques to clean-up an oil-spill in a boreal lake.

Aquat Toxicol 2021 Jul 1;236:105847. Epub 2021 May 1.

International Institute for Sustainable Development - Experimental Lakes Area, Kenora, ON, Canada.

Regulators require adequate information to select best practices with less ecosystem impacts for remediation of freshwater ecosystems after oil spills. Zooplankton are valuable indicators of aquatic ecosystem health as they play pivotal roles in biochemical cycles while stabilizing food webs. Compared with morphological identification, metabarcoding holds promise for cost-effective, high-throughput, and benchmarkable biomonitoring of zooplankton communities. The objective of this study was to apply DNA and RNA metabarcoding of zooplankton for ecotoxicological assessment and compare it with traditional morphological identification in experimental shoreline enclosures in a boreal lake. These identification methods were also applied in context of assessing response of the zooplankton community exposed to simulated spills of diluted bitumen (dilbit), with experimental remediation practices (enhanced monitored natural recovery and shoreline cleaner application). Metabarcoding detected boreal zooplankton taxa up to the genus level, with a total of 24 shared genera, and while metabarcoding-based relative abundance served as an acceptable proxy for biomass inferred by morphological identification (ρ ≥ 0.52). Morphological identification determined zooplankton community composition changes due to treatments at 11 days post-spill (PERMANOVA, p = 0.0143) while metabarcoding methods indicated changes in zooplankton richness and communities at 38 days post-spill (T-test, p < 0.05; PERMANOVA, p ≤ 0.0429). Shoreline cleaner application overall seemed to have the largest impact on zooplankton communities relative to enhanced monitored natural recovery, regardless of zooplankton identification method. Both metabarcoding and morphological identification were able to discern the differences between the two experimental remediation practices. Metabarcoding of zooplankton could provide informative results for ecotoxicological assessment of the remediation practices of dilbit, advancing our knowledge of best practices for remediating oil-impacted aquatic ecosystems while serving to accelerate the assessment of at-risk freshwater ecosystems.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aquatox.2021.105847DOI Listing
July 2021

Hotpots and trends of covalent organic frameworks (COFs) in the environmental and energy field: Bibliometric analysis.

Sci Total Environ 2021 Aug 31;783:146838. Epub 2021 Mar 31.

Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.

Covalent organic frameworks (COFs) have attracted extensive attention due to their low density, adjustable structure, functionalization, and good stability. This paper systematically and comprehensively describes to qualitatively and quantitatively the progress, trends, and hotspots of COFs in the environmental and energy fields from the perspective of bibliometrics. Herein, based on the Web of Science database, a total of 2589 articles from 2005 to October 6, 2020, were collected. Thereafter, co-occurrence, co-citation analysis, and cluster analysis were conducted using CiteSpace and VOSviewer software. The results indicated that COFs research shows the characteristics of rapid growth. The active countries were mainly USA, Germany, Japan, China, and India. More than half of the top 20 active institutions were from China. The research hotspots in this field were systematically elaborated, including synthesis, adsorption, catalysis, membrane, sensor, and energy storage. Research has shown that various COFs are reasonably designed, synthesized, and used in different applications. For example, when COFs are used for photocatalysis, groups containing photocatalytic active sites are integrated into COFs to improve photocatalytic activity. Finally, some challenges were proposed, that are beneficial to the rapid and balanced development of the COFs field. For instance, the preparation methods still need to be further improved for mass production and there is an imbalance in environmental applications such as fewer sensor and membrane applications. We believe that this study provides a comprehensive and systematic overview of the environmental and energy applications of COFs for future investigations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.146838DOI Listing
August 2021

Remodeling of Arctic char (Salvelinus alpinus) lipidome under a stimulated scenario of Arctic warming.

Glob Chang Biol 2021 07 2;27(14):3282-3298. Epub 2021 May 2.

Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada.

