Publications by authors named "Johanna Tuomela"

36 Publications

Evaluation of [F]F-DPA as a target for TSPO in head and neck cancer under normal conditions and after radiotherapy.

Eur J Nucl Med Mol Imaging 2020 Dec 19. Epub 2020 Dec 19.

Preclinical Imaging Laboratory, Turku PET Centre, University of Turku, Tykistökatu 6A, FI-20520, Turku, Finland.

Background: Many malignant tumours have increased TSPO expression, which has been related to a poor prognosis. TSPO-PET tracers have not comprehensively been evaluated in peripherally located tumours. This study aimed to evaluate whether N,N-diethyl-2-(2-(4-([F]fluoro)phenyl)-5,7-dimethylpyrazolo[1,5-a]pyrimidin-3-yl)acetamide ([F]F-DPA) can reflect radiotherapy (RT)-induced changes in TSPO activity in head and neck squamous cell carcinoma (HNSCC).

Methods: RT was used to induce inflammatory responses in HNSCC xenografts and cells. [F]F-DPA uptake was measured in vivo in non-irradiated and irradiated tumours, followed by ex vivo biodistribution, autoradiography, and radiometabolite analysis. In vitro studies were performed in parental and TSPO-silenced (TSPO siRNA) cells. TSPO protein and mRNA expression, as well as tumour-associated macrophages (TAMs), were also assessed.

Results: In vivo imaging and ex vivo measurement revealed significantly higher [F]F-DPA uptake in irradiated, compared to non-irradiated tumours. In vitro labelling studies with cells confirmed this finding, whereas no effect of RT on [F]F-DPA uptake was detected in TSPO siRNA cells. Radiometabolite analysis showed that the amount of unchanged [F]F-DPA in tumours was 95%, also after irradiation. PK11195 pre-treatment reduced the tumour-to-blood ratio of [F]F-DPA by 73% in xenografts and by 88% in cells. TSPO protein and mRNA levels increased after RT, but were highly variable. The proportion of M1/M2 TAMs decreased after RT, whereas the proportion of monocytes and migratory monocytes/macrophages increased.

Conclusions: [F]F-DPA can detect changes in TSPO expression levels after RT in HNSCC, which does not seem to reflect inflammation. Further studies are however needed to clarify the physiological mechanisms regulated by TSPO after RT.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00259-020-05115-zDOI Listing
December 2020

Critical evaluation of the subcutaneous engraftments of hormone naïve primary prostate cancer.

Transl Androl Urol 2020 Jun;9(3):1120-1134

Institute of Biomedicine, University of Turku, Turku, Finland.

Background: Patient-derived xenografts (PDXs) are considered to better recapitulate the histopathological and molecular heterogeneity of human cancer than other preclinical models. Despite technological advances, PDX models from hormone naïve primary prostate cancer are scarce. We performed a detailed analysis of PDX methodology using a robust subcutaneous model and fresh tissues from patients with primary hormone naïve prostate cancer.

Methods: Clinical prostate tumor specimens (n=26, Gleason score 6-10) were collected from robotic-assisted laparoscopic radical prostatectomies at Turku University Hospital (Turku, Finland), cut into pieces, and implanted subcutaneously into 84 immunodeficient mice. Engraftments and the adjacent material from prostatic surgical specimens were compared using histology, immunohistochemistry and DNA sequencing.

Results: The probability of a successful engraftment correlated with the presence of carcinoma in the implanted tissue. Tumor take rate was 41%. Surprisingly, mouse hormone supplementation inhibited tumor take rate, whereas the degree of mouse immunodeficiency did not have an effect. Histologically, the engrafted tumors closely mimicked their parental tumors, and the Gleason grades and copy number variants of the engraftments were similar to those of their primary tumors. Expression levels of androgen receptor, prostate-specific antigen, and keratins were retained in engraftments, and a detailed genomic analysis revealed high fidelity of the engraftments with their corresponding primary tumors. However, in the second or third passage of tumors, the carcinoma areas were almost completely replaced by benign tissue with frequent degenerative or metaplastic changes.

Conclusions: Subcutaneous primary prostate engraftments preserve the phenotypic and genotypic landscape. Thus, they serve a potential model for personalized medicine and preclinical research but their use may be limited to the first passage.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.21037/tau.2020.03.38DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7354344PMC
June 2020

γ-(S)-Guanidinylmethyl-Modified Triplex-Forming Peptide Nucleic Acids Increase Hoogsteen-Face Affinity for a MicroRNA and Enhance Cellular Uptake.

Chembiochem 2019 12 26;20(24):3041-3051. Epub 2019 Sep 26.

Department of Chemistry, University of Turku, Vatselankatu 2, 20014, Turku, Finland.

γ-Modified (i.e., (S)-aminomethyl, (S)-acetamidomethyl, (R)-4-(hydroxymethyl)triazol-1-ylmethyl, and (S)-guanidinylmethyl) triplex-forming peptide nucleic acids (TFPNAs) were synthesized and the effect of the backbone modifications on the binding to a miR-215 model was studied. Among the modifications, an appropriate pattern of three γ-(S)-guanidinylmethyl modifications increased the affinity and Hoogsteen-face selectivity for the miR-215 model without ternary (PNA) /RNA complex formation. Moreover, the γ-(S)-guanidinylmethyl groups were observed to facilitate internalization of the TFPNAs into living PC-3 prostate cancer cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbic.201900393DOI Listing
December 2019

Characterization a model of prostatic diseases and obstructive voiding induced by sex hormone imbalance in the Wistar and Noble rats.

Transl Androl Urol 2019 Mar;8(Suppl 1):S45-S57

Pharmatest Services Ltd., Turku, Finland.

Background: Chronic nonbacterial prostatitis associated with lower urinary tract symptoms (LUTS) is a prevalent condition in men. One potential pathophysiological factor is change in sex hormone, testosterone and estrogen, balance. Inflammation, cancer and obstructive voiding has been induced in the Noble rat strain by altering levels of sex hormones. We evaluated if imbalance of sex hormones could induce comparable diseases also in a less estrogen sensitive Wistar strain rats.

Methods: Subcutaneous testosterone (830 µg/day) and 17β-estradiol (83 µg/day) hormone pellets were used in male Wistar and Noble strain rats to induce prostatic diseases. The rats were followed for 13 and 18 weeks. Urodynamical measurements were performed at the end of the study under anesthesia. Prostates were collected for further histological analysis. A panel of cytokines were measured from collected serum samples.

