Publications by authors named "John A Darling"

36 Publications

Satellite remote sensing to assess cyanobacterial bloom frequency across the United States at multiple spatial scales.

Ecol Indic 2021 Sep;128:1-107822

U.S. EPA, Office of Research and Development, Durham, NC, USA.

Cyanobacterial blooms can have negative effects on human health and local ecosystems. Field monitoring of cyanobacterial blooms can be costly, but satellite remote sensing has shown utility for more efficient spatial and temporal monitoring across the United States. Here, satellite imagery was used to assess the annual frequency of surface cyanobacterial blooms, defined for each satellite pixel as the percentage of images for that pixel throughout the year exhibiting detectable cyanobacteria. Cyanobacterial frequency was assessed across 2,196 large lakes in 46 states across the continental United States (CONUS) using imagery from the European Space Agency's Ocean and Land Colour Instrument for the years 2017 through 2019. In 2019, across all satellite pixels considered, annual bloom frequency had a median value of 4% and a maximum value of 100%, the latter indicating that for those satellite pixels, a cyanobacterial bloom was detected by the satellite sensor for every satellite image considered. In addition to annual pixel-scale cyanobacterial frequency, results were summarized at the lake- and state-scales by averaging annual pixel-scale results across each lake and state. For 2019, average annual lake-scale frequencies also had a maximum value of 100%, and Oregon and Ohio had the highest average annual state-scale frequencies at 65% and 52%. Pixel-scale frequency results can assist in identifying portions of a lake that are more prone to cyanobacterial blooms, while lake- and state-scale frequency results can assist in the prioritization of sampling resources and mitigation efforts. Satellite imagery is limited by the presence of snow and ice, as imagery collected in these conditions are quality flagged and discarded. Thus, annual bloom frequencies within nine climate regions were investigated to determine whether missing data biased results in climate regions more prone to snow and ice, given that their annual summaries would be weighted toward the summer months when cyanobacterial blooms tend to occur. Results were unbiased by the time period selected in most climate regions, but a large bias was observed for the Northwest Rockies and Plains climate region. Moderate biases were observed for the Ohio Valley and the Southeast climate regions. Finally, a clustering analysis was used to identify areas of high and low cyanobacterial frequency across CONUS based on average annual lake-scale cyanobacterial frequencies for 2019. Several clusters were identified that transcended state, watershed, and eco-regional boundaries. Combined with additional data, results from the clustering analysis may offer insight regarding large-scale drivers of cyanobacterial blooms.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecolind.2021.107822DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9088058PMC
September 2021

Characterizing temporal variability in streams supports nutrient indicator development using diatom and bacterial DNA metabarcoding.

Sci Total Environ 2022 Jul 1;831:154960. Epub 2022 Apr 1.

United States Environmental Protection Agency, Office of Water, Washington, DC 20460, USA.

Interest in developing periphytic diatom and bacterial indicators of nutrient effects continues to grow in support of the assessment and management of stream ecosystems and their watersheds. However, temporal variability could confound relationships between indicators and nutrients, subsequently affecting assessment outcomes. To document how temporal variability affects measures of diatom and bacterial assemblages obtained from DNA metabarcoding, we conducted weekly periphyton and nutrient sampling from July to October 2016 in 25 streams in a 1293 km mixed land use watershed. Measures of both diatom and bacterial assemblages were strongly associated with the percent agriculture in upstream watersheds and total phosphorus (TP) and total nitrogen (TN) concentrations. Temporal variability in TP and TN concentrations increased with greater amounts of agriculture in watersheds, but overall diatom and bacterial assemblage variability within sites-measured as mean distance among samples to corresponding site centroids in ordination space-remained consistent. This consistency was due in part to offsets between decreasing variability in relative abundances of taxa typical of low nutrient conditions and increasing variability in those typical of high nutrient conditions as mean concentrations of TP and TN increased within sites. Weekly low and high nutrient diatom and bacterial metrics were more strongly correlated with site mean nutrient concentrations over the sampling period than with same day measurements and more strongly correlated with TP than with TN. Correlations with TP concentrations were consistently strong throughout the study except briefly following two major precipitation events. Following these events, biotic relationships with TP reestablished within one to three weeks. Collectively, these results can strengthen interpretations of survey results and inform monitoring strategies and decision making. These findings have direct applications for improving the use of diatoms and bacteria, and the use of DNA metabarcoding, in monitoring programs and stream site assessments.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.154960DOI Listing
July 2022

Assessing cyanobacterial frequency and abundance at surface waters near drinking water intakes across the United States.

Water Res 2021 Aug 24;201:117377. Epub 2021 Jun 24.

U.S. Environmental Protection Agency, Office of Research and Development, Durham, NC, USA.

This study presents the first large-scale assessment of cyanobacterial frequency and abundance of surface water near drinking water intakes across the United States. Public water systems serve drinking water to nearly 90% of the United States population. Cyanobacteria and their toxins may degrade the quality of finished drinking water and can lead to negative health consequences. Satellite imagery can serve as a cost-effective and consistent monitoring technique for surface cyanobacterial blooms in source waters and can provide drinking water treatment operators information for managing their systems. This study uses satellite imagery from the European Space Agency's Ocean and Land Colour Instrument (OLCI) spanning June 2016 through April 2020. At 300-m spatial resolution, OLCI imagery can be used to monitor cyanobacteria in 685 drinking water sources across 285 lakes in 44 states, referred to here as resolvable drinking water sources. First, a subset of satellite data was compared to a subset of responses (n = 84) submitted as part of the U.S. Environmental Protection Agency's fourth Unregulated Contaminant Monitoring Rule (UCMR 4). These UCMR 4 qualitative responses included visual observations of algal bloom presence and absence near drinking water intakes from March 2018 through November 2019. Overall agreement between satellite imagery and UCMR 4 qualitative responses was 94% with a Kappa coefficient of 0.70. Next, temporal frequency of cyanobacterial blooms at all resolvable drinking water sources was assessed. In 2019, bloom frequency averaged 2% and peaked at 100%, where 100% indicated a bloom was always present at the source waters when satellite imagery was available. Monthly cyanobacterial abundances were used to assess short-term trends across all resolvable drinking water sources and effect size was computed to provide insight on the number of years of data that must be obtained to increase confidence in an observed change. Generally, 2016 through 2020 was an insufficient time period for confidently observing changes at these source waters; on average, a decade of satellite imagery would be required for observed environmental trends to outweigh variability in the data. However, five source waters did demonstrate a sustained short-term trend, with one increasing in cyanobacterial abundance from June 2016 to April 2020 and four decreasing.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2021.117377DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8908444PMC
August 2021

Invasion history shapes host transcriptomic response to a body-snatching parasite.

