Publications by authors named "John C Van Swieten"

182 Publications

Classification using fractional anisotropy predicts conversion in genetic frontotemporal dementia, a proof of concept.

Brain Commun 2020 11;2(2):fcaa079. Epub 2020 Jun 11.

Department of Radiology, Leiden University Medical Centre, 2333 ZA, Leiden, the Netherlands.

Frontotemporal dementia is a highly heritable and devastating neurodegenerative disease. About 10-20% of all frontotemporal dementia is caused by known pathogenic mutations, but a reliable tool to predict clinical conversion in mutation carriers is lacking. In this retrospective proof-of-concept case-control study, we investigate whether MRI-based and cognition-based classifiers can predict which mutation carriers from genetic frontotemporal dementia families will develop symptoms ('convert') within 4 years. From genetic frontotemporal dementia families, we included 42 presymptomatic frontotemporal dementia mutation carriers. We acquired anatomical, diffusion-weighted imaging, and resting-state functional MRI, as well as neuropsychological data. After 4 years, seven mutation carriers had converted to frontotemporal dementia ('converters'), while 35 had not ('non-converters'). We trained regularized logistic regression models on baseline MRI and cognitive data to predict conversion to frontotemporal dementia within 4 years, and quantified prediction performance using area under the receiver operating characteristic curves. The prediction model based on fractional anisotropy, with highest contribution of the forceps minor, predicted conversion to frontotemporal dementia beyond chance level (0.81 area under the curve, family-wise error corrected  = 0.025 versus chance level). Other MRI-based and cognitive features did not outperform chance level. Even in a small sample, fractional anisotropy predicted conversion in presymptomatic frontotemporal dementia mutation carriers beyond chance level. After validation in larger data sets, conversion prediction in genetic frontotemporal dementia may facilitate early recruitment into clinical trials.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/braincomms/fcaa079DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7846185PMC
June 2020

A Modified Progressive Supranuclear Palsy Rating Scale.

Mov Disord 2021 Jan 29. Epub 2021 Jan 29.

Department of Neurology, Technische Universität München, Munich, Germany.

Background: The Progressive Supranuclear Palsy Rating Scale is a prospectively validated physician-rated measure of disease severity for progressive supranuclear palsy. We hypothesized that, according to experts' opinion, individual scores of items would differ in relevance for patients' quality of life, functionality in daily living, and mortality. Thus, changes in the score may not equate to clinically meaningful changes in the patient's status.

Objective: The aim of this work was to establish a condensed modified version of the scale focusing on meaningful disease milestones.

Methods: Sixteen movement disorders experts evaluated each scale item for its capacity to capture disease milestones (0 = no, 1 = moderate, 2 = severe milestone). Items not capturing severe milestones were eliminated. Remaining items were recalibrated in proportion to milestone severity by collapsing across response categories that yielded identical milestone severity grades. Items with low sensitivity to change were eliminated, based on power calculations using longitudinal 12-month follow-up data from 86 patients with possible or probable progressive supranuclear palsy.

Results: The modified scale retained 14 items (yielding 0-2 points each). The items were rated as functionally relevant to disease milestones with comparable severity. The modified scale was sensitive to change over 6 and 12 months and of similar power for clinical trials of disease-modifying therapy as the original scale (achieving 80% power for two-sample t test to detect a 50% slowing with n = 41 and 25% slowing with n = 159 at 12 months).

Conclusions: The modified Progressive Supranuclear Palsy Rating Scale may serve as a clinimetrically sound scale to monitor disease progression in clinical trials and routine. © 2021 International Parkinson and Movement Disorder Society.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/mds.28470DOI Listing
January 2021

Unravelling the clinical spectrum and the role of repeat length in repeat expansions.

J Neurol Neurosurg Psychiatry 2021 Jan 15. Epub 2021 Jan 15.

Department of Neurology and Alzheimer Center, Erasmus University Medical Center, Rotterdam, Netherlands

Since the discovery of the repeat expansion as the most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis, it has increasingly been associated with a wider spectrum of phenotypes, including other types of dementia, movement disorders, psychiatric symptoms and slowly progressive FTD. Prompt recognition of patients with -associated diseases is essential in light of upcoming clinical trials. The striking clinical heterogeneity associated with repeat expansions remains largely unexplained. In contrast to other repeat expansion disorders, evidence for an effect of repeat length on phenotype is inconclusive. Patients with -associated diseases typically have very long repeat expansions, containing hundreds to thousands of GGGGCC-repeats, but smaller expansions might also have clinical significance. The exact threshold at which repeat expansions lead to neurodegeneration is unknown, and discordant cut-offs between laboratories pose a challenge for genetic counselling. Accurate and large-scale measurement of repeat expansions has been severely hindered by technical difficulties in sizing long expansions and by variable repeat lengths across and within tissues. Novel long-read sequencing approaches have produced promising results and open up avenues to further investigate this enthralling repeat expansion, elucidating whether its length, purity, and methylation pattern might modulate clinical features of -related diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1136/jnnp-2020-325377DOI Listing
January 2021

Modelling the cascade of biomarker changes in -related frontotemporal dementia.

J Neurol Neurosurg Psychiatry 2021 Jan 15. Epub 2021 Jan 15.

Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, The Netherlands.

Objective: Progranulin-related frontotemporal dementia (FTD-) is a fast progressive disease. Modelling the cascade of multimodal biomarker changes aids in understanding the aetiology of this disease and enables monitoring of individual mutation carriers. In this cross-sectional study, we estimated the temporal cascade of biomarker changes for FTD-, in a data-driven way.

Methods: We included 56 presymptomatic and 35 symptomatic mutation carriers, and 35 healthy non-carriers. Selected biomarkers were neurofilament light chain (NfL), grey matter volume, white matter microstructure and cognitive domains. We used discriminative event-based modelling to infer the cascade of biomarker changes in FTD- and estimated individual disease severity through cross-validation. We derived the biomarker cascades in non-fluent variant primary progressive aphasia (nfvPPA) and behavioural variant FTD (bvFTD) to understand the differences between these phenotypes.

Results: Language functioning and NfL were the earliest abnormal biomarkers in FTD-. White matter tracts were affected before grey matter volume, and the left hemisphere degenerated before the right. Based on individual disease severities, presymptomatic carriers could be delineated from symptomatic carriers with a sensitivity of 100% and specificity of 96.1%. The estimated disease severity strongly correlated with functional severity in nfvPPA, but not in bvFTD. In addition, the biomarker cascade in bvFTD showed more uncertainty than nfvPPA.

Conclusion: Degeneration of axons and language deficits are indicated to be the earliest biomarkers in FTD-, with bvFTD being more heterogeneous in disease progression than nfvPPA. Our data-driven model could help identify presymptomatic mutation carriers at risk of conversion to the clinical stage.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1136/jnnp-2020-323541DOI Listing
January 2021

Fluid Biomarkers of Frontotemporal Lobar Degeneration.

Adv Exp Med Biol 2021 ;1281:123-139

Erasmus University Medical Center, Department of Neurology and Alzheimer Center, Rotterdam, The Netherlands.

A timely diagnosis of frontotemporal degeneration (FTD) is frequently challenging due to the heterogeneous symptomatology and poor phenotype-pathological correlation. Fluid biomarkers that reflect FTD pathophysiology could be instrumental in both clinical practice and pharmaceutical trials. In recent years, significant progress has been made in developing biomarkers of neurodegenerative diseases: amyloid-β and tau in cerebrospinal fluid (CSF) can be used to exclude Alzheimer's disease, while neurofilament light chain (NfL) is emerging as a promising, albeit nonspecific, marker of neurodegeneration in both CSF and blood. Gene-specific biomarkers such as PGRN in GRN mutation carriers and dipeptide repeat proteins in C9orf72 mutation carriers are potential target engagement markers in genetic FTD trials. Novel techniques capable of measuring very low concentrations of brain-derived proteins in peripheral fluids are facilitating studies of blood biomarkers as a minimally invasive alternative to CSF. A major remaining challenge is the identification of a biomarker that can be used to predict the neuropathological substrate in sporadic FTD patients.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-030-51140-1_9DOI Listing
February 2021

Progression of Behavioral Disturbances and Neuropsychiatric Symptoms in Patients With Genetic Frontotemporal Dementia.

JAMA Netw Open 2021 Jan 4;4(1):e2030194. Epub 2021 Jan 4.

Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.

Importance: Behavioral disturbances are core features of frontotemporal dementia (FTD); however, symptom progression across the course of disease is not well characterized in genetic FTD.

Objective: To investigate behavioral symptom frequency and severity and their evolution and progression in different forms of genetic FTD.