Results: Noble rats exhibited stromal and glandular inflammation after 13 weeks that progressed into more severe forms after 18 weeks of hormonal treatment. CD68-positive macrophages were observed in the stromal areas and inside the inflamed acini. CD163-positive macrophages were present in the stromal compartment but absent inside inflammatory foci or prostate acini. Thirteen-week hormonal treatment in Noble rats induced obstructive voiding, which progressed to urinary retention after 18-weeks treatment. In the Wistar rats 18-week treatment was comparable to the 13-week-treated Noble rats judged by progression of prostatic inflammation, being also evident for obstructive voiding. Incidence of PIN-like lesions and carcinomas in the periurethal area in Noble rats were high (100%) but lower (57%) and with smaller lesions in Wistar rats. Serum cytokines leptin, CCL5, and VEGF concentrations showed a decrease in the hormone-treated rats compared to placebo-treated rats.

Conclusions: Prostate inflammation and obstructive voiding developed also in the Wistar rats but more slowly than in Noble rats. Male non-castrated Wistar strain rats may thus be suitable to use in studies of pathophysiology and hormone-dependent prostate inflammation and obstructive voiding.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.21037/tau.2019.02.03DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6511689PMC
March 2019

Dovitinib dilactic acid reduces tumor growth and tumor-induced bone changes in an experimental breast cancer bone growth model.

J Bone Oncol 2019 Jun 19;16:100232. Epub 2019 Mar 19.

University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland.

Advanced breast cancer has a high incidence of bone metastases. In bone, breast cancer cells induce osteolytic or mixed bone lesions by inducing an imbalance in bone formation and resorption. Activated fibroblast growth factor receptors (FGFRs) are important in regulation of tumor growth and bone remodeling. In this study we used FGFR1 and FGFR2 gene amplifications containing human MFM223 breast cancer cells in an experimental xenograft model of breast cancer bone growth using intratibial inoculation technique. This model mimics bone metastases in breast cancer patients. The effects of an FGFR inhibitor, dovitinib dilactic acid (TKI258) on tumor growth and tumor-induced bone changes were evaluated. Cancer-induced bone lesions were smaller in dovitinib-treated mice as evaluated by X-ray imaging. Peripheral quantitative computed tomography imaging showed higher total and cortical bone mineral content and cortical bone mineral density in dovitinib-treated mice, suggesting better preserved bone mass. CatWalk gait analysis indicated that dovitinib-treated mice experienced less cancer-induced bone pain in the tumor-bearing leg. A trend towards decreased tumor growth and metabolic activity was observed in dovitinib-treated mice quantified by positron emission tomography imaging with 2-[F]fluoro-2-deoxy-D-glucose at the endpoint. We conclude that dovitinib treatment decreased tumor burden, cancer-induced changes in bone, and bone pain. The results suggest that targeting FGFRs could be beneficial in breast cancer patients with bone metastases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbo.2019.100232DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6434100PMC
June 2019

Evaluation of [Ga]Ga-DOTA-TCTP-1 for the Detection of Metalloproteinase 2/9 Expression in Mouse Atherosclerotic Plaques.

Molecules 2018 Dec 1;23(12). Epub 2018 Dec 1.

Turku PET Centre, University of Turku, FI-20520 Turku, Finland.

: The expression of matrix metalloproteinases 2/9 (MMP-2/9) has been implicated in arterial remodeling and inflammation in atherosclerosis. We evaluated a gallium-68 labeled peptide for the detection of MMP-2/9 in atherosclerotic mouse aorta. : We studied sixteen low-density lipoprotein receptor deficient mice (LDLRApoB) kept on a Western-type diet. Distribution of intravenously-injected MMP-2/9-targeting peptide, [Ga]Ga-DOTA-TCTP-1, was studied by combined positron emission tomography (PET) and contrast-enhanced computed tomography (CT). At 60 min post-injection, aortas were cut into cryosections for autoradiography analysis of tracer uptake, histology, and immunohistochemistry. Zymography was used to assess MMP-2/9 activation and pre-treatment with MMP-2/9 inhibitor to assess the specificity of tracer uptake. : Tracer uptake was not visible by in vivo PET/CT in the atherosclerotic aorta, but ex vivo autoradiography revealed 1.8 ± 0.34 times higher tracer uptake in atherosclerotic plaques than in normal vessel wall ( = 0.0029). Tracer uptake in plaques correlated strongly with the quantity of Mac-3-positive macrophages (R = 0.91, < 0.001), but weakly with MMP-9 staining (R = 0.40, = 0.099). Zymography showed MMP-2 activation in the aorta, and pre-treatment with MMP-2/9 inhibitor decreased tracer uptake by 55% ( = 0.0020). : The MMP-2/9-targeting [Ga]Ga-DOTA-TCTP-1 shows specific uptake in inflamed atherosclerotic lesions; however, a low target-to-background ratio precluded in vivo vascular imaging. Our results suggest, that the affinity of gelatinase imaging probes should be steered towards activated MMP-2, to reduce the interference of circulating enzymes on the target visualization in vivo.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/molecules23123168DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6321344PMC
December 2018

Chronic nonbacterial prostate inflammation in a rat model is associated with changes of gut microbiota that can be modified with a galactoglucomannan-rich hemicellulose extract in the diet.

BJU Int 2019 05 1;123(5):899-908. Epub 2018 Nov 1.

Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland.

Objectives: To investigate dietary effects on the gut microbiota composition in a rat model of nonbacterial chronic prostate inflammation (CPI).

Materials And Methods: Nonbacterial CPI was induced in the Wistar rat strain with subcutaneous testosterone and 17β-oestradiol (E ) hormone pellets for 18 weeks. Rats with placebo pellets served as healthy controls. Rats with CPI were stratified into two groups, which drank either plain tap water (control group) or tap water supplemented with 2% galactoglucomannan-rich hemicellulose extract (GGM group) from Norway spruce (Picea abies) for 5 weeks. Faecal samples were collected at the end of the study, total DNA was extracted, and the bacterial composition was analysed by 16S rRNA gene sequencing. In addition, faecal samples were assayed for short-chain fatty acid (SCFA) concentrations using gas chromatography. Lipopolysaccharide-binding protein (LBP) was measured in serum samples, as an indirect indicator for bacterial lipopolysaccharide (LPS) load in blood.

Results: The microbial biodiversity was significantly different between the treatment groups. In the rats with CPI, there was a significant increase in gut microbial populations Rikenellaceae, Odoribacter, Clostridiaceae, Allobaculum and Peptococcaceae compared with healthy rats. Conversely, levels of Bacteroides uniformis, Lactobacillus and Lachnospiraceae were decreased in rats with CPI. SCFA butyric-, valeric- and caproic-acid concentrations were also decreased in the faecal samples of the rats with CPI. In contrast, acetic acid concentrations and serum LBP were significantly elevated in CPI rats compared with healthy ones. Amongst rats with CPI, treatment with the GGM extract significantly reduced the abundance of Odoribacter and Clostridiaceae levels, and increased the B. uniformis levels compared with CPI rats drinking tap water only. In addition, GGM significantly increased the levels of butyric acid and caproic acid, and reduced the levels of LBP in serum.