Mol Ecol 2021 09 20;30(17):4321-4337. Epub 2021 Jul 20.

Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.

By shuffling biogeographical distributions, biological invasions can both disrupt long-standing associations between hosts and parasites and establish new ones. This creates natural experiments with which to study the ecology and evolution of host-parasite interactions. In estuaries of the Gulf of Mexico, the white-fingered mud crab (Rhithropanopeus harrisii) is infected by a native parasitic barnacle, Loxothylacus panopaei (Rhizocephala), which manipulates host physiology and behaviour. In the 1960s, L. panopaei was introduced to the Chesapeake Bay and has since expanded along the southeastern Atlantic coast, while host populations in the northeast have so far been spared. We use this system to test the host's transcriptomic response to parasitic infection and investigate how this response varies with the parasite's invasion history, comparing populations representing (i) long-term sympatry between host and parasite, (ii) new associations where the parasite has invaded during the last 60 years and (iii) naïve hosts without prior exposure. A comparison of parasitized and control crabs revealed a core response, with widespread downregulation of transcripts involved in immunity and moulting. The transcriptional response differed between hosts from the parasite's native range and where it is absent, consistent with previous observations of increased susceptibility in populations lacking exposure to the parasite. Crabs from the parasite's introduced range, where prevalence is highest, displayed the most dissimilar response, possibly reflecting immune priming. These results provide molecular evidence for parasitic manipulation of host phenotype and the role of gene regulation in mediating host-parasite interactions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/mec.16038DOI Listing
September 2021

The risks of using molecular biodiversity data for incidental detection of species of concern.

Divers Distrib 2020 Aug;26(9):1116-1121

Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand.

Incidental detection of species of concern (e.g., invasive species, pathogens, threatened and endangered species) during biodiversity assessments based on high-throughput DNA sequencing holds significant risks in the absence of rigorous, fit-for-purpose data quality and reporting standards. Molecular biodiversity data are predominantly collected for ecological studies and thus are generated to common quality assurance standards. However, the detection of certain species of concern in these data would likely elicit interest from end users working in biosecurity or other surveillance contexts (e.g., pathogen detection in health-related fields), for which more stringent quality control standards are essential to ensure that data are suitable for informing decision-making and can withstand legal or political challenges. We suggest here that data quality and reporting criteria are urgently needed to enable clear identification of those studies that may be appropriately applied to surveillance contexts. In the interim, more pointed disclaimers on uncertainties associated with the detection and identification of species of concern may be warranted in published studies. This is not only to ensure the utility of molecular biodiversity data for consumers, but also to protect data generators from uncritical and potentially ill-advised application of their science in decision-making.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/ddi.13108DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8193820PMC
August 2020

How to learn to stop worrying and love environmental DNA monitoring.

Authors:
John A Darling

Aquat Ecosyst Health Manag 2020 Feb;22(4):440-451

National Exposure Research Laboratory, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA.

Environmental DNA is one of the most promising new tools in the aquatic biodiversity monitoring toolkit, with particular appeal for applications requiring assessment of target taxa at very low population densities. And yet there persists considerable anxiety within the management community regarding the appropriateness of environmental DNA monitoring for certain tasks and the degree to which environmental DNA methods can deliver information relevant to management needs. This brief perspective piece is an attempt to address that anxiety by offering some advice on how end-users might best approach these new technologies. I do not here review recent developments in environmental DNA science, but rather I explore ways in which managers and decision-makers might become more comfortable adopting environmental DNA tools-or choosing not to adopt them, should circumstances so dictate. I attempt to contextualize the central challenges associated with acceptance of environmental DNA detection by contrasting them with traditional "catch-and-look" approaches to biodiversity monitoring. These considerations lead me to recommend the cultivation of four "virtues," attitudes that can be brought into engagement with environmental DNA surveillance technologies that I hope will increase the likelihood that those engagements will be positive and that the future development and application of environmental DNA tools will further the cause of wise management.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/14634988.2019.1682912DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7751714PMC
February 2020

What do you mean by false positive.

Environ DNA 2020 Nov;3(5):879-883

Northern Rocky Mountain Science Center, U.S. Geological Survey, Bozeman, MT, USA.

Misunderstandings regarding the term "false positive" present a significant hurdle to broad adoption of eDNA monitoring methods. Here, we identify three challenges to clear communication of false-positive error between scientists, managers, and the public. The first arises from a failure to distinguish between false-positive eDNA detection at the sample level and false-positive inference of taxa presence at the site level. The second is based on the large proportion of false positives that may occur when true-positive detections are likely to be rare, even when rates of contamination or other error are low. And the third misunderstanding occurs when conventional species detection approaches, often based on direct capture, are used to confirm eDNA approaches without acknowledging or quantifying the conventional approach's detection probability. The solutions to these issues include careful and consistent communication of error definitions, managing expectations of error rates, and providing a balanced discussion not only of alternative sources of species DNA, but also of the detection limitations of conventional methods. We argue that the benefit of addressing these misunderstandings will be increased confidence in the utility of eDNA methods and, ultimately, improved resource management using eDNA approaches. The term false positive is often misused in eDNA research and natural resource management. There are issues of scale of inference, the base rate fallacy, and confirmation errors using conventional methods of detection. We offer a perspective to guide discussions of errors in species detection.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/edn3.194DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8941663PMC
November 2020

Metabarcoding quantifies differences in accumulation of ballast water borne biodiversity among three port systems in the United States.