Design, Setting, And Participants: This longitudinal cohort study, the international Genetic FTD Initiative (GENFI), was conducted from January 30, 2012, to May 31, 2019, at 23 multicenter specialist tertiary FTD research clinics in the United Kingdom, the Netherlands, Belgium, France, Spain, Portugal, Italy, Germany, Sweden, Finland, and Canada. Participants included a consecutive sample of 232 symptomatic FTD gene variation carriers comprising 115 with variations in C9orf72, 78 in GRN, and 39 in MAPT. A total of 101 carriers had at least 1 follow-up evaluation (for a total of 400 assessments). Gene variations were included only if considered pathogenetic.

Main Outcomes And Measures: Behavioral and neuropsychiatric symptoms were assessed across disease duration and evaluated from symptom onset. Hierarchical generalized linear mixed models were used to model behavioral and neuropsychiatric measures as a function of disease duration and variation.

Results: Of 232 patients with FTD, 115 (49.6%) had a C9orf72 expansion (median [interquartile range (IQR)] age at evaluation, 64.3 [57.5-69.7] years; 72 men [62.6%]; 115 White patients [100%]), 78 (33.6%) had a GRN variant (median [IQR] age, 63.4 [58.3-68.8] years; 40 women [51.3%]; 77 White patients [98.7%]), and 39 (16.8%) had a MAPT variant (median [IQR] age, 56.3 [49.9-62.4] years; 25 men [64.1%]; 37 White patients [94.9%]). All core behavioral symptoms, including disinhibition, apathy, loss of empathy, perseverative behavior, and hyperorality, were highly expressed in all gene variant carriers (>50% patients), with apathy being one of the most common and severe symptoms throughout the disease course (51.7%-100% of patients). Patients with MAPT variants showed the highest frequency and severity of most behavioral symptoms, particularly disinhibition (79.3%-100% of patients) and compulsive behavior (64.3%-100% of patients), compared with C9orf72 carriers (51.7%-95.8% of patients with disinhibition and 34.5%-75.0% with compulsive behavior) and GRN carriers (38.2%-100% with disinhibition and 20.6%-100% with compulsive behavior). Alongside behavioral symptoms, neuropsychiatric symptoms were very frequently reported in patients with genetic FTD: anxiety and depression were most common in GRN carriers (23.8%-100% of patients) and MAPT carriers (26.1%-77.8% of patients); hallucinations, particularly auditory and visual, were most common in C9orf72 carriers (10.3%-54.5% of patients). Most behavioral and neuropsychiatric symptoms increased in the early-intermediate phases and plateaued in the late stages of disease, except for depression, which steadily declined in C9orf72 carriers, and depression and anxiety, which surged only in the late stages in GRN carriers.

Conclusions And Relevance: This cohort study suggests that behavioral and neuropsychiatric disturbances differ between the common FTD gene variants and have different trajectories throughout the course of disease. These findings have crucial implications for counseling patients and caregivers and for the design of disease-modifying treatment trials in genetic FTD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1001/jamanetworkopen.2020.30194DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7788468PMC
January 2021

Apathy in presymptomatic genetic frontotemporal dementia predicts cognitive decline and is driven by structural brain changes.

Alzheimers Dement 2020 Dec 14. Epub 2020 Dec 14.

Department of Clinical Neurosciences, Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK.

Introduction: Apathy adversely affects prognosis and survival of patients with frontotemporal dementia (FTD). We test whether apathy develops in presymptomatic genetic FTD, and is associated with cognitive decline and brain atrophy.

Methods: Presymptomatic carriers of MAPT, GRN or C9orf72 mutations (N = 304), and relatives without mutations (N = 296) underwent clinical assessments and MRI at baseline, and annually for 2 years. Longitudinal changes in apathy, cognition, gray matter volumes, and their relationships were analyzed with latent growth curve modeling.

Results: Apathy severity increased over time in presymptomatic carriers, but not in non-carriers. In presymptomatic carriers, baseline apathy predicted cognitive decline over two years, but not vice versa. Apathy progression was associated with baseline low gray matter volume in frontal and cingulate regions.

Discussion: Apathy is an early marker of FTD-related changes and predicts a subsequent subclinical deterioration of cognition before dementia onset. Apathy may be a modifiable factor in those at risk of FTD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/alz.12252DOI Listing
December 2020

Brain volumetric deficits in MAPT mutation carriers: a multisite study.

Ann Clin Transl Neurol 2021 01 28;8(1):95-110. Epub 2020 Nov 28.

Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA.

Objective: MAPT mutations typically cause behavioral variant frontotemporal dementia with or without parkinsonism. Previous studies have shown that symptomatic MAPT mutation carriers have frontotemporal atrophy, yet studies have shown mixed results as to whether presymptomatic carriers have low gray matter volumes. To elucidate whether presymptomatic carriers have lower structural brain volumes within regions atrophied during the symptomatic phase, we studied a large cohort of MAPT mutation carriers using a voxelwise approach.

Methods: We studied 22 symptomatic carriers (age 54.7 ± 9.1, 13 female) and 43 presymptomatic carriers (age 39.2 ± 10.4, 21 female). Symptomatic carriers' clinical syndromes included: behavioral variant frontotemporal dementia (18), an amnestic dementia syndrome (2), Parkinson's disease (1), and mild cognitive impairment (1). We performed voxel-based morphometry on T1 images and assessed brain volumetrics by clinical subgroup, age, and mutation subtype.

Results: Symptomatic carriers showed gray matter atrophy in bilateral frontotemporal cortex, insula, and striatum, and white matter atrophy in bilateral corpus callosum and uncinate fasciculus. Approximately 20% of presymptomatic carriers had low gray matter volumes in bilateral hippocampus, amygdala, and lateral temporal cortex. Within these regions, low gray matter volumes emerged in a subset of presymptomatic carriers as early as their thirties. Low white matter volumes arose infrequently among presymptomatic carriers.

Interpretation: A subset of presymptomatic MAPT mutation carriers showed low volumes in mesial temporal lobe, the region ubiquitously atrophied in all symptomatic carriers. With each decade of age, an increasing percentage of presymptomatic carriers showed low mesial temporal volume, suggestive of early neurodegeneration.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/acn3.51249DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7818091PMC
January 2021

Analysis of brain atrophy and local gene expression in genetic frontotemporal dementia.

Brain Commun 2020 Jul 19;2(2). Epub 2020 Aug 19.

Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, UK.

Frontotemporal dementia is a heterogeneous neurodegenerative disorder characterized by neuronal loss in the frontal and temporal lobes. Despite progress in understanding which genes are associated with the aetiology of frontotemporal dementia, the biological basis of how mutations in these genes lead to cell loss in specific cortical regions remains unclear. In this work we combined gene expression data for 16,772 genes from the Allen Institute for Brain Science atlas with brain maps of gray matter atrophy in symptomatic and mutation carriers obtained from the Genetic Frontotemporal dementia Initiative study. No significant association was seen between and expression and the atrophy patterns in the respective genetic groups. After adjusting for spatial autocorrelation, between 1,000 and 5,000 genes showed a negative or positive association with the atrophy pattern within each individual genetic group, with the most significantly associated genes being and (negative association in and respectively) and , and (positive association in and respectively). An overrepresentation analysis identified a negative association with genes involved in mitochondrial function, and a positive association with genes involved in vascular and glial cell function in each of the genetic groups. A set of 423 and 700 genes showed significant positive and negative association, respectively, with atrophy patterns in all three maps. The gene set with increased expression in spared cortical regions was enriched for neuronal and microglial genes, while the gene set with increased expression in atrophied regions was enriched for astrocyte and endothelial cell genes. Our analysis suggests that these cell types may play a more active role in the onset of neurodegeneration in frontotemporal dementia than previously assumed, and in the case of the positively-associated cell marker genes, potentially through emergence of neurotoxic astrocytes and alteration in the blood-brain barrier respectively.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/braincomms/fcaa122DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7667525PMC
July 2020

Somatic TARDBP variants as a cause of semantic dementia.

Brain 2020 12;143(12):3827-3841

Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands.