Arctic warming associated with global climate change poses a significant threat to populations of wildlife in the Arctic. Since lipids play a vital role in adaptation of organisms to variations in temperature, high-resolution mass-spectrometry-based lipidomics can provide insights into adaptive responses of organisms to a warmer environment in the Arctic and help to illustrate potential novel roles of lipids in the process of thermal adaption. In this study, we studied an ecologically and economically important species-Arctic char (Salvelinus alpinus)-with a detailed multi-tissue analysis of the lipidome in response to chronic shifts in temperature using a validated lipidomics workflow. In addition, dynamic alterations in the hepatic lipidome during the time course of shifts in temperature were also characterized. Our results showed that early life stages of Arctic char were more susceptible to variations in temperature. One-year-old Arctic char responded to chronic increases in temperature with coordinated regulation of lipids, including headgroup-specific remodeling of acyl chains in glycerophospholipids (GP) and extensive alterations in composition of lipids in membranes, such as less lyso-GPs, and more ether-GPs and sphingomyelin. Glycerolipids (e.g., triacylglycerol, TG) also participated in adaptive responses of the lipidome of Arctic char. Eight-week-old Arctic char exhibited rapid adaptive alterations of the hepatic lipidome to stepwise decreases in temperature while showing blunted responses to gradual increases in temperature, implying an inability to adapt rapidly to warmer environments. Three common phosphatidylethanolamines (PEs) (PE 36:6|PE 16:1_20:5, PE 38:7|PE 16:1_22:6, and PE 40:7|PE 18:1_22:6) were finally identified as candidate lipid biomarkers for temperature shifts via machine learning approach. Overall, this work provides additional information to a better understanding of underlying regulatory mechanisms of the lipidome of Arctic organisms in the face of near-future warming.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/gcb.15638DOI Listing
July 2021

In memory of Dr. Doris Au (29 April 1965-7 February 2020).

Mar Pollut Bull 2021 06 31;167:112278. Epub 2021 Mar 31.

State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China. Electronic address:

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2021.112278DOI Listing
June 2021

Molecular mechanisms of zooplanktonic toxicity in the okadaic acid-producing dinoflagellate Prorocentrum lima.

Environ Pollut 2021 Jun 12;279:116942. Epub 2021 Mar 12.

Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada; Department of Environmental Sciences, Baylor University, Waco, TX, USA; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China.

Prorocentrum lima is a dinoflagellate that forms hazardous blooms and produces okadaic acid (OA), leading to adverse environmental consequences associated with the declines of zooplankton populations. However, little is known about the toxic effects and molecular mechanisms of P. lima or OA on zooplankton. Here, their toxic effects were investigated using the brine shrimp Artemia salina. Acute exposure of A. salina to P. lima resulted in lethality at concentrations 100-fold lower than densities observed during blooms. The first comprehensive results from global transcriptomic and metabolomic analyses in A. salina showed up-regulated mRNA expression of antioxidant enzymes and reduced non-enzyme antioxidants, indicating general detoxification responses to oxidative stress after exposure to P. lima. The significantly up-regulated mRNA expression of proteasome, spliceosome, and ribosome, as well as the increased fatty acid oxidation and oxidative phosphorylation suggested the proteolysis of damaged proteins and induction of energy expenditure. Exposure to OA increased catabolism of chitin, which may further disrupt the molting and reproduction activities of A. salina. Our data shed new insights on the molecular responses and toxicity mechanisms of A. salina to P. lima or OA. The simple zooplankton model integrated with omic methods provides a sensitive assessment approach for studying hazardous algae.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2021.116942DOI Listing
June 2021

Polycyclic aromatic hydrocarbons, pesticides, and metals in olive: analysis and probabilistic risk assessment.

Environ Sci Pollut Res Int 2021 Aug 24;28(29):39723-39741. Epub 2021 Mar 24.

Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, P. O. Box, 1365-91775, Mashhad, Iran.

In the present study, levels of 22 pesticides, eight metals, and 16 polycyclic aromatic hydrocarbons (PAHs) in 1800 Iranian olive samples (20 cultivars from six different cultivation zones), were determined; then, health risk posed by oral consumption of the olive samples to Iranian consumers was assessed. Quantification of PAHs and pesticides was done by chromatography-mass spectrometry (GC-MS), and metal levels were determined using inductively coupled plasma-optical emission spectrometry (ICP-OES). There were no significant differences among the cultivars and zones in terms of the levels of the tested compounds. Target hazard quotients (THQ) were <1.0 for all pesticides, and total hazard indices (HI) indicated di minimis risk. At the 25th or 95th centiles, Incremental Life Time Cancer Risks (ILCRs) for carcinogenic elements, arsenic, and lead and noncarcinogenic metals did not exhibit a significant hazard (HI <1.0 for both cases). At the 25th or 95th centiles, ILCR and margins of exposure (MoE) for PAHs indicated di minimis risk. Sensitivity analysis showed that concentrations of contaminants had the most significant effect on carcinogenic and noncarcinogenic risks.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-021-13348-0DOI Listing
August 2021

Enlightenment from the COVID-19 Pandemic: The Roles of Environmental Factors in Future Public Health Emergency Response.