Conclusions: Hormone-induced nonbacterial CPI in rats is associated with specific changes in gut microbiota and secondary changes in SCFAs and LPS due to gut microbiota alteration. Our results further suggest that fermentable compounds may have a beneficial effect on CPI.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/bju.14553DOI Listing
May 2019

Alendronate-induced disruption of actin cytoskeleton and inhibition of migration/invasion are associated with cofilin downregulation in PC-3 prostate cancer cells.

Oncotarget 2018 Aug 24;9(66):32593-32608. Epub 2018 Aug 24.

University of Turku, Institute of Biomedicine, FI-20520 Turku, Finland.

Bisphosphonates are used for prevention of osteoporosis and metastatic bone diseases. Anti-invasive effects on various cancer cells have also been reported, but the mechanisms involved are not well-understood. We investigated the effects of the nitrogen-containing bisphosphonate alendronate (ALN) on the regulation of actin cytoskeleton in PC-3 cells. We analyzed the ALN effect on the organization and the dynamics of actin, and on the cytoskeleton-related regulatory proteins cofilin, p21-associated kinase 2 (PAK2), paxillin and focal adhesion kinase. Immunostainings of cofilin in ALN-treated PC-3 cells and xenografts were performed, and the role of cofilin in ALN-regulated F-actin organization and migration/invasion in PC-3 cells was analyzed using cofilin knockdown and transfection. We demonstrate that disrupted F-actin organization and decreased cell motility in ALN-treated PC-3 cells were associated with decreased levels of total and phosphorylated cofilin. PAK2 levels were also lowered but adhesion-related proteins were not altered. The knockdown of cofilin similarly impaired F-actin organization and decreased invasion of PC-3 cells, whereas in the cells transfected with a cofilin expressing vector, ALN treatment did not decrease cellular cofilin levels and migration as in mock transfected cells. ALN also reduced immunohistochemical staining of cofilin in PC-3 xenografts. Our results suggest that reduction of cofilin has an important role in ALN-induced disruption of the actin cytoskeleton and inhibition of the PC-3 cell motility and invasion. These data also support the idea that the nitrogen-containing bisphosphonates could be efficacious in inhibition of prostate cancer invasion and metastasis, if delivered in a pharmacological formulation accessible to the tumors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.18632/oncotarget.25961DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6135693PMC
August 2018

Lower frequency of TLR9 variant associated with protection from breast cancer among African Americans.

PLoS One 2017 8;12(9):e0183832. Epub 2017 Sep 8.

Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States of America.

Introduction: Toll-like receptor 9 (TLR9) is an innate immune system DNA-receptor that regulates tumor invasion and immunity in vitro. Low tumor TLR9 expression has been associated with poor survival in Caucasian patients with triple negative breast cancer (TNBC). African American (AA) patients with TNBC have worse prognosis than Caucasians but whether this is due to differences in tumor biology remains controversial. We studied the prognostic significance of tumor Toll like receptor-9 (TLR9) protein expression among African American (AA) triple negative breast cancer (TNBC) patients. Germline TLR9 variants in European Americans (EAs) and AAs were investigated, to determine their contribution to AA breast cancer risk.

Methods: TLR9 expression was studied with immunohistochemistry in archival tumors. Exome Variant Server and The Cancer Genome Atlas were used to determine the genetic variation in the general EA and AA populations, and AA breast cancer cases. Minor allele frequencies (MAFs) were compared between EAs (n = 4300), AAs (n = 2203), and/or AA breast cancer cases (n = 131).

Results: Thirty-two TLR9 variants had a statistically significant MAF difference between general EAs and AAs. Twenty-one of them affect a CpG site. Rs352140, a variant previously associated with protection from breast cancer, is more common in EAs than AAs (p = 2.20E-16). EAs had more synonymous alleles, while AAs had more rare coding alleles. Similar analyses comparing AA breast cancer cases with AA controls did not reveal any variant class differences; however, three previously unreported TLR9 variants were associated with late onset breast cancer. Although not statistically significant, rs352140 was observed less frequently in AA cases compared to controls. Tumor TLR9 protein expression was not associated with prognosis.

Conclusions: Tumor TLR9 expression is not associated with prognosis in AA TNBC. Significant differences were detected in TLR9 variant MAFs between EAs and AAs. They may affect TLR9 expression and function. Rs352140, which may protect from breast cancer, is 1.6 X more common among EAs. These findings call for a detailed analysis of the contribution of TLR9 to breast cancer pathophysiology and health disparities.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0183832PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5590816PMC
October 2017

Lipid Bilayer-Gated Mesoporous Silica Nanocarriers for Tumor-Targeted Delivery of Zoledronic Acid in Vivo.

Mol Pharm 2017 09 10;14(9):3218-3227. Epub 2017 Aug 10.

Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University , Turku 20520, Finland.

Zoledronic acid (ZOL) is a nitrogen-containing bisphosphonate used for the treatment of bone diseases and calcium metabolism. Anticancer activity of ZOL has been established, but its extraskeletal effects are limited due to its rapid uptake and accumulation to bone hydroxyapatite. In this work, we report on the development of tethered lipid bilayer-gated mesoporous silica nanocarriers (MSNs) for the incorporation, retention, and intracellular delivery of ZOL. The in vitro anticancer activity of ZOL-loaded nanocarriers was evaluated by cell viability assay and live-cell imaging. For in vivo delivery, the nanocarriers were tagged with folic acid to boost the affinity for breast cancer cells. Histological examination of the liver revealed no adverse off-target effects stemming from the nanocarriers. Importantly, nonspecific accumulation of ZOL within bone was not observed, which indicated in vivo stability of the tethered lipid bilayers. Further, the intravenously administered ZOL-loaded nanocarriers showed tumor growth suppression in breast cancer xenograft-bearing mice.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.molpharmaceut.7b00519DOI Listing
September 2017

Oncolytic alphavirus SFV-VA7 efficiently eradicates subcutaneous and orthotopic human prostate tumours in mice.

Br J Cancer 2017 Jun 30;117(1):51-55. Epub 2017 May 30.

Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio 70211, Finland.

Background: Despite recent therapeutic and diagnostic advances, prostate cancer remains the second leading cause of cancer-related deaths among men in the Western world. Oncolytic viruses that replicate selectively in tumour cells represent a novel treatment candidate for these malignancies.

Methods: We analysed infectivity of avirulent Semliki Firest virus SFV-VA7 in human prostate cancer cell lines VCaP, LNCaP and 22Rv1 and in nonmalignant prostate epithelial cell line RWPE-1. Therapeutic potency of SFV-VA7 was evaluated in subcutaneous and orthotopic mouse LNCaP xenograft models.

Results: SFV-VA7 infected and killed the tested human prostate cancer cell lines irrespective of their hormone response status, while the nonmalignant prostate epithelial cell line RWPE-1 proved highly virus resistant. Notably, a single peritoneal dose of SFV-VA7 was sufficient to eradicate all subcutaneous and orthotopic LNCaP tumours.