Sci Total Environ 2020 Dec 3;749:141456. Epub 2020 Aug 3.

Smithsonian Environmental Research Center, Edgewater, MD 21037, USA.

Characterizing biodiversity conveyed in ships' ballast water (BW), a global driver of biological invasions, is critically important for understanding risks posed by this key vector and establishing baselines to evaluate changes associated with BW management. Here we employ high throughput sequence (HTS) metabarcoding of the 18S small subunit rRNA to test for and quantify differences in the accumulation of BW-borne biodiversity among three distinct recipient port systems in the United States. These systems were located on three different coasts (Pacific, Gulf, and Atlantic) and chosen to reflect distinct trade patterns and source port biogeography. Extensive sampling of BW tanks (n = 116) allowed detailed exploration of molecular diversity accumulation. Our results indicate that saturation of introduced zooplankton diversity may be achieved quickly, with fewer than 25 tanks needed to achieve 95% of the total extrapolated diversity, if source biogeography is relatively limited. However, as predicted, port systems with much broader source geographies require more extensive sampling to estimate diversity, which continues to accumulate after sampling >100 discharges. The ability to identify BW sources using molecular indicators was also found to depend on the breadth of source biogeography and the extent to which sources had been sampled. These findings have implications both for the effort required to fully understand introduced diversity and for projecting risks associated with future changes to maritime traffic that may increase source biogeography for many recipient ports. Our data also suggest that molecular diversity may not decline significantly with BW age, indicating either that some organisms survive longer than recognized in previous studies or that nucleic acids from dead organisms persist in BW tanks. We present evidence for detection of potentially invasive species in arriving BW but discuss important caveats that preclude strong inferences regarding the presence of living representatives of these species in BW tanks.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.141456DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8190815PMC
December 2020

DNA metabarcoding effectively quantifies diatom responses to nutrients in streams.

Ecol Appl 2020 12 18;30(8):e02205. Epub 2020 Aug 18.

Office of Research and Development, United States Environmental Protection Agency, Cincinnati, Ohio, 45268, USA.

Nutrient pollution from human activities remains a common problem facing stream ecosystems. Identifying ecological responses to phosphorus and nitrogen can inform decisions affecting the protection and management of streams and their watersheds. Diatoms are particularly useful because they are a highly diverse group of unicellular algae found in nearly all aquatic environments and are sensitive responders to increased nutrient concentrations. Here, we used DNA metabarcoding of stream diatoms as an approach to quantifying effects of total phosphorus (TP) and total nitrogen (TN). Threshold indicator taxa analysis (TITAN) identified operational taxonomic units (OTUs) that increased or decreased along TP and TN gradients along with nutrient concentrations at which assemblages had substantial changes in the occurrences and relative abundances of OTUs. Boosted regression trees showed that relative abundances of gene sequence reads for OTUs identified by TITAN as low P, high P, low N, or high N diatoms had strong relationships with nutrient concentrations, which provided support for potentially using these groups of diatoms as metrics in monitoring programs. Gradient forest analysis provided complementary information by characterizing multi-taxa assemblage change using multiple predictors and results from random forest models for each OTU. Collectively, these analyses showed that notable changes in diatom assemblage structure and OTUs began around 20 µg TP/L, low P diatoms decreased substantially and community change points occurred from 75 to 150 µg/L, and high P diatoms became increasingly dominant from 150 to 300 µg/L. Diatoms also responded to TN with large decreases in low N diatoms occurring from 280 to 525 µg TN/L and a transition to dominance by high N diatoms from 525-850 µg/L. These diatom responses to TP and TN could be used to inform protection efforts (i.e., anti-degradation) and management goals (i.e., nutrient reduction) in streams and watersheds. Our results add to the growing support for using diatom metabarcoding in monitoring programs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/eap.2205DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7731896PMC
December 2020

Recent introductions reveal differential susceptibility to parasitism across an evolutionary mosaic.

Evol Appl 2020 Mar 25;13(3):545-558. Epub 2019 Sep 25.

Smithsonian Environmental Research Center Edgewater MD USA.

Parasitism can represent a potent agent of selection, and introduced parasites have the potential to substantially alter their new hosts' ecology and evolution. While significant impacts have been reported for parasites that switch to new host species, the effects of macroparasite introduction into naïve populations of host species with which they have evolved remain poorly understood. Here, we investigate how the estuarine white-fingered mud crab () has adapted to parasitism by an introduced rhizocephalan parasite () that castrates its host. While the host crab is native to much of the East and Gulf Coasts of North America, its parasite is native only to the southern end of this range. Fifty years ago, the parasite invaded the mid-Atlantic, gradually expanding through previously naïve host populations. Thus, different populations of the same host species have experienced different degrees of historical interaction (and thus potential evolutionary response time) with the parasite: long term, short term, and naïve. In nine estuaries across this range, we examined whether and how parasite prevalence and host susceptibility to parasitism differs depending on the length of the host's history with the parasite. In field surveys, we found that the parasite was significantly more prevalent in its introduced range (i.e., short-term interaction) than in its native range (long-term interaction), a result that was also supported by a meta-analysis of prevalence data covering the 50 years since its introduction. In controlled laboratory experiments, host susceptibility to parasitism was significantly higher in naïve hosts than in hosts from the parasite's native range, suggesting that host resistance to parasitism is under selection. These results suggest that differences in host-parasite historical interaction can alter the consequences of parasite introductions in host populations. As anthropogenically driven range shifts continue, disruptions of host-parasite evolutionary relationships may become an increasingly important driver of ecological and evolutionary change.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/eva.12865DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7045710PMC
March 2020

Quantifying national and regional cyanobacterial occurrence in US lakes using satellite remote sensing.

Ecol Indic 2020 Apr;111:105976

ORISE Fellow, U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, USA.