Engineering (Beijing) 2021 Mar 13. Epub 2021 Mar 13.

Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada.

The coronavirus disease 2019 (COVID-19) pandemic is challenging the current public health emergency response systems (PHERSs) of many countries. Although environmental factors, such as those influencing the survival of viruses and their transmission between species including humans, play important roles in PHERSs, little attention has been given to these factors. This study describes and elucidates the roles of environmental factors in future PHERSs. To improve countries' capability to respond to public health emergencies associated with viral infections such as the COVID-19 pandemic, a number of environmental factors should be considered before, during, and after the responses to such emergencies. More specifically, to prevent pandemic outbreaks, we should strengthen environmental and wildlife protection, conduct detailed viral surveillance in animals and hotspots, and improve early-warning systems. During the pandemic, we must study the impacts of environmental factors on viral behaviors, develop control measures to minimize secondary environmental risks, and conduct timely assessments of viral risks and secondary environmental effects with a view to reducing the impacts of the pandemic on human health and on ecosystems. After the pandemic, we should further strengthen surveillance for viruses and the prevention of viral spread, maintain control measures for minimizing secondary environmental risks, develop our capability to scientifically predict pandemics and resurgences, and prepare for the next unexpected resurgence. Meanwhile, we should restore the normal life and production of the public based on the "One Health" concept, that views global human and environmental health as inextricably linked. Our recommendations are essential for improving nations' capability to respond to global public health emergencies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.eng.2020.12.019DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7955573PMC
March 2021

Responses of juvenile fathead minnow (Pimephales promelas) gut microbiome to a chronic dietary exposure of benzo[a]pyrene.

Environ Pollut 2021 Jun 25;278:116821. Epub 2021 Feb 25.

Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Environmental Science, Baylor University, Waco, TX, USA.

The microbiome has been described as an additional host "organ" with well-established beneficial roles. However, the effects of exposures to chemicals on both structure and function of the gut microbiome of fishes are understudied. To determine effects of benzo[a]pyrene (BaP), a model persistent organic pollutant, on structural shifts of gut microbiome in juvenile fathead minnows (Pimephales promelas), fish were exposed ad libitum in the diet to concentrations of 1, 10, 100, or 1000 μg BaP g food, in addition to a vehicle control, for two weeks. To determine the link between exposure to BaP and changes in the microbial community, concentrations of metabolites of BaP were measured in fish bile and 16S rRNA amplicon sequencing was used to evaluate the microbiome. Exposure to BaP only reduced alpha-diversity at the greatest exposure concentrations. However, it did alter community composition assessed as differential abundance of taxa and reduced network complexity of the microbial community in all exposure groups. Results presented here illustrate that environmentally-relevant concentrations of BaP can alter the diversity of the gut microbiome and community network connectivity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2021.116821DOI Listing
June 2021

Combined cytotoxicity of polystyrene nanoplastics and phthalate esters on human lung epithelial A549 cells and its mechanism.

Ecotoxicol Environ Saf 2021 Apr 15;213:112041. Epub 2021 Feb 15.

Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada; Dept. Veterinary Biomedical Sciences, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada; Dept. Environmental Sciences, Baylor University, Waco, TX 76798-7266, USA.