Conclusions: Our results indicate that SFV-VA7 is a novel, promising therapeutic virus against prostate cancer warranting further testing in early clinical trials.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/bjc.2017.151DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5520213PMC
June 2017

Galactoglucomannan-rich hemicellulose extract from Norway spruce (Picea abies) exerts beneficial effects on chronic prostatic inflammation and lower urinary tract symptoms in vivo.

Int J Biol Macromol 2017 Aug 18;101:222-229. Epub 2017 Mar 18.

Pharmatest Services Ltd, Itäinen Pitkäkatu 4C, 20520 Turku, Finland.

Galactoglucomannan (GGM) is the main hemicellulose class in wood of coniferous trees and could be potentially utilized as a possible health-promoting substance for food and pharmaceutical industry. Our aim was to evaluate effects of orally administered GGM-rich extract from Norway spruce in a rat model of chronic prostatitis associated with lower urinary tract symptoms (LUTS). Prostatic inflammation and LUTS was induced in male rats using testosterone and 17β-estradiol exposure for 18 weeks. Rats were treated with 2% GGM dissolved in drinking water during weeks 13-18. Pelvic pain response, LUT function and histopathological evaluation of the prostate were assessed. The results show that hormonal exposure induced LUTS seen as decreased urine flow rate, increased bladder pressure, voiding times, bladder capacity and residual urine volumes. GGM had positive effects on urodynamical parameters by decreasing the basal bladder pressure, increasing the urine flow rate and volume, reducing the residual volume and increasing micturition intervals. GGM reduced the extent of the hormone exposure-induced prostatic inflammation. Increase of pelvic pain induced by hormone exposure was only slightly affected by GGM treatment. The results suggest that orally administered GGM may have potential usage for improving lower urinary tract function associated with chronic prostatic inflammation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2017.03.079DOI Listing
August 2017

Evaluation of Ga-labeled peptide tracer for detection of gelatinase expression after myocardial infarction in rat.

J Nucl Cardiol 2018 08 2;25(4):1114-1123. Epub 2016 Dec 2.

Turku PET Centre, University of Turku, 20521, Turku, Finland.

Background: Matrix metalloproteinases 2 and 9 (MMP-2/9) play a role in extracellular matrix remodeling after an ischemic myocardial injury. We evaluated Ga-DOTA-peptide targeting MMP-2/9 for the detection of gelatinase expression after myocardial infarction (MI) in rat.

Methods: Rats were injected with 43 ± 7.7 MBq of Ga-DOTA-peptide targeting MMP-2/9 at 7 days (n = 7) or 4 weeks (n = 8) after permanent coronary ligation or sham operation (n = 5 at both time points) followed by positron emission tomography (PET). The left ventricle was cut in frozen sections for autoradiography and immunohistochemistry 30 minutes after tracer injection.

Results: Immunohistochemical staining showed MMP-2 and MMP-9 expressing cells, CD31-positive endothelial cells, and CD68-positive macrophages in the infarcted myocardium. Autoradiography showed increased tracer uptake in the infarcted area both at 7 days and 4 weeks after MI (MI-to-remote area ratio 2.5 ± 0.46 and 3.1 ± 1.0, respectively). Tracer uptake in damaged tissue correlated with the amount of CD68-positive macrophages at 7 days after MI, and CD31-positive endothelial cells at 7 days and 4 weeks after MI. The tracer was rapidly metabolized, radioactivity in the blood exceeded that of the myocardium, and tracer accumulation in the heart was not detectable by in vivo PET.

Conclusions: Ga-DOTA-peptide targeting MMP-2/9 accumulates in the damaged rat myocardium after an ischemic injury, but tracer instability and slow clearance in vivo make it unsuitable for further evaluation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12350-016-0744-4DOI Listing
August 2018

Toll-like receptor 9 expression is associated with breast cancer sensitivity to the growth inhibitory effects of bisphosphonates in vitro and in vivo.

Oncotarget 2016 Dec;7(52):87373-87389

Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, U.S.A.

Bisphosphonates are standard treatments for bone metastases. When given in the adjuvant setting, they reduce breast cancer mortality and recurrence in bone but only among post-menopausal patients. Optimal drug use would require biomarker-based patient selection. Such biomarkers are not yet in clinical use. Based on the similarities in inflammatory responses to bisphosphonates and Toll-like receptor (TLR) agonists, we hypothesized that TLR9 expression may affect bisphosphonate responses in cells. We compared bisphosphonate effects in breast cancer cell lines with low or high TLR9 expression. We discovered that cells with decreased TLR9 expression are significantly more sensitive to the growth-inhibitory effects of bisphosphonates in vitro and in vivo. Furthermore, cancer growth-promoting effects seen with some bisphosphonates in some control shRNA cells were not detected in TLR9 shRNA cells. These differences were not associated with inhibition of Rap1A prenylation or p38 phosphorylation, which are known markers for bisphosphonate activity. However, TLR9 shRNA cells exhibited increased sensitivity to ApppI, a metabolite that accumulates in cells after bisphosphonate treatment. We conclude that decreased TLR9-expression sensitizes breast cancer cells to the growth inhibitory effects of bisphosphonates. Our results suggest that TLR9 should be studied as a potential biomarker for adjuvant bisphosphonate sensitivity among breast cancer patients.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.18632/oncotarget.13570DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5349995PMC
December 2016

Increased expression of fibroblast growth factor 13 in prostate cancer is associated with shortened time to biochemical recurrence after radical prostatectomy.

Int J Cancer 2016 Jul 12;139(1):140-52. Epub 2016 Mar 12.

Department of Cell Biology and Anatomy, Institute of Biomedicine, University of Turku, Turku, Finland.

Fibroblast growth factor homologous factors (FHFs) belong to the fibroblast growth factor (FGF) superfamily, which plays an important role in prostate cancer (PCa). Mining of public database suggests that FGF13 (FHF2) mRNA expression is altered in over 30% of PCa cases. This study examined the FGF13 expression pattern in human PCa specimens and evaluated its potential as a biomarker for patient outcome after radical prostatectomy (RP). Immunohistochemistry (IHC) showed that FGF13 was detectable in the majority of human PCa samples, and FGF13 IHC scores were higher in high-grade prostatic intraepithelial neoplasia, in primary PCa and in metastatic PCa than in benign prostatic tissue. There was a significant association between high cytoplasmic FGF13 staining and a risk of biochemical recurrence (BCR) after RP. This was also evident in the intermediate to high-risk patient groups. In contrast, positive nuclear FGF13 staining along with low cytoplasmic FGF13 group showed a decreased BCR risk. Multivariate regression analysis indicated that high cytoplasmic FGF13 staining was associated with BCR and that this could serve as an independent prognostic marker in PCa. Several PCa cell lines showed increased FGF13 expression at the mRNA and protein levels compared to the immortalized prostate epithelial cell line PNT1a. Analysis of co-labeled cells suggested a possible interaction of FGF13 with α-tubulin and the voltage-gated sodium channel proteins (Na(V)s/VGSCs). Our data indicate that, for PCa patients after RP, FGF13 serves as a potential novel prognostic marker that improves prediction of BCR-free survival, in particular if combined with other clinical parameters.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ijc.30048DOI Listing
July 2016

Spheroid culture of LuCaP 136 patient-derived xenograft enables versatile preclinical models of prostate cancer.