The aetiology of late-onset neurodegenerative diseases is largely unknown. Here we investigated whether de novo somatic variants for semantic dementia can be detected, thereby arguing for a more general role of somatic variants in neurodegenerative disease. Semantic dementia is characterized by a non-familial occurrence, early onset (<65 years), focal temporal atrophy and TDP-43 pathology. To test whether somatic variants in neural progenitor cells during brain development might lead to semantic dementia, we compared deep exome sequencing data of DNA derived from brain and blood of 16 semantic dementia cases. Somatic variants observed in brain tissue and absent in blood were validated using amplicon sequencing and digital PCR. We identified two variants in exon one of the TARDBP gene (L41F and R42H) at low level (1-3%) in cortical regions and in dentate gyrus in two semantic dementia brains, respectively. The pathogenicity of both variants is supported by demonstrating impaired splicing regulation of TDP-43 and by altered subcellular localization of the mutant TDP-43 protein. These findings indicate that somatic variants may cause semantic dementia as a non-hereditary neurodegenerative disease, which might be exemplary for other late-onset neurodegenerative disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/brain/awaa317DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7805802PMC
December 2020

, age at onset, and ancestry help discriminate behavioral from language variants in FTLD cohorts.

Authors:
Beatrice Costa Claudia Manzoni Manuel Bernal-Quiros Demis A Kia Miquel Aguilar Ignacio Alvarez Victoria Alvarez Ole Andreassen Maria Anfossi Silvia Bagnoli Luisa Benussi Livia Bernardi Giuliano Binetti Daniel Blackburn Mercè Boada Barbara Borroni Lucy Bowns Geir Bråthen Amalia C Bruni Huei-Hsin Chiang Jordi Clarimon Shuna Colville Maria E Conidi Tom E Cope Carlos Cruchaga Chiara Cupidi Maria Elena Di Battista Janine Diehl-Schmid Monica Diez-Fairen Oriol Dols-Icardo Elisabetta Durante Dušan Flisar Francesca Frangipane Daniela Galimberti Maura Gallo Maurizio Gallucci Roberta Ghidoni Caroline Graff Jordan H Grafman Murray Grossman John Hardy Isabel Hernández Guy J T Holloway Edward D Huey Ignacio Illán-Gala Anna Karydas Behzad Khoshnood Milica G Kramberger Mark Kristiansen Patrick A Lewis Alberto Lleó Gaganjit K Madhan Raffaele Maletta Aleš Maver Manuel Menendez-Gonzalez Graziella Milan Bruce Miller Merel O Mol Parastoo Momeni Sonia Moreno-Grau Chris M Morris Benedetta Nacmias Christer Nilsson Valeria Novelli Linn Öijerstedt Alessandro Padovani Suvankar Pal Yasmin Panchbhaya Pau Pastor Borut Peterlin Irene Piaceri Stuart Pickering-Brown Yolande A L Pijnenburg Annibale A Puca Innocenzo Rainero Antonella Rendina Anna M T Richardson Ekaterina Rogaeva Boris Rogelj Sara Rollinson Giacomina Rossi Carola Rossmeier James B Rowe Elisa Rubino Agustín Ruiz Raquel Sanchez-Valle Sigrid B Sando Alexander F Santillo Jennifer Saxon Elio Scarpini Maria Serpente Nicoletta Smirne Sandro Sorbi EunRan Suh Fabrizio Tagliavini Jennifer C Thompson John Q Trojanowski Vivianna M Van Deerlin Julie Van der Zee Christine Van Broeckhoven Jeroen van Rooij John C Van Swieten Arianna Veronesi Emilia Vitale Maria L Waldö Cathy Woodward Jennifer Yokoyama Valentina Escott-Price James M Polke Raffaele Ferrari

Neurology 2020 12 17;95(24):e3288-e3302. Epub 2020 Sep 17.

From the Institute of Neurology (B.C., D.A.K., J.H., P.A.L., R.F.), School of Pharmacy (C.M.), and UCL Movement Disorders Centre (J.H.), University College London; School of Pharmacy (C.M., P.A.L.), University of Reading, Whiteknights; Neurogenetics Laboratory (M.B.-Q., C.W., J.M.P.), National Hospital for Neurology and Neurosurgery, London, UK; Aptima Clinic (Miquel Aguilar), Terrassa; Memory Disorders Unit, Department of Neurology (I.A., M.D.-F., P.P.), University Hospital Mutua de Terrassa, Barcelona; Hospital Universitario Central de Asturias (V.A., M.M.-G.), Oviedo, Spain; NORMENT (O.A.), Institute of Clinical Medicine, University of Oslo, Norway; Regional Neurogenetic Centre (Maria Anfossi, Livia Bernardi, A.C.B., M.E.C., Chiara Cupidi, F.F., Maura Gallo, R.M., N.S.), ASPCZ, Lamezia Terme; Department of Neuroscience, Psychology, Drug Research and Child Health (S.B., B.N., I.P., S.S.), University of Florence; Molecular Markers Laboratory (Luisa Benussi, Giuliano Binetti, R.G.), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience (D.B.), University of Sheffield, UK; Research Center and Memory Clinic (M.B., I.H., S.M.-G., Agustín Ruiz), Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya (UIC), Barcelona, Spain; Centre for Neurodegenerative Disorders (B.B., A.P.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Department of Clinical Neurosciences (Lucy Bowns, T.E.C., J.B.R.), Cambridge University, UK; Department of Neurology (Geir Bråthen, S.B.S.), University Hospital of Trondheim, Norway; Dept NVS, Division of Neurogeriatrics (H.-H.C., C.G., B.K., L.Ö.), Karolinska Institutet, Bioclinicum Solna, Sweden; Department of Neurology (J.C., O.D.-I., I.I.-G., A.L.), IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Spain; Anne Rowling Regenerative Neurology Clinic (S.C., G.J.T.H., S.P.) and Centre for Clinical Brain Sciences (S.P.), University of Edinburgh, UK; NeuroGenomics and Informatics, Department of Psychiatry (Carlos Cruchaga), Washington University, St. Louis, MO; Cognitive Impairment Center (M.E.D.B., Maurizio Gallucci) and Immunohematology and Transfusional Medicine Service (E.D., A.V.), Local Health Authority n.2 Marca Trevigiana, Treviso, Italy; Department of Psychiatry and Psychotherapy (J.D.-S., C.R.), School of Medicine, Technical University of Munich, Germany; Department of Neurology (D.F., M.G.K.) and Clinical Institute of Medical Genetics (A.M., B.P.), University Medical Center Ljubljana, Slovenia; Dino Ferrari Center (D.G., Elio Scarpini, M.S.), University of Milan, Italy; Cognitive Neuroscience Lab, Think and Speak Lab (J.H.G.), Shirley Ryan Ability Lab, Chicago, IL; Department of Pathology and Laboratory Medicine (Murray Grossman, EunRan Suh, J.Q.T., V.M.V.D.), Center for Neurodegenerative Diseases, Perelman School of Medicine at the University of Pennsylvania, Philadelphia; UCL Dementia Research Institute (J.H.), London; Reta Lila Weston Institute (J.H.), UCL Queen Square Institute of Neurology, UK; Institute for Advanced Study (J.H.), The Hong Kong University of Science and Technology, China; Royal Edinburgh Hospital (G.J.T.H.), UK; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (E.D.H.), Columbia University, New York, NY; Department of Neurology, Memory and Aging Center (A.K., B.M., J.Y.), University of California, San Francisco; UCL Genomics (M.K., G.K.M., Y.P.), UCL Great Ormond Street Institute of Child Health, London, UK; Geriatric Center Frullone ASL Napoli 1 Centro (G.M.), Napoli, Italy; Department of Neurology (M.O.M., J.v.R., J.C.V.S.), Erasmus Medical Center, Rotterdam, the Netherlands; Rona Holdings (P.M.), Silicon Valley, CA; Newcastle Brain Tissue Resource, Institute of Neuroscience (C.M.M.), Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK; Department of Neurology (C.N.), Skåne University Hospital, Malmö, Sweden; Fondazione Policlinico Universitario A. Gemelli IRCCS (V.N.), Rome, Italy; Division of Neuroscience & Experimental Psychology (S.P.-B., A.M.T.R., S.R., J.C.T.), University of Manchester, UK; Amsterdam University Medical Center (Y.A.L.P.), VU University Medical Center, the Netherlands; Cardiovascular Research Unit (A.A.P.), IRCCS Multimedica, Milan; Neurology I, Department of Neuroscience (I.R., Elisa Rubino), University of Torino; NeurOMICS laboratory (G.M., Antonella Rendina, E.V.), Institute of Biochemistry and Cell Biology (IBBC), CNR Napoli, Italy; Manchester Centre for Clinical Neurosciences (A.M.T.R., J.S., J.C.T.), Salford Royal NHS Trust, Manchester, UK; Tanz Centre for Research in Neurodegenerative Diseases (Ekaterina Rogaeva), University of Toronto, Canada; Department of Biotechnology (B.R.), Jožef Stefan Institute, Ljubljana, Slovenia; Division of Neurology V and Neuropathology (G.R., F.T.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy; Alzheimer's Disease and Other Cognitive Disorders Unit (R.S.-V.), Hospital Clínic of Barcelona, Spain; Clinical Memory Research Unit, Department of Clinical Sciences Malmö (C.N., A.F.S.), and Division of Clinical Sciences Helsingborg, Department of Clinical Sciences Lund (M.L.W.), Lund University, Sweden; Neurodegenerative Brain Diseases Group (J.V.d.Z., C.V.B.), Center for Molecular Neurology, VIB, Antwerp, Belgium; Medical Research Council Centre for Neuropsychiatric Genetics and Genomics (V.E.-P.), Division of Psychological Medicine and Clinical Neurosciences and Dementia Research Institute, Cardiff University, UK; Instituto de Investigación Sanitaria del Principado de Asturias (V.A.), Oviedo, Asturias; Fundació per la Recerca Biomèdica i Social Mútua Terrassa (I.A., M.D.-F., P.P.), Barcelona; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED) (M.B., J.C., O.D.-I., I.H., I.I.-G., A.L., S.M.-G., Agustín Ruiz), Instituto de Salud Carlos III, Madrid, Spain; MRC Cognition and Brain Sciences Unit (Lucy Bowns, T.E.C., J.B.R.), Cambridge University, UK; Department of Neuromedicine and Movement Science (Geir Bråthen, S.B.S.), Norwegian University of Science and Technology, Trondheim, Norway; Unit for Hereditary Dementias (H.-H.C., C.G., B.K., L.Ö.), Theme Aging, Karolinska University Hospital, Solna, Sweden; Medical Faculty (D.F., M.G.K.), University of Ljubljana, Slovenia; Fondazione IRCCS Ca'Granda (D.G., Elio Scarpini, M.S.), Ospedale Policlinico, Milan, Italy; Penn Center for Frontotemporal Degeneration (Murray Grossman), Philadelphia, PA; Universidad de Oviedo (M.M.-G.), Asturias, Spain; IRCCS Fondazione Don Carlo Gnocchi (B.N., S.S.), Florence; Istituto di Medicina Genomica (V.N.), Università Cattolica del sacro Cuore, Rome, Italy; Amsterdam Neuroscience (Y.A.L.P.), the Netherlands; Department of Medicine and Surgery (A.A.P.), University of Salerno, Baronissi (SA), Italy; Faculty of Chemistry and Chemical Technology (B.R.), University of Ljubljana, Slovenia; Institud d'Investigacions Biomèdiques August Pi i Sunyer (R.S.-V.), Barcelona, Spain; Department of Biomedical Sciences (J.V.d.Z., C.V.B.), University of Antwerp, Belgium; and Department of Comparative Biomedical Sciences (P.A.L.), The Royal Veterinary College, London, UK.

