Publications by authors named "John C Royer"

2 Publications

  • Page 1 of 1

Integrating transcriptional and metabolite profiles to direct the engineering of lovastatin-producing fungal strains.

Nat Biotechnol 2003 Feb 21;21(2):150-6. Epub 2003 Jan 21.

Microbia, Inc., 320 Bent Street, Cambridge, MA 02141, USA.

We describe a method to decipher the complex inter-relationships between metabolite production trends and gene expression events, and show how information gleaned from such studies can be applied to yield improved production strains. Genomic fragment microarrays were constructed for the Aspergillus terreus genome, and transcriptional profiles were generated from strains engineered to produce varying amounts of the medically significant natural product lovastatin. Metabolite detection methods were employed to quantify the polyketide-derived secondary metabolites lovastatin and (+)-geodin in broths from fermentations of the same strains. Association analysis of the resulting transcriptional and metabolic data sets provides mechanistic insight into the genetic and physiological control of lovastatin and (+)-geodin biosynthesis, and identifies novel components involved in the production of (+)-geodin, as well as other secondary metabolites. Furthermore, this analysis identifies specific tools, including promoters for reporter-based selection systems, that we employed to improve lovastatin production by A. terreus.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nbt781DOI Listing
February 2003

Interrelationship of Xylanase Induction and Cellulase Induction of Trichoderma longibrachiatum.

Appl Environ Microbiol 1990 Aug;56(8):2535-2539

College of Environmental Science and Forestry, State University of New York, Syracuse, New York 13210.

Xylose oligomers rapidly induced xylanase activity of Trichoderma longibrachiatum, whereas induction was delayed in the presence of glucose. Cellobiose, cellopentaose, and xylobiose did not induce detectable levels of cellulase activity. However, mixtures of xylobiose with cellobiose or cellopentaose rapidly induced cellulase activity. In addition, mixtures of xylobiose with cellopentaose or cellobiose induced xylanase activity more effectively than xylobiose alone. Both xylanase and cellulase activity were detected after a lag period in the presence of lactose.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC184761PMC
http://dx.doi.org/10.1128/AEM.56.8.2535-2539.1990DOI Listing
August 1990