Clin Exp Metastasis 2016 Apr 12;33(4):325-37. Epub 2016 Feb 12.

Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA.

LuCaP serially transplantable patient-derived xenografts (PDXs) are valuable preclinical models of locally advanced or metastatic prostate cancer. Using spheroid culture methodology, we recently established cell lines from several LuCaP PDXs. Here, we characterized in depth the features of xenografts derived from LuCaP 136 spheroid cultures and found faithful retention of the phenotype of the original PDX. In vitro culture enabled luciferase transfection into LuCaP 136 spheroids, facilitating in vivo imaging. We showed that LuCaP 136 spheroids formed intratibial, orthotopic, and subcutaneous tumors when re-introduced into mice. Intratibial tumors responded to castration and were highly osteosclerotic. LuCaP 136 is a realistic in vitro-in vivo preclinical model of a subtype of bone metastatic prostate cancer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10585-016-9781-2DOI Listing
April 2016

Telomeric G-quadruplex-forming DNA fragments induce TLR9-mediated and LL-37-regulated invasion in breast cancer cells in vitro.

Breast Cancer Res Treat 2016 Jan 18;155(2):261-71. Epub 2016 Jan 18.

Division of Hematology-Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.

Toll-like receptor 9 (TLR9) is a cellular DNA-receptor widely expressed in cancers. We previously showed that synthetic and self-derived DNA fragments induce TLR9-mediated breast cancer cell invasion in vitro. We investigated here the invasive effects of two nuclease-resistant DNA fragments, a 9-mer hairpin, and a G-quadruplex DNA based on the human telomere sequence, both having native phosphodiester backbone. Cellular uptake of DNAs was investigated with immunofluorescence, invasion was studied with Matrigel-assays, and mRNA and protein expression were studied with qPCR and Western blotting and protease activity with zymograms. TLR9 expression was suppressed through siRNA. Although both DNAs induced TLR9-mediated changes in pro-invasive mRNA expression, only the telomeric G-quadruplex DNA significantly increased cellular invasion. This was inhibited with GM6001 and aprotinin, suggesting MMP- and serine protease mediation. Furthermore, complexing with LL-37, a cathelicidin-peptide present in breast cancers, increased 9-mer hairpin and G-quadruplex DNA uptake into the cancer cells. However, DNA/LL-37 complexes decreased invasion, as compared with DNA-treatment alone. Invasion studies were conducted also with DNA fragments isolated from neoadjuvant chemotherapy-treated breast tumors. Also such DNA induced breast cancer cell invasion in vitro. As with the synthetic DNAs, this invasive effect was reduced by complexing the neoadjuvant tumor-derived DNAs with LL-37. We conclude that 9-mer hairpin and G-quadruplex DNA fragments are nuclease-resistant DNA structures that can act as invasion-inducing TLR9 ligands. Their cellular uptake and the invasive effects are regulated via LL-37. Although such structures may be present in chemotherapy-treated tumors, the clinical significance of this finding requires further studying.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10549-016-3683-5DOI Listing
January 2016

Pim Kinases Promote Migration and Metastatic Growth of Prostate Cancer Xenografts.

PLoS One 2015 15;10(6):e0130340. Epub 2015 Jun 15.

Section of Genetics and Physiology, Department of Biology, University of Turku, 20500 Turku, Finland.

Background And Methods: Pim family proteins are oncogenic kinases implicated in several types of cancer and involved in regulation of cell proliferation, survival as well as motility. Here we have investigated the ability of Pim kinases to promote metastatic growth of prostate cancer cells in two xenograft models for human prostate cancer. We have also evaluated the efficacy of Pim-selective inhibitors to antagonize these effects.

Results: We show here that tumorigenic growth of both subcutaneously and orthotopically inoculated prostate cancer xenografts is enhanced by stable overexpression of either Pim-1 or Pim-3. Moreover, Pim-overexpressing orthotopic prostate tumors are highly invasive and able to migrate not only to the nearby prostate-draining lymph nodes, but also into the lungs to form metastases. When the xenografted mice are daily treated with the Pim-selective inhibitor DHPCC-9, both the volumes as well as the metastatic capacity of the tumors are drastically decreased. Interestingly, the Pim-promoted metastatic growth of the orthotopic xenografts is associated with enhanced angiogenesis and lymphangiogenesis. Furthermore, forced Pim expression also increases phosphorylation of the CXCR4 chemokine receptor, which may enable the tumor cells to migrate towards tissues such as the lungs that express the CXCL12 chemokine ligand.

Conclusions: Our results indicate that Pim overexpression enhances the invasive properties of prostate cancer cells in vivo. These effects can be reduced by the Pim-selective inhibitor DHPCC-9, which can reach tumor tissues without serious side effects. Thus, Pim-targeting therapies with DHPCC-9-like compounds may help to prevent progression of local prostate carcinomas to fatally metastatic malignancies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0130340PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4467846PMC
May 2016

Inhibition of c-Abl kinase activity renders cancer cells highly sensitive to mitoxantrone.

PLoS One 2014 22;9(8):e105526. Epub 2014 Aug 22.

Department of Obstetrics and Gynecology and Joint Clinical Biochemistry Laboratory of Turku University Hospital, Medicity Research Laboratory, University of Turku, Turku, Finland.

Although c-Abl has increasingly emerged as a key player in the DNA damage response, its role in this context is far from clear. We studied the effect of inhibition of c-Abl kinase activity by imatinib with chemotherapy drugs and found a striking difference in cell survival after combined mitoxantrone (MX) and imatinib treatment compared to a panel of other chemotherapy drugs. The combinatory treatment induced apoptosis in HeLa cells and other cancer cell lines but not in primary fibroblasts. The difference in MX and doxorubicin was related to significant augmentation of DNA damage. Transcriptionally active p53 accumulated in cells in which human papillomavirus E6 normally degrades p53. The combination treatment resulted in caspase activation and apoptosis, but this effect did not depend on either p53 or p73 activity. Despite increased p53 activity, the cells arrested in G2 phase became defective in this checkpoint, allowing cell cycle progression. The effect after MX treatment depended partially on c-Abl: Short interfering RNA knockdown of c-Abl rendered HeLa cells less sensitive to MX. The effect of imatinib was decreased by c-Abl siRNA suggesting a role for catalytically inactive c-Abl in the death cascade. These findings indicate that MX has a unique cytotoxic effect when the kinase activity of c-Abl is inhibited. The treatment results in increased DNA damage and c-Abl-dependent apoptosis, which may offer new possibilities for potentiation of cancer chemotherapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0105526PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4141754PMC
May 2015

Hypoxia regulates Toll-like receptor-9 expression and invasive function in human brain cancer cells in vitro.