Cyanobacterial harmful algal blooms are the most common form of harmful algal blooms in freshwater systems throughout the world. However, sampling of cyanobacteria in inland lakes is limited both spatially and temporally. Satellite data has proven to be an effective tool to monitor cyanobacteria in freshwater lakes across the United States. This study uses data from the European Space Agency Envisat MEdium Resolution Imaging Spectrometer and the Sentinel-3 Ocean and Land Color Instrument to provide a national overview of the percentage of lakes experiencing a cyanobacterial bloom on a weekly basis for 2008-2011, 2017, and 2018. A total of 2321 lakes across the contiguous United States were included in the analysis. We examined four different thresholds to define when a waterbody is classified as experiencing a bloom. Across these four thresholds, we explored variability in bloom percentage with changes in seasonality and lake size. As a validation of algorithm performance, we analyzed the agreement between satellite observations and previously established ecological patterns, although data availability in the wintertime limited these comparisons on a year-round basis. Changes in cyanobacterial bloom percentage at the national scale followed the well-known temporal pattern of freshwater blooms. The percentage of lakes experiencing a bloom increased throughout the year, reached a maximum in fall, and decreased through the winter. Wintertime data, particularly in northern regions, were consistently limited due to snow and ice cover. With the exception of the Southeast and South, regional patterns mimicked patterns found at the national scale. The Southeast and South exhibited an unexpected pattern as cyanobacterial bloom percentage reached a maximum in the winter rather than the summer. Lake Jesup in Florida was used as a case study to validate this observed pattern against field observations of chlorophyll a. Results from this research establish a baseline of annual occurrence of cyanobacterial blooms in inland lakes across the United States. In addition, methods presented in this study can be tailored to fit the specific requirements of an individual system or region.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecolind.2019.105976DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8318153PMC
April 2020

Trends in nonindigenous aquatic species richness in the United States reveal shifting spatial and temporal patterns of species introductions.

Aquat Invasions 2018 Sep;13(3):323-338

U.S. Environmental Protection Agency, National Exposure Research Laboratory, Research Triangle Park, NC 27711, USA.

Understanding the spatial and temporal dynamics underlying the introduction and spread of nonindigenous aquatic species (NAS) can provide important insights into the historical drivers of biological invasions and aid in forecasting future patterns of nonindigenous species arrival and spread. Increasingly, public databases of species observation records are being used to quantify changes in NAS distributions across space and time, and are becoming an important resource for researchers, managers, and policy-makers. Here we use publicly available data to describe trends in NAS introduction and spread across the conterminous United States over more than two centuries of observation records. Available data on first records of NAS reveal significant shifts in dominance of particular introduction patterns over time, both in terms of recipient regions and likely sources. These spatiotemporal trends at the continental scale may be subject to biases associated with regional variation in sampling effort, reporting, and data curation. We therefore also examined two additional metrics, the number of individual records and the spatial coverage of those records, which are likely to be more closely associated with sampling effort. Our results suggest that broad-scale patterns may mask considerable variation across regions, time periods, and even entities contributing to NAS sampling. In some cases, observed temporal shifts in species discovery may be influenced by dramatic fluctuations in the number and spatial extent of individual observations, reflecting the possibility that shifts in sampling effort may obscure underlying rates of NAS introduction.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3391/ai.2018.13.3.02DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6707539PMC
September 2018

Satellite monitoring of cyanobacterial harmful algal bloom frequency in recreational waters and drinking source waters.

Ecol Indic 2017 Sep;80:84-95

National Oceanic and Atmospheric Administration, National Centers for Coastal Ocean Science, Silver Spring, MD, USA.

Cyanobacterial harmful algal blooms (cyanoHAB) cause extensive problems in lakes worldwide, including human and ecological health risks, anoxia and fish kills, and taste and odor problems. CyanoHABs are a particular concern in both recreational waters and drinking source waters because of their dense biomass and the risk of exposure to toxins. Successful cyanoHAB assessment using satellites may provide an indicator for human and ecological health protection, In this study, methods were developed to assess the utility of satellite technology for detecting cyanoHAB frequency of occurrence at locations of potential management interest. The European Space Agency's MEdium Resolution Imaging Spectrometer (MERIS) was evaluated to prepare for the equivalent series of Sentine1-3 Ocean and Land Colour Imagers (OLCI) launched in 2016 as part of the Copernicus program. Based on the 2012 National Lakes Assessment site evaluation guidelines and National Hydrography Dataset, the continental United States contains 275,897 lakes and reservoirs >1 hectare in area. Results from this study show that 5.6 % of waterbodies were resolvable by satellites with 300 m single-pixel resolution and 0.7 % of waterbodies were resolvable when a three by three pixel (3×3-pixel) array was applied based on minimum Euclidian distance from shore. Satellite data were spatially joined to U.S. public water surface intake (PWSI) locations, where single-pixel resolution resolved 57% of the PWSI locations and a 3×3-pixel array resolved 33% of the PWSI locations. Recreational and drinking water sources in Florida and Ohio were ranked from 2008 through 2011 by cyanoHAB frequency above the World Health Organization's (WHO) high threshold for risk of 100,000 cells mL. The ranking identified waterbodies with values above the WHO high threshold, where Lake Apopka, FL (99.1 %) and Grand Lake St. Marys, OH (83 %) had the highest observed bloom frequencies per region. The method presented here may indicate locations with high exposure to cyanoHABs and therefore can be used to assist in prioritizing management resources and actions for recreational and drinking water sources.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecolind.2017.04.046DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6145495PMC
September 2017

Assessing threats of non-native species to native freshwater biodiversity: Conservation priorities for the United States.

Biol Conserv 2018 Aug;224:199-208

National Exposure Research Laboratory, US Environmental Research Agency, Research Triangle Park, NC, United States.