Objective: We sought to characterize expansions in relation to genetic ancestry and age at onset (AAO) and to use these measures to discriminate the behavioral from the language variant syndrome in a large pan-European cohort of frontotemporal lobar degeneration (FTLD) cases.

Methods: We evaluated expansions frequency in the entire cohort (n = 1,396; behavioral variant frontotemporal dementia [bvFTD] [n = 800], primary progressive aphasia [PPA] [n = 495], and FTLD-motor neuron disease [MND] [n = 101]). We then focused on the bvFTD and PPA cases and tested for association between expansion status, syndromes, genetic ancestry, and AAO applying statistical tests comprising Fisher exact tests, analysis of variance with Tukey post hoc tests, and logistic and nonlinear mixed-effects model regressions.

Results: We found pathogenic expansions in 4% of all cases (56/1,396). Expansion carriers differently distributed across syndromes: 12/101 FTLD-MND (11.9%), 40/800 bvFTD (5%), and 4/495 PPA (0.8%). While addressing population substructure through principal components analysis (PCA), we defined 2 patients groups with Central/Northern (n = 873) and Southern European (n = 523) ancestry. The proportion of expansion carriers was significantly higher in bvFTD compared to PPA (5% vs 0.8% [ = 2.17 × 10; odds ratio (OR) 6.4; confidence interval (CI) 2.31-24.99]), as well as in individuals with Central/Northern European compared to Southern European ancestry (4.4% vs 1.8% [ = 1.1 × 10; OR 2.5; CI 1.17-5.99]). Pathogenic expansions and Central/Northern European ancestry independently and inversely correlated with AAO. Our prediction model (based on expansions status, genetic ancestry, and AAO) predicted a diagnosis of bvFTD with 64% accuracy.

Conclusions: Our results indicate correlation between pathogenic expansions, AAO, PCA-based Central/Northern European ancestry, and a diagnosis of bvFTD, implying complex genetic risk architectures differently underpinning the behavioral and language variant syndromes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1212/WNL.0000000000010914DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7836664PMC
December 2020

Clinical Conditions "Suggestive of Progressive Supranuclear Palsy"-Diagnostic Performance.

Mov Disord 2020 12 11;35(12):2301-2313. Epub 2020 Sep 11.

Department of Neurology, Technische Universität München, Munich, Germany.

Background: The Movement Disorder Society diagnostic criteria for progressive supranuclear palsy introduced the diagnostic certainty level "suggestive of progressive supranuclear palsy" for clinical conditions with subtle signs, suggestive of the disease. This category aims at the early identification of patients, in whom the diagnosis may be confirmed as the disease evolves.

Objective: To assess the diagnostic performance of the defined clinical conditions suggestive of progressive supranuclear palsy in an autopsy-confirmed cohort.

Methods: Diagnostic performance of the criteria was analyzed based on retrospective clinical data of 204 autopsy-confirmed patients with progressive supranuclear palsy and 216 patients with other neurological diseases.

Results: The conditions suggestive of progressive supranuclear palsy strongly increased the sensitivity compared to the National Institute of Neurological Disorders and Stroke and Society for Progressive Supranuclear Palsy criteria. Within the first year after symptom onset, 40% of patients with definite progressive supranuclear palsy fulfilled criteria for suggestive of progressive supranuclear palsy. Two-thirds of patients suggestive of progressive supranuclear palsy evolved into probable progressive supranuclear palsy after an average of 3.6 years. Application of the criteria for suggestive of progressive supranuclear palsy reduced the average time to diagnosis from 3.8 to 2.2 years.

Conclusions: Clinical conditions suggestive of progressive supranuclear palsy allow earlier identification of patients likely to evolve into clinically possible or probable progressive supranuclear and to have underlying progressive supranuclear palsy pathology. Further work needs to establish the specificity and positive predictive value of this category in real-life clinical settings, and to develop specific biomarkers that enhance their diagnostic accuracy in early disease stages. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/mds.28263DOI Listing
December 2020

Unfolded protein response activation in C9orf72 frontotemporal dementia is associated with dipeptide pathology and granulovacuolar degeneration in granule cells.

Brain Pathol 2021 Jan 16;31(1):163-173. Epub 2020 Sep 16.

Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands.

A repeat expansion in the C9orf72 gene is the most prevalent genetic cause of frontotemporal dementia (C9-FTD). Several studies have indicated the involvement of the unfolded protein response (UPR) in C9-FTD. In human neuropathology, UPR markers are strongly associated with granulovacuolar degeneration (GVD). In this study, we aim to assess the presence of UPR markers together with the presence of dipeptide pathology and GVD in post mortem brain tissue from C9-FTD cases and neurologically healthy controls. Using immunohistochemistry we assessed the presence of phosphorylated PERK, IRE1α and eIF2α in the frontal cortex, hippocampus and cerebellum of C9-FTD (n = 18) and control (n = 9) cases. The presence of UPR activation markers was compared with the occurrence of pTDP-43, p62 and dipeptide repeat (DPR) proteins (poly(GA), -(GR) & -(GP)) as well as casein kinase 1 delta (CK1δ), a marker for GVD. Increased presence of UPR markers was observed in the hippocampus and cerebellum in C9-FTD compared to control cases. In the hippocampus, overall levels of pPERK and peIF2α were higher in C9-FTD, including in granule cells of the dentate gyrus (DG). UPR markers were also observed in granule cells of the cerebellum in C9-FTD. In addition, increased levels of CK1δ were observed in granule cells in the DG of the hippocampus and granular layer of the cerebellum in C9-FTD. Double-labelling experiments indicate a strong association between UPR markers and the presence of dipeptide pathology as well as GVD. We conclude that UPR markers are increased in C9-FTD and that their presence is associated with dipeptide pathology and GVD. Increased presence of UPR markers and CK1δ in granule cells in the cerebellum and hippocampus could be a unique feature of C9-FTD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/bpa.12894DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7891436PMC
January 2021

Underlying genetic variation in familial frontotemporal dementia: sequencing of 198 patients.