Oncol Lett 2014 Jul 25;8(1):266-274. Epub 2014 Apr 25.

Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.

Toll-like receptor-9 (TLR9) is a cellular DNA sensor of the innate immune system. TLR9 is widely expressed in a number of tumors, including brain cancer; however, little is known regarding its regulation and involvement in cancer pathophysiology. The present study demonstrated that hypoxia upregulates and downregulates TLR9 expression in human brain cancer cells , in a cell-specific manner. In addition, hypoxia-induced TLR9 upregulation was associated with hypoxia-induced invasion; however, such invasion was not detected in cells where hypoxia had suppressed TLR9 expression. Furthermore, suppression of TLR9 expression through TLR9 siRNA resulted in an upregulation of matrix metalloproteinase (MMP)-2, -9 and -13 and tissue inhibitor of matrix metalloproteinases-3 (TIMP-3) mRNA, and a decreased invasion of cells in normoxia, in a cell-specific manner. In cells where hypoxia induced TLR9 expression, TLR9 expression and invasion were reduced by TLR9 siRNA. The decreased invasion observed in hypoxia was associated with the decreased expression of the MMPs and a concomitant increase in TIMP-3 expression. In conclusion, hypoxia regulates the invasion of brain cancer cells in a TLR9-dependent manner, which is considered to be associated with a complex expression pattern of TLR9-regulated mediators and inhibitors of invasion.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3892/ol.2014.2095DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4063648PMC
July 2014

Tumor models for prostate cancer exemplified by fibroblast growth factor 8-induced tumorigenesis and tumor progression.

Reprod Biol 2014 Mar 21;14(1):16-24. Epub 2014 Jan 21.

Department of Cell Biology and Anatomy, Institute of Biomedicine, University of Turku, Turku, Finland. Electronic address:

Prostate cancer is a very common malignancy among Western males. Although most tumors are indolent and grow slowly, some grow and metastasize aggressively. Because prostate cancer growth is usually androgen-dependent, androgen ablation offers a therapeutic option to treat post-resection tumor recurrence or primarily metastasized prostate cancer. However, patients often relapse after the primary response to androgen ablation therapy, and there is no effective cure for cases of castration-resistant prostate cancer (CRPC). The mechanisms of tumor growth in CRPC are poorly understood. Although the androgen receptors (ARs) remain functional in CRPC, other mechanisms are clearly activated (e.g., disturbed growth factor signaling). Results from our laboratory and others have shown that dysregulation of fibroblast growth factor (FGF) signaling, including FGF receptor 1 (FGFR1) activation and FGF8b overexpression, has an important role in prostate cancer growth and progression. Several experimental models have been developed for prostate tumorigenesis and various stages of tumor progression. These models include genetically engineered mice and rats, as well as induced tumors and xenografts in immunodeficient mice. The latter was created using parental and genetically modified cell lines. All of these models greatly helped to elucidate the roles of different genes in prostate carcinogenesis and tumor progression. Recently, patient-derived xenografts have been studied for possible use in testing individual, specific responses of tumor tissue to different treatment options. Feasible and functional CRPC models for drug responsiveness analysis and the development of effective therapies targeting the FGF signaling pathway and other pathways in prostate cancer are being actively investigated.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.repbio.2014.01.002DOI Listing
March 2014

Chloroquine has tumor-inhibitory and tumor-promoting effects in triple-negative breast cancer.

Oncol Lett 2013 Dec 4;6(6):1665-1672. Epub 2013 Oct 4.

Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA ; MediCity/PET Preclinical Imaging, Turku PET Centre, University of Turku, Turku 20521, Finland.

Toll-like receptor-9 (TLR9) is an intracellular DNA receptor that is widely expressed in breast and other cancers. We previously demonstrated that low tumor TLR9 expression upon diagnosis is associated with significantly shortened disease-specific survival times in patients with triple-negative breast cancer (TNBC). There are no targeted therapies for this subgroup of patients whose prognosis is among the worst in breast cancer. Due to the previously detected anti-invasive effects of chloroquine in these cell lines, the present study aimed to investigate the effects of chloroquine against two clinical subtypes of TNBC that differ in TLR9 expression. Chloroquine suppressed matrix metalloproteinase (MMP)-2 and MMP-9 mRNA expression and protein activity, whereas MMP-13 mRNA expression and proteolytic activity were increased. Despite enhancing TLR9 mRNA expression, chloroquine suppressed TLR9 protein expression . Daily treatment of mice with intraperitoneal (i.p.) chloroquine (80 mg/kg/day) for 22 days, did not inhibit the growth of control siRNA or TLR9 siRNA MDA-MB-231 breast cancer cells. In conclusion, despite the favorable effects on TNBC invasion and viability, particularly in hypoxic conditions, chloroquine does not prevent the growth of the triple-negative MDA-MB-231 cells with high or low TLR9 expression levels . This may be explained by the activating effects of chloroquine on MMP-13 expression or by the fact that chloroquine, by suppressing TLR9 expression, permits the activation of currently unknown molecular pathways, which allow the aggressive behavior of TNBC cells with low TLR9 expression in hypoxia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3892/ol.2013.1602DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3835157PMC
December 2013

6-[18F]fluoro-L-DOPA uptake in the rat pancreas is dependent on the tracer metabolism.

Mol Imaging Biol 2014 Jun 12;16(3):403-11. Epub 2013 Nov 12.

Department of Pediatrics, Central Hospital of Seinäjoki, Hanneksenrinne 7, 60220, Seinäjoki, Finland,

Purpose: 6-[(18)F]fluoro-L-3,4-dihydroxyphenyl alanine ([(18)F]FDOPA) positron emission tomography (PET) is a diagnostic tool which can detect malignancies of the pancreas. We aimed to study whether the manipulation of the [(18)F]FDOPA metabolic pathway would change the (18)F-behavior to provide a biochemical foundation for PET imaging of rat pancreas with [(18)F]FDOPA.

Procedures: Inhibitors of aromatic amino acid decarboxylase, catechol-O-methyltransferase, monoamine oxidases A and B, or their combinations on [(18)F]FDOPA uptake, metabolism, and the regional distribution in the rat pancreas was evaluated using in vivo PET/computed tomography imaging, chromatographic metabolite analyses, and autoradiography.

Results: Enzyme inhibition generally increased the uptake of [(18)F]FDOPA derived (18)F-radioactivity in rat pancreas. Dependent on which enzymatic pathway is blocked (or a combination of pathways), different radiolabeled metabolites in pancreas are responsible for this increase in uptake.