Non-native species pose one of the greatest threats to native biodiversity, and can have severe negative impacts in freshwater ecosystems. Identifying regions of spatial overlap between high freshwater biodiversity and high invasion pressure may thus better inform the prioritization of freshwater conservation efforts. We employ geospatial analysis of species distribution data to investigate the potential threat of non-native species to aquatic animal taxa across the continental United States. We mapped non-native aquatic plant and animal species richness and cumulative invasion pressure to estimate overall negative impact associated with species introductions. These distributions were compared to distributions of native aquatic animal taxa derived from the International Union for the Conservation of Nature (IUCN) database. To identify hotspots of native biodiversity we mapped total species richness, number of threatened and endangered species, and a community index of species rarity calculated at the watershed scale. An overall priority index allowed identification of watersheds experiencing high pressure from non-native species and also exhibiting high native biodiversity conservation value. While priority regions are roughly consistent with previously reported prioritization maps for the US, we also recognize novel priority areas characterized by moderate-to-high native diversity but extremely high invasion pressure. We further compared priority areas with existing conservation protections as well as projected future threats associated with land use change. Our findings suggest that many regions of elevated freshwater biodiversity value are compromised by high invasion pressure, and are poorly safeguarded by existing conservation mechanisms and are likely to experience significant additional stresses in the future.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biocon.2018.05.019DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6145479PMC
August 2018

Nucleic acids-based tools for ballast water surveillance, monitoring, and research.

J Sea Res 2018 Mar;133:43-52

National Risk Management Research Laboratory, U.S. Environmental Protection Agency, Edison, NJ, USA.

Understanding the risks of biological invasion posed by ballast water-whether in the context of compliance testing, routine monitoring, or basic research-is fundamentally an exercise in biodiversity assessment, and as such should take advantage of the best tools available for tackling that problem. The past several decades have seen growing application of genetic methods for the study of biodiversity, driven in large part by dramatic technological advances in nucleic acids analysis. Monitoring approaches based on such methods have the potential to increase dramatically sampling throughput for biodiversity assessments, and to improve on the sensitivity, specificity, and taxonomic accuracy of traditional approaches. The application of targeted detection tools (largely focused on PCR but increasingly incorporating novel probe-based methodologies) has led to a paradigm shift in rare species monitoring, and such tools have already been applied for early detection in the context of ballast water surveillance. Rapid improvements in community profiling approaches based on high throughput sequencing (HTS) could similarly impact broader efforts to catalogue biodiversity present in ballast tanks, and could provide novel opportunities to better understand the risks of biotic exchange posed by ballast water transport-and the effectiveness of attempts to mitigate those risks. These various approaches still face considerable challenges to effective implementation, depending on particular management or research needs. Compliance testing, for instance, remains dependent on accurate quantification of viable target organisms; while tools based on RNA detection show promise in this context, the demands of such testing require considerable additional investment in methods development. In general surveillance and research contexts, both targeted and community-based approaches are still limited by various factors: quantification remains a challenge (especially for taxa in larger size classes), gaps in nucleic acids reference databases are still considerable, uncertainties in taxonomic assignment methods persist, and many applications have not yet matured sufficiently to offer standardized methods capable of meeting rigorous quality assurance standards. Nevertheless, the potential value of these tools, their growing utilization in biodiversity monitoring, and the rapid methodological advances over the past decade all suggest that they should be seriously considered for inclusion in the ballast water surveillance toolkit.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.seares.2017.02.005DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6104837PMC
March 2018

Ballast Water Exchange and Invasion Risk Posed by Intracoastal Vessel Traffic: An Evaluation Using High Throughput Sequencing.

Environ Sci Technol 2018 09 21;52(17):9926-9936. Epub 2018 Aug 21.

Smithsonian Environmental Research Center , Edgewater , Maryland 21037 United States.

Ballast water remains a potent vector of non-native aquatic species introductions, despite increased global efforts to reduce risk of ballast water mediated invasions. This is particularly true of intracoastal vessel traffic, whose characteristics may limit the feasibility and efficacy of management through ballast water exchange (BWE). Here we utilize high throughput sequencing (HTS) to assess biological communities associated with ballast water being delivered to Valdez, Alaska from multiple source ports along the Pacific Coast of the United States. Our analyses indicate that BWE has a significant but modest effect on ballast water assemblages. Although overall richness was not reduced with exchange, we detected losses of some common benthic coastal taxa (e.g., decapods, mollusks, bryozoans, cnidaria) and gains of open ocean taxa (e.g., certain copepods, diatoms, and dinoflagellates), including some potentially toxic species. HTS-based metabarcoding identified significantly differentiated biodiversity signatures from individual source ports; this signal persisted, though weakened, in vessels undergoing BWE, indicating incomplete faunal turnover associated with management. Our analysis also enabled identification of taxa that may be of particular concern if established in Alaskan waters. While these results reveal a clear effect of BWE on diversity in intracoastal transit, they also indicate continued introduction risk of non-native and harmful taxa.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.8b02108DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6944436PMC
September 2018

Beyond propagule pressure: importance of selection during the transport stage of biological invasions.

Front Ecol Environ 2018 ;16(6):345-353

Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada, Burlington, Canada.

Biological invasions are largely considered to be a "numbers game", wherein the larger the introduction effort, the greater the probability that an introduced population will become established. However, conditions during transport - an early stage of the invasion - can be particularly harsh, thereby greatly reducing the size of a population available to establish in a new region. Some successful non-indigenous species are more tolerant of environmental and anthropogenic stressors than related native species, possibly stemming from selection (ie survival of only pre-adapted individuals for particular environmental conditions) during the invasion process. By reviewing current literature concerning population genetics and consequences of selection on population fitness, we propose that selection acting on transported populations can facilitate local adaptation, which may result in a greater likelihood of invasion than predicted by propagule pressure alone. Specifically, we suggest that detailed surveys should be conducted to determine interactions between molecular mechanisms and demographic factors, given that current management strategies may underestimate invasion risk.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/fee.1820DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6961837PMC
January 2018

A Framework for Understanding Marine Cosmopolitanism in the Anthropocene.

Front Mar Sci 2018 ;5:293

Maritime Studies Program, Williams College-Mystic Seaport, Mystic, CT, United States.