Neurobiol Aging 2021 01 30;97:148.e9-148.e16. Epub 2020 Jul 30.

Department of Neurology & Alzheimer Center, Erasmus Medical Center, Rotterdam, the Netherlands.

Frontotemporal dementia (FTD) presents with a wide variability in clinical syndromes, genetic etiologies, and underlying pathologies. Despite the discovery of pathogenic variants in several genes, many familial cases remain unsolved. In a large FTD cohort of 198 familial patients, we aimed to determine the types and frequencies of variants in genes related to FTD. Pathogenic or likely pathogenic variants were revealed in 74 (37%) patients, including 4 novel variants. The repeat expansion in C9orf72 was most common (21%), followed by variants in MAPT (6%), GRN (4.5%), and TARDBP (3.5%). Other pathogenic variants were found in VCP, TBK1, PSEN1, and a novel homozygous variant in OPTN. Furthermore, we identified 15 variants of uncertain significance, including a promising variant in TUBA4A and a frameshift in VCP, for which additional research is needed to confirm pathogenicity. The patients without identified genetic cause demonstrated a wide clinical and pathological variety. Our study contributes to the clinical characterization of the genetic subtypes and confirms the value of whole-exome sequencing in identifying novel genetic variants.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neurobiolaging.2020.07.014DOI Listing
January 2021

Emotion recognition of morphed facial expressions in presymptomatic and symptomatic frontotemporal dementia, and Alzheimer's dementia.

J Neurol 2021 Jan 29;268(1):102-113. Epub 2020 Jul 29.

Department of Neurology, Erasmus Medical Center, NF-331, Post box 2040, 3000 CA, Rotterdam, The Netherlands.

Background: The emotion recognition task (ERT) was developed to overcome shortcomings of static emotion recognition paradigms, by identifying more subtle deficits in emotion recognition across different intensity levels. In this study, we used the ERT to investigate emotion recognition deficits across the frontotemporal (FTD) and Alzheimer's Dementia (AD) spectrum.

Methods: With the ERT, we assessed the recognition of facial emotional expressions (anger-disgust-fear-happiness-sadness-surprise) across four intensities (40-60-80-100%) in patients with behavioural variant FTD (bvFTD; n = 32), and AD (n = 32), presymptomatic FTD mutation carriers (n = 47) and controls (n = 49). We examined group differences using multilevel linear regression with age, sex and education level as covariates, and performed post hoc analyses on presymptomatic (MAPT, GRN and C9orf72) mutation carriers. Classification abilities were investigated by means of logistic regression.

Results: Lowest ERT total scores were found in patients with bvFTD and AD, whereas equal highest performance was found in presymptomatic mutation carriers and controls. For all emotions, significantly lower subscores were found in patients with bvFTD than in presymptomatic mutation carriers and in controls (highest p value = 0.025). Patients with bvFTD performed lower than patients with AD on anger (p = 0.005) and a trend towards significance was found for a lower performance on happiness (p = 0.065). Task performance increased with higher emotional intensity, and classification was better at the lowest than at the highest intensity. C9orf72 mutation carriers performed worse on recognizing anger at the lowest intensity than GRN mutation carriers (p = 0.047) and controls (p = 0.038). The ERT differentiated between patients with bvFTD and controls, and between patients with AD and controls (both p < 0.001).

Discussion: Our results demonstrate emotion recognition deficits in both bvFTD and AD, and suggest the presence of subtle emotion recognition changes in presymptomatic C9orf72-FTD. This highlights the importance of incorporating emotion recognition paradigms into standard neuropsychological assessment for early differential diagnosis, and as clinical endpoints in upcoming therapeutic trials.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00415-020-10096-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7815624PMC
January 2021

Clinical and Pathological Phenotypes of LRP10 Variant Carriers with Dementia.

J Alzheimers Dis 2020 ;76(3):1161-1170

Erasmus MC, University Medical Center Rotterdam, Department of Clinical Genetics, Rotterdam, the Netherlands.

Background: Rare variants in the low-density lipoprotein receptor related protein 10 gene (LRP10) have recently been implicated in the etiology of Parkinson's disease (PD) and dementia with Lewy bodies (DLB).

Objective: We searched for LRP10 variants in a new series of brain donors with dementia and Lewy pathology (LP) at autopsy, or dementia and parkinsonism without LP but with various other neurodegenerative pathologies.

Methods: Sanger sequencing of LRP10 was performed in 233 donors collected by the Netherlands Brain Bank.

Results: Rare, possibly pathogenic heterozygous LRP10 variants were present in three patients: p.Gly453Ser in a patient with mixed Alzheimer's disease (AD)/Lewy body disease (LBD), p.Arg151Cys in a DLB patient, and p.Gly326Asp in an AD patient without LP. All three patients had a positive family history for dementia or PD.

Conclusion: Rare LRP10 variants are present in some patients with dementia and different brain pathologies including DLB, mixed AD/LBD, and AD. These findings suggest a role for LRP10 across a broad neurodegenerative spectrum.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3233/JAD-200318DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7505004PMC
January 2020

LRP10 variants in progressive supranuclear palsy.

Neurobiol Aging 2020 10 30;94:311.e5-311.e10. Epub 2020 Apr 30.

Department of Neurology and Alzheimer Center, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands. Electronic address:

The aim of this study was to explore whether variants in LRP10, recently associated with Parkinson's disease and dementia with Lewy bodies, are observed in 2 large cohorts (discovery and validation cohort) of patients with progressive supranuclear palsy (PSP). A total of 950 patients with PSP were enrolled: 246 patients with PSP (n = 85 possible (35%), n = 128 probable (52%), n = 33 definite (13%)) in the discovery cohort and 704 patients with definite PSP in the validation cohort. Sanger sequencing of all LRP10 exons and exon-intron boundaries was performed in the discovery cohort, and whole-exome sequencing was performed in the validation cohort. Two patients from the discovery cohort and 8 patients from the validation cohort carried a rare, heterozygous, and possibly pathogenic LRP10 variant (p.Gly326Asp, p.Asp389Asn, and p.Arg158His, p.Cys220Tyr, p.Thr278Ala, p.Gly306Asp, p.Glu486Asp, p.Arg554∗, p.Arg661Cys). In conclusion, possibly pathogenic LRP10 variants occur in a small fraction of patients with PSP and may be overrepresented in these patients compared with controls. This suggests that possibly pathogenic LRP10 variants may play a role in the development of PSP.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neurobiolaging.2020.04.016DOI Listing
October 2020

Distribution patterns of tau pathology in progressive supranuclear palsy.

Acta Neuropathol 2020 08 7;140(2):99-119. Epub 2020 May 7.

German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.

Progressive supranuclear palsy (PSP) is a 4R-tauopathy predominated by subcortical pathology in neurons, astrocytes, and oligodendroglia associated with various clinical phenotypes. In the present international study, we addressed the question of whether or not sequential distribution patterns can be recognized for PSP pathology. We evaluated heat maps and distribution patterns of neuronal, astroglial, and oligodendroglial tau pathologies and their combinations in different clinical subtypes of PSP in postmortem brains. We used conditional probability and logistic regression to model the sequential distribution of tau pathologies across different brain regions. Tau pathology uniformly predominates in the neurons of the pallido-nigro-luysian axis in different clinical subtypes. However, clinical subtypes are distinguished not only by total tau load but rather cell-type (neuronal versus glial) specific vulnerability patterns of brain regions suggesting distinct dynamics or circuit-specific segregation of propagation of tau pathologies. For Richardson syndrome (n = 81) we recognize six sequential steps of involvement of brain regions by the combination of cellular tau pathologies. This is translated to six stages for the practical neuropathological diagnosis by the evaluation of the subthalamic nucleus, globus pallidus, striatum, cerebellum with dentate nucleus, and frontal and occipital cortices. This system can be applied to further clinical subtypes by emphasizing whether they show caudal (cerebellum/dentate nucleus) or rostral (cortical) predominant, or both types of pattern. Defining cell-specific stages of tau pathology helps to identify preclinical or early-stage cases for the better understanding of early pathogenic events, has implications for understanding the clinical subtype-specific dynamics of disease-propagation, and informs tau-neuroimaging on distribution patterns.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00401-020-02158-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7360645PMC
August 2020

Clinical and pathologic phenotype of a large family with heterozygous mutation.

Neurol Genet 2020 Jun 23;6(3):e417. Epub 2020 Mar 23.