Awareness of risks posed by widespread presence of nanoplastics (NPs) and bioavailability and potential to interact with organic pollutants has been increasing. Inhalation is one of the more important pathways of exposure of humans to NPs. In this study, combined toxicity of concentrations of polystyrene NPs and various phthalate esters (PAEs), some of the most common plasticizers, including dibutyl phthalate (DBP) and di-(2-ethyl hexyl) phthalate (DEHP) on human lung epithelial A549 cells were investigated. When co-exposed, 20 μg NPs/mL increased viabilities of cells exposed to either DBP or DEHP and the modulation of toxic potency of DEHP was greater than that of DBP, while the 200 μg NPs/mL resulted in lesser viability of cells. PAEs sorbed to NPs decreased free phase concentrations (C) of PAEs, which resulted in a corresponding lesser bioavailability and joint toxicity at the lesser concentration of NPs. The opposite effect was observed at the greater concentration of NPs, which may result from the dominated role of NPs in the combined toxicity. Furthermore, our data showed that oxidative stress and inflammatory reactions were mechanisms for combined cytotoxicities of PAEs and NPs on A549 cells. Results of this study emphasized the combined toxic effects and mechanisms on human lung cells, which are helpful for assessing the risk of the co-exposure of NPs and organic contaminants in humans.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2021.112041DOI Listing
April 2021

Exposure to short-chain chlorinated paraffins inhibited PPARα-mediated fatty acid oxidation and stimulated aerobic glycolysis in vitro in human cells.

Sci Total Environ 2021 Jun 1;772:144957. Epub 2021 Feb 1.

CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China.

Short-chain chlorinated paraffins (SCCPs) could disrupt fatty acid metabolism in male rat liver through activating rat PPARα signaling. However, whether this mode of action can translate to humans remained largely unclear. In this study, based on luciferase assays, C-CPs (56.5% Cl) at concentrations greater than 1 μM (i.e., 362 μg/L) showed weak agonistic activity toward human PPARα (hPPARα) signaling. But in HepG2 cells, exposure to C-CPs (56.5% Cl) at the human internal exposure level (100 μg/L) down-regulated expressions of most of the tested hPPARα target genes, which encode for enzymes that oxidize fatty acids. In line with the gene expression data, metabolomics further confirmed that exposure to four SCCP standards with varying chlorine contents at 100 μg/L significantly suppressed oxidation of fatty acids in HepG2 cells, mainly evidenced by elevations in both total fatty acids and long-chain acylcarnitines. In addition, exposure to these SCCPs also caused a shift in carbohydrate metabolism from the tricarboxylic acid cycle (TCA cycle) to aerobic glycolysis. Overall, the results revealed that SCCPs could inhibit hPPARα-mediated fatty acid oxidation, and stimulated aerobic glycolysis in HepG2 cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.144957DOI Listing
June 2021

High Throughput Sequencing of MicroRNA in Rainbow Trout Plasma, Mucus, and Surrounding Water Following Acute Stress.

Front Physiol 2020 13;11:588313. Epub 2021 Jan 13.

Department of Biology, University of Waterloo, Waterloo, ON, Canada.

Circulating plasma microRNAs (miRNAs) are well established as biomarkers of several diseases in humans and have recently been used as indicators of environmental exposures in fish. However, the role of plasma miRNAs in regulating acute stress responses in fish is largely unknown. Tissue and plasma miRNAs have recently been associated with excreted miRNAs; however, external miRNAs have never been measured in fish. The objective of this study was to identify the altered plasma miRNAs in response to acute stress in rainbow trout (), as well as altered miRNAs in fish epidermal mucus and the surrounding ambient water. Small RNA was extracted and sequenced from plasma, mucus, and water collected from rainbow trout pre- and 1 h-post a 3-min air stressor. Following small RNA-Seq and pathway analysis, we identified differentially expressed plasma miRNAs that targeted biosynthetic, degradation, and metabolic pathways. We successfully isolated miRNA from trout mucus and the surrounding water and detected differences in miRNA expression 1-h post air stress. The expressed miRNA profiles in mucus and water were different from the altered plasma miRNA profile, which indicated that the plasma miRNA response was not associated with or immediately reflected in external samples, which was further validated through qPCR. This research expands understanding of the role of plasma miRNA in the acute stress response of fish and is the first report of successful isolation and profiling of miRNA from fish mucus or samples of ambient water. Measurements of miRNA from plasma, mucus, or water can be further studied and have potential to be applied as non-lethal indicators of acute stress in fish.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fphys.2020.588313DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7838646PMC
January 2021

Fighting against the second wave of COVID-19: Can honeybee products help protect against the pandemic?

Saudi J Biol Sci 2021 Mar 22;28(3):1519-1527. Epub 2020 Dec 22.

Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, 44519 Al Sharqia, Egypt.