Recent years have witnessed growing appreciation for the ways in which human-mediated species introductions have reshaped marine biogeography. Despite this we have yet to grapple fully with the scale and impact of anthropogenic dispersal in both creating and determining contemporary distributions of marine taxa. In particular, the past several decades of research on marine biological invasions have revealed that broad geographic distributions of coastal marine organisms-historically referred to simply as "cosmopolitanism"-may belie complex interplay of both natural and anthropogenic processes. Here we describe a framework for understanding contemporary cosmopolitanism, informed by a synthesis of the marine bioinvasion literature. Our framework defines several novel categories in an attempt to provide a unified terminology for discussing cosmopolitan distributions in the world's oceans. We reserve the term to refer to those species for which data exist to support a true, natural, and prehistorically global (or extremely broad) distribution. While in the past this has been the default assumption for species observed to exhibit contemporary cosmopolitan distributions, we argue that given recent advances in marine invasion science this assignment should require positive evidence. In contrast, describes those species that have demonstrably achieved extensive geographic ranges only through historical anthropogenic dispersal, often facilitated over centuries of human maritime traffic. We discuss the history and human geography underpinning these neocosmopolitan distributions, and illustrate the extent to which these factors may have altered natural biogeographic patterns. We define the category to encompass taxa for which a broad distribution is determined (typically after molecular investigation) to reflect multiple, sometimes regionally endemic, lineages with uncertain taxonomic status; such species may remain cosmopolitan only so long as taxonomic uncertainty persists, after which they may splinter into multiple geographically restricted species. We discuss the methods employed to identify such species and to resolve both their taxonomic status and their biogeographic histories. We argue that recognizing these different types of cosmopolitanism, and the important role that invasion science has played in understanding them, is critically important for the future study of both historical and modern marine biogeography, ecology, and biodiversity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fmars.2018.00293DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6475922PMC
January 2018

Early detection monitoring for aquatic non-indigenous species: Optimizing surveillance, incorporating advanced technologies, and identifying research needs.

J Environ Manage 2017 Nov 22;202(Pt 1):299-310. Epub 2017 Jul 22.

U.S. Environmental Protection Agency, Great Lakes National Program Office, Chicago, IL, 60604, USA. Electronic address:

Following decades of ecologic and economic impacts from a growing list of nonindigenous and invasive species, government and management entities are committing to systematic early- detection monitoring (EDM). This has reinvigorated investment in the science underpinning such monitoring, as well as the need to convey that science in practical terms to those tasked with EDM implementation. Using the context of nonindigenous species in the North American Great Lakes, this article summarizes the current scientific tools and knowledge - including limitations, research needs, and likely future developments - relevant to various aspects of planning and conducting comprehensive EDM. We begin with the scope of the effort, contrasting target-species with broad-spectrum monitoring, reviewing information to support prioritization based on species and locations, and exploring the challenge of moving beyond individual surveys towards a coordinated monitoring network. Next, we discuss survey design, including effort to expend and its allocation over space and time. A section on sample collection and analysis overviews the merits of collecting actual organisms versus shed DNA, reviews the capabilities and limitations of identification by morphology, DNA target markers, or DNA barcoding, and examines best practices for sample handling and data verification. We end with a section addressing the analysis of monitoring data, including methods to evaluate survey performance and characterize and communicate uncertainty. Although the body of science supporting EDM implementation is already substantial, research and information needs (many already actively being addressed) include: better data to support risk assessments that guide choice of taxa and locations to monitor; improved understanding of spatiotemporal scales for sample collection; further development of DNA target markers, reference barcodes, genomic workflows, and synergies between DNA-based and morphology-based taxonomy; and tools and information management systems for better evaluating and communicating survey outcomes and uncertainty.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2017.07.045DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5927374PMC
November 2017

Recommendations for developing and applying genetic tools to assess and manage biological invasions in marine ecosystems.

Mar Policy 2017 ;85:56-64

Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Lecce, Italy.

The European Union's Marine Strategy Framework Directive (MSFD) aims to adopt integrated ecosystem management approaches to achieve or maintain "Good Environmental Status" for marine waters, habitats and resources, including mitigation of the negative effects of non-indigenous species (NIS). The Directive further seeks to promote broadly standardized monitoring efforts and assessment of temporal trends in marine ecosystem condition, incorporating metrics describing the distribution and impacts of NIS. Accomplishing these goals will require application of advanced tools for NIS surveillance and risk assessment, particularly given known challenges associated with surveying and monitoring with traditional methods. In the past decade, a host of methods based on nucleic acids (DNA and RNA) analysis have been developed or advanced that promise to dramatically enhance capacity in assessing and managing NIS. However, ensuring that these rapidly evolving approaches remain accessible and responsive to the needs of resource managers remains a challenge. This paper provides recommendations for future development of these genetic tools for assessment and management of NIS in marine systems, within the context of the explicit requirements of the MSFD. Issues considered include technological innovation, methodological standardization, data sharing and collaboration, and the critical importance of shared foundational resources, particularly integrated taxonomic expertise. Though the recommendations offered here are not exhaustive, they provide a basis for future intentional (and international) collaborative development of a genetic toolkit for NIS research, capable of fulfilling the immediate and long term goals of marine ecosystem and resource conservation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpol.2017.08.014DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5909192PMC
January 2017

Marine invasions enter the genomic era: three lessons from the past, and the way forward.

Curr Zool 2016 Dec 26;62(6):629-642. Epub 2016 Apr 26.

National Exposure Research Laboratory, United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA.

The expanding scale and increasing rate of marine biological invasions have been documented since the early 20th century. Besides their global ecological and economic impacts, non-indigenous species (NIS) also have attracted much attention as opportunities to explore important eco-evolutionary processes such as rapid adaptation, long-distance dispersal and range expansion, and secondary contacts between divergent evolutionary lineages. In this context, genetic tools have been extensively used in the past 20 years. Three important issues appear to have emerged from such studies. First, the study of NIS has revealed unexpected cryptic diversity in what had previously been assumed homogeneous entities. Second, there has been surprisingly little evidence of strong founder events accompanying marine introductions, a pattern possibly driven by large propagule loads. Third, the evolutionary processes leading to successful invasion have been difficult to ascertain due to faint genetic signals. Here we explore the potential of novel tools associated with high-throughput sequencing (HTS) to address these still pressing issues. Dramatic increase in the number of loci accessible via HTS has the potential to radically increase the power of analyses aimed at species delineation, exploring the population genomic consequences of range expansions, and examining evolutionary processes such as admixture, introgression, and adaptation. Nevertheless, the value of this new wealth of genomic data will ultimately depend on the ability to couple it with expanded "traditional" efforts, including exhaustive sampling of marine populations over large geographic scales, integrated taxonomic analyses, and population level exploration of quantitative trait differentiation through common-garden and other laboratory experiments.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/cz/zow053DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5804250PMC
December 2016

Are genes faster than crabs? Mitochondrial introgression exceeds larval dispersal during population expansion of the invasive crab Carcinus maenas.