Department of Neurology (M.O.M., J.G.J.v.R., E.B., S.M., J.C.v.S., L.D.K.); Department of Internal Medicine (J.G.J.v.R., A.J.M.H.V.), Erasmus Medical Center, Rotterdam; Department of Pathology and Medical Biology (W.F.A.d.D.), University Medical Centre Groningen, Groningen, the Netherlands; German Center for Neurodegenerative Diseases (DZNE) (P.R.), Tuebingen, Germany; IRCCS Centro Neurolesi "Bonino Pulejo" (C.C), Messina, Italy; and Department of Clinical Genetics (L.D.K.), Erasmus Medical Center, Rotterdam, the Netherlands.

Objective: To describe the clinical and pathologic features of a novel pedigree with heterozygous mutation causing SCA48.

Methods: We report a large pedigree of Dutch decent. Clinical and pathologic data were reviewed, and genetic analyses (whole-exome sequencing, whole-genome sequencing, and linkage analysis) were performed on multiple family members.

Results: Patients presented with adult-onset gait disturbance (ataxia or parkinsonism), combined with prominent cognitive decline and behavioral changes. Whole-exome sequencing identified a novel heterozygous frameshift variant c.731_732delGC (p.C244Yfs*24) in segregating with the disease. This variant was present in a linkage peak on chromosome 16p13.3. Neuropathologic examination of 3 cases revealed a consistent pattern of ubiquitin/p62-positive neuronal inclusions in the cerebellum, neocortex, and brainstem. In addition, tau pathology was present in 1 case.

Conclusions: This study confirms previous findings of heterozygous mutations as the cause of SCA48 and highlights its prominent cognitive involvement, besides cerebellar ataxia and movement disorders as cardinal features. The presence of intranuclear inclusions is a pathologic hallmark of the disease. Future studies will provide more insight into its pathologic heterogeneity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1212/NXG.0000000000000417DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7164971PMC
June 2020

Frontotemporal Dementia: Correlations Between Psychiatric Symptoms and Pathology.

Ann Neurol 2020 06 25;87(6):950-961. Epub 2020 Apr 25.

Department of Pathology, Amsterdam University Medical Centers, Location VUmc, Amsterdam Neuroscience, Amsterdam, The Netherlands.

Objective: The pathology of frontotemporal dementia, termed frontotemporal lobar degeneration (FTLD), is characterized by distinct molecular classes of aggregated proteins, the most common being TAR DNA-binding protein-43 (TDP-43), tau, and fused in sarcoma (FUS). With a few exceptions, it is currently not possible to predict the underlying pathology based on the clinical syndrome. In this study, we set out to investigate the relationship between pathological and clinical presentation at single symptom level, including neuropsychiatric features.

Methods: The presence or absence of symptoms from the current clinical guidelines, together with neuropsychiatric features, such as hallucinations and delusions, were scored and compared across pathological groups in a cohort of 150 brain donors.

Results: Our cohort consisted of 68.6% FTLD donors (35.3% TDP-43, 28% tau, and 5.3% FUS) and 31.3% non-FTLD donors with a clinical diagnosis of frontotemporal dementia and a different pathological substrate, such as Alzheimer's disease (23%). The presence of hyperorality points to FTLD rather than non-FTLD pathology (p < 0.001). Within the FTLD group, hallucinations in the initial years of the disease were related to TDP-43 pathology (p = 0.02), including but not limited to chromosome 9 open reading frame 72 (C9orf72) repeat expansion carriers. The presence of perseverative or compulsive behavior was more common in the TDP-B and TDP-C histotypes (p = 0.002).

Interpretation: Our findings indicate that neuropsychiatric features are common in FTLD and form an important indicator of underlying pathology. In order to allow better inclusion of patients in targeted molecular trials, the routine evaluation of patients with frontotemporal dementia should include the presence and nature of neuropsychiatric symptoms. ANN NEUROL 2020;87:950-961.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ana.25739DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7318614PMC
June 2020

Neuronal pentraxin 2: a synapse-derived CSF biomarker in genetic frontotemporal dementia.

J Neurol Neurosurg Psychiatry 2020 06 9;91(6):612-621. Epub 2020 Apr 9.

Department of Neurology and Alzheimer Center, Erasmus University Medical Center, Rotterdam, Netherlands

Introduction: Synapse dysfunction is emerging as an early pathological event in frontotemporal dementia (FTD), however biomarkers are lacking. We aimed to investigate the value of cerebrospinal fluid (CSF) neuronal pentraxins (NPTXs), a family of proteins involved in homeostatic synapse plasticity, as novel biomarkers in genetic FTD.

Methods: We included 106 presymptomatic and 54 symptomatic carriers of a pathogenic mutation in , or , and 70 healthy non-carriers participating in the Genetic Frontotemporal dementia Initiative (GENFI), all of whom had at least one CSF sample. We measured CSF concentrations of NPTX2 using an in-house ELISA, and NPTX1 and NPTX receptor (NPTXR) by Western blot. We correlated NPTX2 with corresponding clinical and neuroimaging datasets as well as with CSF neurofilament light chain (NfL) using linear regression analyses.

Results: Symptomatic mutation carriers had lower NPTX2 concentrations (median 643 pg/mL, IQR (301-872)) than presymptomatic carriers (1003 pg/mL (624-1358), p<0.001) and non-carriers (990 pg/mL (597-1373), p<0.001) (corrected for age). Similar results were found for NPTX1 and NPTXR. Among mutation carriers, NPTX2 concentration correlated with several clinical disease severity measures, NfL and grey matter volume of the frontal, temporal and parietal lobes, insula and whole brain. NPTX2 predicted subsequent decline in phonemic verbal fluency and Clinical Dementia Rating scale plus FTD modules. In longitudinal CSF samples, available in 13 subjects, NPTX2 decreased around symptom onset and in the symptomatic stage.

Discussion: We conclude that NPTX2 is a promising synapse-derived disease progression biomarker in genetic FTD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1136/jnnp-2019-322493DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7279197PMC
June 2020

Copathology in Progressive Supranuclear Palsy: Does It Matter?

Mov Disord 2020 06 3;35(6):984-993. Epub 2020 Mar 3.

German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.

Background: The influence of concomitant brain pathologies on the progression rate in PSP is unclear.

Objectives: To analyze the frequency and severity of copathologies and their impact on the progression in PSP.

Methods: We analyzed clinic-pathological features of 101 PSP patients. Diagnoses and stages of copathologies were established according to standardized criteria, including Alzheimer's disease-related pathology, argyrophilic grains, Lewy-related pathology, transactive response DNA-binding protein 43 pathology, fused in sarcoma pathology, cerebral amyloid angiopathy, and small vessel disease. Demographic data and major clinical milestones (frequency and latency to onset) were extracted from patients' files.

Results: Only 8% of 101 patients presented with pure PSP pathology without any copathology. Alzheimer's disease-related pathology was the most frequent (84%), followed by argyrophilic grains (58%), both occurring as single copathology or in combination with other proteinopathies or cerebrovascular disease. Lewy-related and transactive response DNA-binding protein 43 copathology occurred rarely (8% and 6%, respectively). Fused in sarcoma-positive cases were not found. While being common, copathology was mostly mild in severity, with the exception of frequently widespread argyrophilic grains. Small vessel disease was also frequent (65%). Cerebral amyloid angiopathy occurred only in the presence of Alzheimer's disease-related changes (25%). The copathologies did not have major impact on prevalence and time frame of major disease milestones.

Conclusions: In PSP, concomitant neurodegenerative proteinopathies or cerebrovascular diseases are frequent, but generally mild in severity. Our data confirmed that four repeat tau is still the most relevant target for PSP, whereas the impact of copathologies on progression rate appears to be of less importance. This is relevant information for the development of disease-modifying therapies. © 2020 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/mds.28011DOI Listing
June 2020

Plasma glial fibrillary acidic protein is raised in progranulin-associated frontotemporal dementia.

J Neurol Neurosurg Psychiatry 2020 03 14;91(3):263-270. Epub 2020 Jan 14.

Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK

Background: There are few validated fluid biomarkers in frontotemporal dementia (FTD). Glial fibrillary acidic protein (GFAP) is a measure of astrogliosis, a known pathological process of FTD, but has yet to be explored as potential biomarker.

Methods: Plasma GFAP and neurofilament light chain (NfL) concentration were measured in 469 individuals enrolled in the Genetic FTD Initiative: 114 expansion carriers (74 presymptomatic, 40 symptomatic), 119 mutation carriers (88 presymptomatic, 31 symptomatic), 53 mutation carriers (34 presymptomatic, 19 symptomatic) and 183 non-carrier controls. Biomarker measures were compared between groups using linear regression models adjusted for age and sex with family membership included as random effect. Participants underwent standardised clinical assessments including the Mini-Mental State Examination (MMSE), Frontotemporal Lobar Degeneration-Clinical Dementia Rating scale and MRI. Spearman's correlation coefficient was used to investigate the relationship of plasma GFAP to clinical and imaging measures.