Coronavirus Disease (COVID-19) has infected people in 210 nations and has been declared a pandemic on March 12, 2020 by the World Health Organization (WHO). In the absence of effective treatment and/or vaccines for COVID-19, natural products of known therapeutic and antiviral activity could offer an inexpensive, effective option for managing the disease. Benefits of products of honey bees such as honey, propolis, and bee venom, against various types of diseases have been observed. Honey bees products are well known for their nutritional and medicinal values, they have been employed for ages for various therapeutic purposes. In this review, promising effects of various bee products against the emerging pandemic COVID-19 are discussed. Products of honey bees that contain mixtures of potentially active chemicals, possess unique properties that might help to protect, fight, and alleviate symptoms of COVID-19 infection.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.sjbs.2020.12.031DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7832137PMC
March 2021

Forchlorfenuron (CPPU) causes disorganization of the cytoskeleton and dysfunction of human umbilical vein endothelial cells, and abnormal vascular development in zebrafish embryos.

Environ Pollut 2021 Feb 7;271:115791. Epub 2020 Oct 7.

State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau. Electronic address:

Forchlorfenuron (CPPU) has been used worldwide, to boost size and improve quality of various agricultural products. CPPU and its metabolites are persistent and have been detected frequently in fruits, water, sediments, and organisms in aquatic systems. Although the public became aware of CPPU through the exploding watermelon scandal of 2011 in Zhenjiang, China, little was known of its potential effects on the environment and wildlife. In this study, adverse effects of CPPU on developmental angiogenesis and vasculature, which is vulnerable to insults of persistent toxicants, were studied in vivo in zebrafish embryos (Danio rerio). Exposure to 10 mg CPPU/L impaired survival and hatching, while development was hindered by exposure to 2.5 mg CPPU/L. Developing vascular structure, including common cardinal veins (CCVs), intersegmental vessels (ISVs) and sub-intestinal vessels (SIVs), were significantly restrained by exposure to CPPU, in a dose-dependent manner. Also, CPPU caused disorganization of the cytoskeleton. In human umbilical vein endothelial cells (HUVECs), CPPU inhibited proliferation, migration and formation of tubular-like structures in vitro. Results of Western blot analyses revealed that exposure to CPPU increased phosphorylation of FLT-1, but inhibited phosphorylation of FAK and its downstream MAPK pathway in HUVECs. In summary, CPPU elicited developmental toxicity to the developing endothelial system of zebrafish and HUVECs. This was do, at least in part due to inhibition of the FAK/MAPK signaling pathway rather than direct interaction with the VEGF receptor (VEGFR).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2020.115791DOI Listing
February 2021

Consequences of a short-term exposure to a sub lethal concentration of CdO nanoparticles on key life history traits in the fruit fly (Drosophila melanogaster).

J Hazard Mater 2021 05 26;410:124671. Epub 2020 Nov 26.

Zoology Department, Faculty of Science, Tanta University, 31527 Tanta, Egypt; General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany. Electronic address:

Nanoparticles of cadmium oxide (CdO NPs) are among the most common industrial metal oxide nanoparticles. Early adulthood (P1) fruit flies (D. melanogaster) were exposed for 7 days to a sub lethal concentration (0.03 mg CdO NPs/mL, which was 20% of the LC), spiked into food media to test whether short episodes of CdO NPs exposures early in adult life have long-lasting effects on life history traits such as fecundity well beyond exposure times. All studied life history traits, as well as climbing behavior were adversely affected by exposure to CdO NPs. A blistered wing phenotype was also observed in the non-exposed progeny (F1) of adult flies (P1) and their fecundity was significantly decreased (-50%) compared to the fecundity of non-exposed (control) F1 flies. Expressions of antioxidant enzymes encoding genes; catalase and superoxide dismutase (SOD2) were significantly up regulated in P1 flies compared to control. Expression of metallothionein encoding genes (MTn A-D) were significantly up-regulated in both parent flies (P1) and their progeny (F1) after exposure of P1 flies to CdO NPs compared to non-exposed control flies, suggesting long-term potential effects. Taken together, these findings indicate that short-term exposure to a sub-lethal CdO NP concentration is sufficient to have long-lasting, adverse effects on fruit flies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2020.124671DOI Listing
May 2021
-->