R Soc Open Sci 2014 Oct 15;1(2):140202. Epub 2014 Oct 15.

Gund Institute for Ecological Economics, University of Vermont , Burlington, VT 05405, USA.

Biological invasions offer unique opportunities to investigate evolutionary dynamics at the peripheries of expanding populations. Here, we examine genetic patterns associated with admixture between two distinct invasive lineages of the European green crab, Carcinus maenas L., independently introduced to the northwest Atlantic. Previous investigations based on mitochondrial DNA sequences demonstrated that larval dispersal driven by advective currents could explain observed southward displacement of an admixture zone between the two invasions. Comparison of published mitochondrial results with new nuclear data from nine microsatellite loci, however, reveals striking discordance in their introgression patterns. Specifically, introgression of mitochondrial genomes relative to nuclear background suggests that demographic processes such as sex-biased reproductive dynamics and population size imbalances-and not solely larval dispersal-play an important role in driving the evolution of the genetic cline. In particular, the unpredicted introgression of mitochondrial alleles against the direction of mean larval dispersal in the region is consistent with recent models invoking similar demographic processes to explain movements of genes into invading populations. These observations have important implications for understanding historical shifts in C. maenas range limits, and more generally for inferences of larval dispersal based on genetic data.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1098/rsos.140202DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4448889PMC
October 2014

How important is intraspecific genetic admixture to the success of colonising populations?

Trends Ecol Evol 2014 Apr 15;29(4):233-42. Epub 2014 Mar 15.

National Exposure Research Laboratory, United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA.

Genetic admixture of divergent intraspecific lineages is increasingly suspected to have an important role in the success of colonising populations. However, admixture is not a universally beneficial genetic phenomenon. Selection is typically expected to favour locally adapted genotypes and can act against admixed individuals, suggesting that there are some conditions under which admixture will have negative impacts on population fitness. Therefore, it remains unclear how often admixture acts as a true driver of colonisation success. Here, we review the population consequences of admixture and discuss its costs and benefits across a broad spectrum of ecological contexts. We critically evaluate the evidence for a causal role of admixture in successful colonisation, and consider that role more generally in driving population range expansion.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tree.2014.02.003DOI Listing
April 2014

Ecology of cryptic invasions: latitudinal segregation among Watersipora (Bryozoa) species.

Sci Rep 2012 28;2:871. Epub 2012 Nov 28.

Moss Landing Marine Laboratories, 8272 Moss Landing Road , Moss Landing, CA 95039, USA.

Watersipora is an invasive genus of bryozoans, easily dispersed by fouled vessels. We examined Cytochrome c oxidase subunit I haplotypes from introduced populations on the US Pacific coastline to investigate geographic segregation of species and/or haplotypes. In California, the W. subtorquata group fell into three major sub-groups: W. subtorquata clades A and B, and W. "new sp.". W. subtorquata clades A and B were common in southern California south of Point Conception, a recognized biogeographic boundary, whereas further north, W. subtorquata clade A and W. n. sp. were frequent. The southern California region also had colonies of a morphologically distinct species, W. arcuata, also found in southern Australia and Hawaii; COI variation indicates a common ancestral source(s) in these introductions. The distribution of Watersipora-complex lineages on different coastlines is shown to be temperature correlated. Accordingly, pre-exisitng temperature-based adaptations may play a key role in determining invasion patterns.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/srep00871DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3514011PMC
May 2013

Intracoastal shipping drives patterns of regional population expansion by an invasive marine invertebrate.

Ecol Evol 2012 Oct 13;2(10):2557-66. Epub 2012 Sep 13.

National Exposure Research Laboratory, United States Environmental Protection Agency 109 TW Alexander Drive, Durham, North Carolina, 27711.

Understanding the factors contributing to expansion of nonnative populations is a critical step toward accurate risk assessment and effective management of biological invasions. Nevertheless, few studies have attempted explicitly to test hypotheses regarding factors driving invasive spread by seeking correlations between patterns of vector movement and patterns of genetic connectivity. Herein, we describe such an attempt for the invasive tunicate Styela clava in the northeastern Pacific. We utilized microsatellite data to estimate gene flow between samples collected throughout the known range of S. clava in the region, and assessed correlation of these estimates with patterns of intracoastal commercial vessel traffic. Our results suggest that recent shipping patterns have contributed to the contemporary distribution of genetic variation. However, the analysis also indicates that other factors-including a complex invasion history and the influence of other vectors-have partially obscured genetic patterns associated with intracoastal population expansion.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ece3.362DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3492781PMC
October 2012

Complex genetic patterns in closely related colonizing invasive species.

Ecol Evol 2012 Jul;2(7):1331-46

Anthropogenic activities frequently result in both rapidly changing environments and translocation of species from their native ranges (i.e., biological invasions). Empirical studies suggest that many factors associated with these changes can lead to complex genetic patterns, particularly among invasive populations. However, genetic complexities and factors responsible for them remain uncharacterized in many cases. Here, we explore these issues in the vase tunicate Ciona intestinalis (Ascidiacea: Enterogona: Cionidae), a model species complex, of which spA and spB are rapidly spreading worldwide. We intensively sampled 26 sites (N = 873) from both coasts of North America, and performed phylogenetic and population genetics analyses based on one mitochondrial fragment (cytochrome c oxidase subunit 3-NADH dehydrogenase subunit I, COX3-ND1) and eight nuclear microsatellites. Our analyses revealed extremely complex genetic patterns in both species on both coasts. We detected a contrasting pattern based on the mitochondrial marker: two major genetic groups in C. intestinalis spA on the west coast versus no significant geographic structure in C. intestinalis spB on the east coast. For both species, geo-graphically distant populations often showed high microsatellite-based genetic affinities whereas neighboring ones often did not. In addition, mitochondrial and nuclear markers provided largely inconsistent genetic patterns. Multiple factors, including random genetic drift associated with demographic changes, rapid selection due to strong local adaptation, and varying propensity for human-mediated propagule dispersal could be responsible for the observed genetic complexities.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ece3.258DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3434944PMC
July 2012

Interspecific hybridization and mitochondrial introgression in invasive carcinus shore crabs.