Results: Plasma GFAP concentration was significantly increased in symptomatic mutation carriers (adjusted mean difference from controls 192.3 pg/mL, 95% CI 126.5 to 445.6), but not in those with expansions (9.0, -61.3 to 54.6), mutations (12.7, -33.3 to 90.4) or the presymptomatic groups. GFAP concentration was significantly positively correlated with age in both controls and the majority of the disease groups, as well as with NfL concentration. In the presymptomatic period, higher GFAP concentrations were correlated with a lower cognitive score (MMSE) and lower brain volume, while in the symptomatic period, higher concentrations were associated with faster rates of atrophy in the temporal lobe.

Conclusions: Raised GFAP concentrations appear to be unique to -related FTD, with levels potentially increasing just prior to symptom onset, suggesting that GFAP may be an important marker of proximity to onset, and helpful for forthcoming therapeutic prevention trials.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1136/jnnp-2019-321954DOI Listing
March 2020

Multimodal MRI of grey matter, white matter, and functional connectivity in cognitively healthy mutation carriers at risk for frontotemporal dementia and Alzheimer's disease.

BMC Neurol 2019 Dec 27;19(1):343. Epub 2019 Dec 27.

Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands.

Background: Frontotemporal dementia (FTD) and Alzheimer's disease (AD) are associated with divergent differences in grey matter volume, white matter diffusion, and functional connectivity. However, it is unknown at what disease stage these differences emerge. Here, we investigate whether divergent differences in grey matter volume, white matter diffusion, and functional connectivity are already apparent between cognitively healthy carriers of pathogenic FTD mutations, and cognitively healthy carriers at increased AD risk.

Methods: We acquired multimodal magnetic resonance imaging (MRI) brain scans in cognitively healthy subjects with (n=39) and without (n=36) microtubule-associated protein Tau (MAPT) or progranulin (GRN) mutations, and with (n=37) and without (n=38) apolipoprotein E ε4 (APOE4) allele. We evaluated grey matter volume using voxel-based morphometry, white matter diffusion using tract-based spatial statistics (TBSS), and region-to-network functional connectivity using dual regression in the default mode network and salience network. We tested for differences between the respective carriers and controls, as well as for divergence of those differences. For the divergence contrast, we additionally performed region-of-interest TBSS analyses in known areas of white matter diffusion differences between FTD and AD (i.e., uncinate fasciculus, forceps minor, and anterior thalamic radiation).

Results: MAPT/GRN carriers did not differ from controls in any modality. APOE4 carriers had lower fractional anisotropy than controls in the callosal splenium and right inferior fronto-occipital fasciculus, but did not show grey matter volume or functional connectivity differences. We found no divergent differences between both carrier-control contrasts in any modality, even in region-of-interest analyses.

Conclusions: Concluding, we could not find differences suggestive of divergent pathways of underlying FTD and AD pathology in asymptomatic risk mutation carriers. Future studies should focus on asymptomatic mutation carriers that are closer to symptom onset to capture the first specific signs that may differentiate between FTD and AD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12883-019-1567-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6933911PMC
December 2019

Age at symptom onset and death and disease duration in genetic frontotemporal dementia: an international retrospective cohort study.

Authors:
Katrina M Moore Jennifer Nicholas Murray Grossman Corey T McMillan David J Irwin Lauren Massimo Vivianna M Van Deerlin Jason D Warren Nick C Fox Martin N Rossor Simon Mead Martina Bocchetta Bradley F Boeve David S Knopman Neill R Graff-Radford Leah K Forsberg Rosa Rademakers Zbigniew K Wszolek John C van Swieten Lize C Jiskoot Lieke H Meeter Elise Gp Dopper Janne M Papma Julie S Snowden Jennifer Saxon Matthew Jones Stuart Pickering-Brown Isabelle Le Ber Agnès Camuzat Alexis Brice Paola Caroppo Roberta Ghidoni Michela Pievani Luisa Benussi Giuliano Binetti Bradford C Dickerson Diane Lucente Samantha Krivensky Caroline Graff Linn Öijerstedt Marie Fallström Håkan Thonberg Nupur Ghoshal John C Morris Barbara Borroni Alberto Benussi Alessandro Padovani Daniela Galimberti Elio Scarpini Giorgio G Fumagalli Ian R Mackenzie Ging-Yuek R Hsiung Pheth Sengdy Adam L Boxer Howie Rosen Joanne B Taylor Matthis Synofzik Carlo Wilke Patricia Sulzer John R Hodges Glenda Halliday John Kwok Raquel Sanchez-Valle Albert Lladó Sergi Borrego-Ecija Isabel Santana Maria Rosário Almeida Miguel Tábuas-Pereira Fermin Moreno Myriam Barandiaran Begoña Indakoetxea Johannes Levin Adrian Danek James B Rowe Thomas E Cope Markus Otto Sarah Anderl-Straub Alexandre de Mendonça Carolina Maruta Mario Masellis Sandra E Black Philippe Couratier Geraldine Lautrette Edward D Huey Sandro Sorbi Benedetta Nacmias Robert Laforce Marie-Pier L Tremblay Rik Vandenberghe Philip Van Damme Emily J Rogalski Sandra Weintraub Alexander Gerhard Chiadi U Onyike Simon Ducharme Sokratis G Papageorgiou Adeline Su Lyn Ng Amy Brodtmann Elizabeth Finger Rita Guerreiro Jose Bras Jonathan D Rohrer

Lancet Neurol 2020 02 3;19(2):145-156. Epub 2019 Dec 3.

Dementia Research Centre, Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK. Electronic address:

Background: Frontotemporal dementia is a heterogenous neurodegenerative disorder, with about a third of cases being genetic. Most of this genetic component is accounted for by mutations in GRN, MAPT, and C9orf72. In this study, we aimed to complement previous phenotypic studies by doing an international study of age at symptom onset, age at death, and disease duration in individuals with mutations in GRN, MAPT, and C9orf72.

Methods: In this international, retrospective cohort study, we collected data on age at symptom onset, age at death, and disease duration for patients with pathogenic mutations in the GRN and MAPT genes and pathological expansions in the C9orf72 gene through the Frontotemporal Dementia Prevention Initiative and from published papers. We used mixed effects models to explore differences in age at onset, age at death, and disease duration between genetic groups and individual mutations. We also assessed correlations between the age at onset and at death of each individual and the age at onset and at death of their parents and the mean age at onset and at death of their family members. Lastly, we used mixed effects models to investigate the extent to which variability in age at onset and at death could be accounted for by family membership and the specific mutation carried.

Findings: Data were available from 3403 individuals from 1492 families: 1433 with C9orf72 expansions (755 families), 1179 with GRN mutations (483 families, 130 different mutations), and 791 with MAPT mutations (254 families, 67 different mutations). Mean age at symptom onset and at death was 49·5 years (SD 10·0; onset) and 58·5 years (11·3; death) in the MAPT group, 58·2 years (9·8; onset) and 65·3 years (10·9; death) in the C9orf72 group, and 61·3 years (8·8; onset) and 68·8 years (9·7; death) in the GRN group. Mean disease duration was 6·4 years (SD 4·9) in the C9orf72 group, 7·1 years (3·9) in the GRN group, and 9·3 years (6·4) in the MAPT group. Individual age at onset and at death was significantly correlated with both parental age at onset and at death and with mean family age at onset and at death in all three groups, with a stronger correlation observed in the MAPT group (r=0·45 between individual and parental age at onset, r=0·63 between individual and mean family age at onset, r=0·58 between individual and parental age at death, and r=0·69 between individual and mean family age at death) than in either the C9orf72 group (r=0·32 individual and parental age at onset, r=0·36 individual and mean family age at onset, r=0·38 individual and parental age at death, and r=0·40 individual and mean family age at death) or the GRN group (r=0·22 individual and parental age at onset, r=0·18 individual and mean family age at onset, r=0·22 individual and parental age at death, and r=0·32 individual and mean family age at death). Modelling showed that the variability in age at onset and at death in the MAPT group was explained partly by the specific mutation (48%, 95% CI 35-62, for age at onset; 61%, 47-73, for age at death), and even more by family membership (66%, 56-75, for age at onset; 74%, 65-82, for age at death). In the GRN group, only 2% (0-10) of the variability of age at onset and 9% (3-21) of that of age of death was explained by the specific mutation, whereas 14% (9-22) of the variability of age at onset and 20% (12-30) of that of age at death was explained by family membership. In the C9orf72 group, family membership explained 17% (11-26) of the variability of age at onset and 19% (12-29) of that of age at death.