Conclusions: Altering the metabolism of [(18)F]FDOPA by using various enzymatic inhibitors increased the radioactivity uptake and changed the radiometabolic profile in the pancreas allowing better discrimination between pancreas and surrounding tissues of rat. However, these manipulations did not separate islets from the exocrine pancreas. Elucidating the metabolic behavior of [(18)F]FDOPA provides a biochemical foundation of PET imaging of the rat pancreas.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11307-013-0701-4DOI Listing
June 2014

DNA from dead cancer cells induces TLR9-mediated invasion and inflammation in living cancer cells.

Breast Cancer Res Treat 2013 Dec 10;142(3):477-87. Epub 2013 Nov 10.

Division of Hematology-Oncology, Department of Medicine, University of Alabama at Birmingham, SHEL 514, 1825 University Blvd, Birmingham, AL, 35294-3300, USA.

TLR9 is a cellular DNA-receptor, which is widely expressed in breast and other cancers. Although synthetic TLR9-ligands induce cancer cell invasion in vitro, the role of TLR9 in cancer pathophysiology has remained unclear. We show here that living cancer cells uptake DNA from chemotherapy-killed cancer cells. We discovered that such DNA induces TLR9- and cathepsin-mediated invasion in living cancer cells. To study whether this phenomenon contributes to treatment responses, triple-negative, human MDA-MB-231 breast cancer cells stably expressing control, or TLR9 siRNA were inoculated orthotopically into nude mice. The mice were treated with vehicle or doxorubicin. The tumor groups exhibited equal decreases in size in response to doxorubicin. However, while the weights of vehicle-treated mice were similar, mice bearing control siRNA tumors became significantly more cachectic in response to doxorubicin, as compared with similarly treated mice bearing TLR9 siRNA tumors, suggesting a TLR9-mediated inflammation at the site of the tumor. In conclusion, our findings propose that DNA released from chemotherapy-killed cancer cells has significant influence on TLR9-mediated biological effects in living cancer cells. Through these mechanisms, tumor TLR9 expression may affect treatment responses to chemotherapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10549-013-2762-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4238912PMC
December 2013

Enzyme inhibition of dopamine metabolism alters 6-[18F]FDOPA uptake in orthotopic pancreatic adenocarcinoma.

EJNMMI Res 2013 Mar 14;3(1):18. Epub 2013 Mar 14.

MediCity/PET Preclinical Imaging, Turku PET Centre, University of Turku, Turku, 20520, Finland.

Background: An unknown location hampers removal of pancreatic tumours. We studied the effects of enzyme inhibitors on the uptake of 6-[18F]fluoro-l-3,4-dihydroxyphenylalanine ([18F]FDOPA) in the pancreas, aiming at improved imaging of pancreatic adenocarcinoma.

Methods: Mice bearing orthotopic BxPC3 pancreatic adenocarcinoma were injected with 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG) and scanned with positron emission tomography/computed tomography (PET/CT). For [18F]FDOPA studies, tumour-bearing mice and sham-operated controls were pretreated with enzyme inhibitors of aromatic amino acid decarboxylase (AADC), catechol-O-methyl transferase (COMT), monoamine oxidase A (MAO-A) or a combination of COMT and MAO-A. Mice were injected with [18F]FDOPA and scanned with PET/CT. The absolute [18F]FDOPA uptake was determined from selected tissues using a gamma counter. The intratumoural biodistribution of [18F]FDOPA was recorded by autoradiography. The main [18F]FDOPA metabolites present in the pancreata were determined with radio-high-performance liquid chromatography.

Results: [18F]FDG uptake was high in pancreatic tumours, while [18F]FDOPA uptake was highest in the healthy pancreas and significantly lower in tumours. [18F]FDOPA uptake in the pancreas was lowest with vehicle pretreatment and highest with pretreatment with the inhibitor of AADC. When mice received COMT + MAO-A inhibitors, the uptake was high in the healthy pancreas but low in the tumour-bearing pancreas.

Conclusions: Combined use of [18F]FDG and [18F]FDOPA is suitable for imaging pancreatic tumours. Unequal pancreatic uptake after the employed enzyme inhibitors is due to the blockade of metabolism and therefore increased availability of [18F]FDOPA metabolites, in which uptake differs from that of [18F]FDOPA. Pretreatment with COMT + MAO-A inhibitors improved the differentiation of pancreas from the surrounding tissue and healthy pancreas from tumour. Similar advantage was not achieved using AADC enzyme inhibitor, carbidopa.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/2191-219X-3-18DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3618317PMC
March 2013

Differential roles of fibroblast growth factor receptors (FGFR) 1, 2 and 3 in the regulation of S115 breast cancer cell growth.

PLoS One 2012 21;7(11):e49970. Epub 2012 Nov 21.

Institute of Biomedicine, Department of Cell Biology and Anatomy, University of Turku, Turku, Finland.

Fibroblast growth factors (FGFs) regulate the growth and progression of breast cancer. FGF signaling is transduced through FGF receptors 1-4, which have oncogenic or anti-oncogenic roles depending on the ligand and the cellular context. Our aim was to clarify the roles of FGFR1-3 in breast cancer cell growth in vitro and in vivo. Pools of S115 mouse breast cancer cells expressing shRNA against FGFR1, 2 and 3 were created by lentiviral gene transfer, resulting in cells with downregulated expression of FGFR1, FGFR2 or FGFR3 (shR1, shR2 and shR3 cells, respectively) and shLacZ controls. FGFR1-silenced shR1 cells formed small, poorly vascularized tumors in nude mice. Silencing of FGFR2 in shR2 cells was associated with strong upregulation of FGFR1 expression and the formation of large, highly vascularized tumors compared to the control tumors. Silencing FGFR3 did not affect cell survival or tumor growth. Overexpressing FGFR2 in control cells did not affect FGFR1 expression, suggesting that high FGFR1 expression in shR2 cells and tumors was associated with FGFR2 silencing by indirect mechanisms. The expression of FGFR1 was, however, increased by the addition of FGF-8 to starved shLacZ or MCF-7 cells and decreased by the FGFR inhibitor PD173074 in shR2 cells with an elevated FGFR1 level. In conclusion, our results demonstrate that FGFR1 is crucial for S115 breast cancer cell proliferation and tumor growth and angiogenesis, whereas FGFR2 and FGFR3 are less critical for the growth of these cells. The results also suggest that the expression of FGFR1 itself is regulated by FGF-8 and FGF signaling, which may be of importance in breast tumors expressing FGFs at a high level.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0049970PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3503871PMC
May 2013

Low TLR9 expression defines an aggressive subtype of triple-negative breast cancer.

Breast Cancer Res Treat 2012 Sep 31;135(2):481-93. Epub 2012 Jul 31.

Department of Medicine, Division of Hematology-Oncology, University of Alabama at Birmingham, SHEL 514, 1825 University Blvd, Birmingham, AL 35294-3300, USA.