Authors:
John A Darling

PLoS One 2011 Mar 14;6(3):e17828. Epub 2011 Mar 14.

Molecular Ecology Research Branch, National Exposure Research Laboratory, United States Environmental Protection Agency, Cincinnati, Ohio, United States of America.

Interspecific hybridization plays an important role in facilitating adaptive evolutionary change. More specifically, recent studies have demonstrated that hybridization may dramatically influence the establishment, spread, and impact of invasive populations. In Japan, previous genetic evidence for the presence of two non-native congeners, the European green crab Carcinus maenas and the Mediterranean green crab C. aestuarii, has raised questions regarding the possibility of hybridization between these sister species. Here I present analysis based on both nuclear microsatellites and the mitochondrial cytochrome C oxidase subunit I (COI) gene which unambiguously argues for a hybrid origin of Japanese Carcinus. Despite the presence of mitochondrial lineages derived from both C. maenas and C. aestuarii, the Japanese population is panmictic at nuclear loci and has achieved cytonuclear equilibrium throughout the sampled range in Japan. Furthermore, analysis of admixture at nuclear loci indicates dramatic introgression of the C. maenas mitochondrial genome into a predominantly C. aestuarii nuclear background. These patterns, along with inferences drawn from the observational record, argue for a hybridization event pre-dating the arrival of Carcinus in Japan. The clarification of both invasion history and evolutionary history afforded by genetic analysis provides information that may be critically important to future studies aimed at assessing risks posed by invasive Carcinus populations to Japan and the surrounding region.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0017828PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3056785PMC
March 2011

Molecular detection of invasive species in heterogeneous mixtures using a microfluidic carbon nanotube platform.

PLoS One 2011 Feb 18;6(2):e17280. Epub 2011 Feb 18.

Department of Biological Sciences, Center for Aquatic Conservation, The University of Notre Dame, Notre Dame, Indiana, United States of America.

Screening methods to prevent introductions of invasive species are critical for the protection of environmental and economic benefits provided by native species and uninvaded ecosystems. Coastal ecosystems worldwide remain vulnerable to damage from aquatic species introductions, particularly via ballast water discharge from ships. Because current ballast management practices are not completely effective, rapid and sensitive screening methods are needed for on-site testing of ships in transit. Here, we describe a detection technology based on a microfluidic chip containing DNA oligonucleotide functionalized carbon nanotubes. We demonstrate the efficacy of the chip using three ballast-transported species either established (Dreissena bugensis) or of potential threat (Eriocheir sinensis and Limnoperna fortuneii) to the Laurentian Great Lakes. With further refinement for on-board application, the technology could lead to real-time ballast water screening to improve ship-specific management and control decisions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0017280PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3041796PMC
February 2011

From molecules to management: adopting DNA-based methods for monitoring biological invasions in aquatic environments.

Environ Res 2011 Oct 25;111(7):978-88. Epub 2011 Feb 25.

United States Environmental Protection Agency, National Exposure Research Laboratory, Molecular Ecology Research Branch, Cincinnati, OH 45268, USA.

Recent technological advances have driven rapid development of DNA-based methods designed to facilitate detection and monitoring of invasive species in aquatic environments. These tools promise to improve on traditional monitoring approaches by enhancing detection sensitivity, reducing analytical turnaround times and monitoring costs, and increasing specificity of target identifications. However, despite the promise of DNA-based monitoring methods, the adoption of these tools in decision-making frameworks remains challenging. Here, rather than explore technical aspects of method development, we examine impediments to effective translation of those methods into management contexts. In addition to surveying current use of DNA-based tools for aquatic invasive species monitoring, we explore potential sources of uncertainty associated with molecular technologies and possibilities for limiting that uncertainty and effectively communicating its implications for decision-making. We pay particular attention to the recent adoption of DNA-based methods for detection of invasive Asian carp species in the United States Great Lakes region, as this example illustrates many of the challenges associated with applying molecular tools to achieve desired management outcomes. Our goal is to provide a useful assessment of the obstacles associated with integrating DNA-based methods into aquatic invasive species management, and to offer recommendations for future efforts aimed at overcoming those obstacles.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2011.02.001DOI Listing
October 2011

Genetic perspectives on marine biological invasions.

Ann Rev Mar Sci 2010 ;2:367-93

Moss Landing Marine Laboratories, Moss Landing, California 95039, USA.

The extent to which the geographic distributions of marine organisms have been reshaped by human activities remains underappreciated, and so does, consequently, the impact of invasive species on marine ecosystems. The application of molecular genetic data in fields such as population genetics, phylogeography, and evolutionary biology have improved our ability to make inferences regarding invasion histories. Genetic methods have helped to resolve longstanding questions regarding the cryptogenic status of marine species, facilitated recognition of cryptic marine biodiversity, and provided means to determine the sources of introduced marine populations and to begin to recover the patterns of anthropogenic reshuffling of the ocean's biota. These approaches stand to aid materially in the development of effective management strategies and sustainable science-based policies. Continued advancements in the statistical analysis of genetic data promise to overcome some existing limitations of current approaches. Still other limitations will be best addressed by concerted collaborative and multidisciplinary efforts that recognize the important synergy between understanding the extent of biological invasions and coming to a more complete picture of both modern-day and historical marine biogeography.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1146/annurev.marine.010908.163745DOI Listing
January 2011
-->