Interpretation: Our study showed that age at symptom onset and at death of people with genetic frontotemporal dementia is influenced by genetic group and, particularly for MAPT mutations, by the specific mutation carried and by family membership. Although estimation of age at onset will be an important factor in future pre-symptomatic therapeutic trials for all three genetic groups, our study suggests that data from other members of the family will be particularly helpful only for individuals with MAPT mutations. Further work in identifying both genetic and environmental factors that modify phenotype in all groups will be important to improve such estimates.

Funding: UK Medical Research Council, National Institute for Health Research, and Alzheimer's Society.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/S1474-4422(19)30394-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7007771PMC
February 2020

Qualitative Assessment of Longitudinal Changes in Phenocopy Frontotemporal Dementia.

Front Neurol 2019 14;10:1207. Epub 2019 Nov 14.

Department of Radiology and Nuclear Medicine, Erasmus MC-University Medical Center Rotterdam, Rotterdam, Netherlands.

Phenocopy frontotemporal dementia (phFTD) shares core characteristics with behavioral variant frontotemporal dementia (bvFTD), yet without associated cognitive deficits and brain abnormalities on conventional magnetic resonance imaging (MRI), and without progression. Using advanced MRI techniques, we previously observed subtle structural and functional brain changes in phFTD similar to bvFTD. The aim of the current study was to follow these as well as cognition in phFTD over time, by means of a descriptive case series. Cognition, gray matter (GM) volume and white matter (WM) microstructure, and perfusion of 6 phFTD patients were qualitatively compared longitudinally (3-years follow-up), and cross-sectionally with baseline data from 9 bvFTD patients and 17 controls. For functional brain changes, arterial spin labeling (ASL) was performed to assess GM perfusion. For structural brain changes, diffusion tensor imaging was performed to assess WM microstructure and T1w imaging to assess GM volume. MRI acquisition was performed at 3T (General Electric, US). Clinical profiles of phFTD cases at follow-up are described. At follow-up phFTD patients showed clinical symptomatology similar to bvFTD, but had a relatively stable clinical profile. Longitudinal qualitative comparisons in phFTD showed some deterioration of language and memory function, a stable pattern of structural brain abnormalities and increased perfusion over time. Additionally, both baseline and follow-up cognitive scores and structural values in phFTD were generally in between those of controls and bvFTD. Although a descriptive case series does not allow for strong conclusions, these observations in a unique longitudinal phFTD patient cohort are suggestive of the notion that phFTD and bvFTD may belong to the same disease spectrum. They may also provide a basis for further longitudinal studies in phFTD, specifically exploring the structural vs. functional brain changes. Such studies are essential for improved insight, accurate diagnosis, and appropriate treatment of phFTD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fneur.2019.01207DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6874122PMC
November 2019

Family History is Associated with Phenotype in Dementia with Lewy Bodies.

J Alzheimers Dis 2020 ;73(1):269-275

Alzheimer Center Erasmus MC, Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands.

It is currently unknown whether patients with dementia with Lewy bodies (DLB) with relatives with dementia or Parkinson's disease (familial DLB patients) have a different phenotype than sporadic DLB patients. In this study, we aimed to examine disease onset, rate of cognitive decline, survival, and Alzheimer's disease (AD) biomarkers in patients with familial DLB (n = 154) and sporadic DLB (n = 137), using linear mixed model analysis and Cox regression analysis, among others. Familial patients had a shorter survival (8.0 years) and more often elevated cerebrospinal fluid AD biomarkers (47%) than sporadic patients (9.0 years; p≤0.001; 30%, p = 0.037). Our findings suggest that genetic factors are important in DLB and that the identification of new genetic factors will probably improve the prediction of prognosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3233/JAD-190825DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7029358PMC
January 2020

Serum neurofilament light chain in genetic frontotemporal dementia: a longitudinal, multicentre cohort study.

Lancet Neurol 2019 12;18(12):1103-1111

Department of Neurology and Alzheimer Center, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands. Electronic address:

Background: Neurofilament light chain (NfL) is a promising blood biomarker in genetic frontotemporal dementia, with elevated concentrations in symptomatic carriers of mutations in GRN, C9orf72, and MAPT. A better understanding of NfL dynamics is essential for upcoming therapeutic trials. We aimed to study longitudinal NfL trajectories in people with presymptomatic and symptomatic genetic frontotemporal dementia.

Methods: We recruited participants from 14 centres collaborating in the Genetic Frontotemporal Dementia Initiative (GENFI), which is a multicentre cohort study of families with genetic frontotemporal dementia done across Europe and Canada. Eligible participants (aged ≥18 years) either had frontotemporal dementia due to a pathogenic mutation in GRN, C9orf72, or MAPT (symptomatic mutation carriers) or were healthy at-risk first-degree relatives (either presymptomatic mutation carriers or non-carriers), and had at least two serum samples with a time interval of 6 months or more. Participants were excluded if they had neurological comorbidities that were likely to affect NfL, including cerebrovascular events. We measured NfL longitudinally in serum samples collected between June 8, 2012, and Dec 8, 2017, through follow-up visits annually or every 2 years, which also included MRI and neuropsychological assessments. Using mixed-effects models, we analysed NfL changes over time and correlated them with longitudinal imaging and clinical parameters, controlling for age, sex, and study site. The primary outcome was the course of NfL over time in the various stages of genetic frontotemporal dementia.

Findings: We included 59 symptomatic carriers and 149 presymptomatic carriers of a mutation in GRN, C9orf72, or MAPT, and 127 non-carriers. Nine presymptomatic carriers became symptomatic during follow-up (so-called converters). Baseline NfL was elevated in symptomatic carriers (median 52 pg/mL [IQR 24-69]) compared with presymptomatic carriers (9 pg/mL [6-13]; p<0·0001) and non-carriers (8 pg/mL [6-11]; p<0·0001), and was higher in converters than in non-converting carriers (19 pg/mL [17-28] vs 8 pg/mL [6-11]; p=0·0007; adjusted for age). During follow-up, NfL increased in converters (b=0·097 [SE 0·018]; p<0·0001). In symptomatic mutation carriers overall, NfL did not change during follow-up (b=0·017 [SE 0·010]; p=0·101) and remained elevated. Rates of NfL change over time were associated with rate of decline in Mini Mental State Examination (b=-94·7 [SE 33·9]; p=0·003) and atrophy rate in several grey matter regions, but not with change in Frontotemporal Lobar Degeneration-Clinical Dementia Rating scale score (b=-3·46 [SE 46·3]; p=0·941).

Interpretation: Our findings show the value of blood NfL as a disease progression biomarker in genetic frontotemporal dementia and suggest that longitudinal NfL measurements could identify mutation carriers approaching symptom onset and capture rates of brain atrophy. The characterisation of NfL over the course of disease provides valuable information for its use as a treatment effect marker.

Funding: ZonMw and the Bluefield project.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/S1474-4422(19)30354-0DOI Listing
December 2019

Validation of the movement disorder society criteria for the diagnosis of 4-repeat tauopathies.

Mov Disord 2020 01 30;35(1):171-176. Epub 2019 Sep 30.

Department of Neurology, Technische Universität München, Munich, Germany.

Background: The Movement Disorder Society criteria for progressive supranuclear palsy introduced the category "probable 4-repeat (4R)-tauopathy" for joint clinical diagnosis of progressive supranuclear palsy and corticobasal degeneration.

Objectives: To validate the accuracy of these clinical criteria for "probable 4R-tauopathy" to predict underlying 4R-tauopathy pathology.

Methods: Diagnostic accuracy for 4R-tauopathies according to the established criteria was estimated retrospectively in autopsy-confirmed patients with progressive supranuclear palsy and corticobasal degeneration (grouped as 4R-tauopathies), and Parkinson's disease, multiple system atrophy, and frontotemporal lobar degeneration (grouped as non-4R-tauopathies).

Results: We identified 250 cases with progressive supranuclear palsy (N = 195) and corticobasal degeneration (N = 55) and with and non-4R-tauopathies (N = 161). Sensitivity and specificity of "probable 4R-tauopathy" was 10% and 99% in the first year and 59% and 88% at final record.

Conclusions: The new diagnostic category "probable 4R-tauopathy" showed high specificity and may be suitable for the recruitment of patients with progressive supranuclear palsy and corticobasal degeneration into therapeutic trials targeting 4R-tauopathy. The low sensitivity underpins the need for diagnostic biomarkers. © 2019 International Parkinson and Movement Disorder Society.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/mds.27872DOI Listing
January 2020