Toll-like receptor-9 (TLR9) is a DNA receptor widely expressed in cancers. Although synthetic TLR9 ligands induce cancer cell invasion in vitro, the role of TLR9 in cancer pathophysiology is unclear. We discovered that low tumor TLR9 expression is associated with significantly shortened disease-specific survival in patients with triple negative but not with ER+ breast cancers. A likely mechanism of this clinical finding involves differential responses to hypoxia. Our pre-clinical studies indicate that while TLR9 expression is hypoxia-regulated, low TLR9 expression has different effects on triple negative and ER+ breast cancer invasion in hypoxia. Hypoxia-induced invasion is augmented by TLR9 siRNA in triple negative, but not in ER+ breast cancer cells. This is possibly due to differential TLR9-regulated TIMP-3 expression, which remains detectable in ER+ cells but disappears from triple-negative TLR9 siRNA cells in hypoxia. Our results demonstrate a novel role for this innate immunity receptor in cancer biology and suggest that TLR9 expression may be a novel marker for triple-negative breast cancer patients who are at a high risk of relapse. Furthermore, these results suggest that interventions or events, which induce hypoxia or down-regulate TLR9 expression in triple-negative breast cancer cells may actually induce their spread.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10549-012-2181-7DOI Listing
September 2012

Estrogen receptor-α and sex steroid hormones regulate Toll-like receptor-9 expression and invasive function in human breast cancer cells.

Breast Cancer Res Treat 2012 Apr 24;132(2):411-9. Epub 2011 May 24.

Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.

Toll-like receptor 9 (TLR9) is a cellular DNA-receptor, which is widely expressed in cancer. Synthetic TLR9-ligands induce cancer cell invasion in vitro, but the role of TLR9 in cancer pathophysiology remains unclear. Increased TLR9 expression has been, however, detected in estrogen receptor negative (ER-) breast cancers. In this study, we investigated the effects of ERα expression and sex steroid hormones on TLR9 expression in human ER+ (MCF-7, T47-D) and ER- (MDA-MB-231) breast cancer cell lines in vitro. We also studied TLR9 mRNA expression in archival breast cancer specimens (n = 12) with qRT-PCR, using primer sets that detect only the TLR9A isoform or the isoforms A and B (TLR9A/B). The TLR9 mRNA expression was detected in 10/12 specimens with both primer sets, and in 1/12 with only the TLR9A or the TLR9A/B primer sets. The basal TLR9 mRNA expression levels were significantly lower in the ER+ cell lines as compared with the ER- MDA-MB-231 cells. The transfection of ERα cDNA into MDA-MB-231 cells also resulted in down-regulation of TLR9 expression. While sex steroids had no effect on TLR9 expression in MCF-7 cells, testosterone (10(-8) M) induced TLR9 expression in MDA-MB-231 and T47-D cells. Although bicalutamide blocked this testosterone effect in MDA-MB-231 cells, in T47-D cells bicalutamide increased TLR9 expression and only partially blocked the testosterone effects. Estradiol (10(-8) M) induced TLR9 expression in T47-D cells. The invasive effects of synthetic TLR9-ligands were augmented by testosterone in vitro. This effect was lost in TLR9 siRNA MDA-MB-231 cells and also decreased by over-expression of ERα, which also inhibited NF-κB activation by TLR9-ligands. In conclusion, expression of TLR9 isoforms A and B can be detected in clinical breast cancer specimens. The ERα and sex steroid hormones regulate TLR9 expression and invasive effects in the breast cancer cells. Also, the commonly used hormonal cancer therapy bicalutamide affects TLR9 expression.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10549-011-1590-3DOI Listing
April 2012

Tracer level electrophilic synthesis and pharmacokinetics of the hypoxia tracer [(18)F]EF5.

Mol Imaging Biol 2012 Apr;14(2):205-12

Turku PET Centre, Radiopharmaceutical Chemistry Laboratory, University of Turku, Turku, Finland.

Purpose: 2-(2-nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl)-acetamide labeled with [(18)F]-fluorine ([(18)F]EF5), a promising tracer for tumor hypoxia, has previously been synthesized in low yields and low specific radioactivity. In pharmacokinetic evaluations, in the presence of non-radioactive EF5, a uniform and low background uptake and high in vivo stability of [(18)F]EF5 have been demonstrated. Our purpose was to increase the specific radioactivity of [(18)F]EF5 to enable to study the pharmacokinetics at trace level.

Procedures: [(18)F]EF5 was synthesized using high specific radioactivity electrophilic [(18)F]F(2) as labelling reagent. Biodistribution of [(18)F]EF5 was determined in a prostate tumor mouse model, and formation of radiolabelled metabolites was studied in mouse, rat and human plasma.

Results: On average, 595 ± 153 MBq of [(18)F]EF5 was produced. Specific radioactivity was 6.6 ± 1.9 GBq/μmol and the radiochemical purity exceeded 99.0%. [(18)F]EF5 was distributed uniformly in tissues, with highest uptake in liver, kidney, and intestine. Several radiolabelled metabolites were detected in mouse plasma and tissues, whereas low amounts of metabolites were detected in human and rat plasma.

Conclusions: [(18)F]EF5 was synthesized by electrophilic labelling with high quality and high yields. Pharmacokinetics of [(18)F]EF5 was determined at trace level in several species. Our results suggest that the trace-level approach does not affect the biodistribution of [(18)F]EF5. Extensive metabolism was seen in mouse.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11307-011-0484-4DOI Listing
April 2012

Fast growth associated with aberrant vasculature and hypoxia in fibroblast growth factor 8b (FGF8b) over-expressing PC-3 prostate tumour xenografts.

BMC Cancer 2010 Oct 30;10:596. Epub 2010 Oct 30.

Institute of Biomedicine, Department of Cell Biology and Anatomy, University of Turku, Turku, Finland.

Background: Prostate tumours are commonly poorly oxygenated which is associated with tumour progression and development of resistance to chemotherapeutic drugs and radiotherapy. Fibroblast growth factor 8b (FGF8b) is a mitogenic and angiogenic factor, which is expressed at an increased level in human prostate tumours and is associated with a poor prognosis. We studied the effect of FGF8b on tumour oxygenation and growth parameters in xenografts in comparison with vascular endothelial growth factor (VEGF)-expressing xenografts, representing another fast growing and angiogenic tumour model.

Methods: Subcutaneous tumours of PC-3 cells transfected with FGF8b, VEGF or empty (mock) vectors were produced and studied for vascularity, cell proliferation, glucose metabolism and oxygenation. Tumours were evaluated by immunohistochemistry (IHC), flow cytometry, use of radiolabelled markers of energy metabolism ([18F]FDG) and hypoxia ([18F]EF5), and intratumoral polarographic measurements of pO2.

Results: Both FGF8b and VEGF tumours grew rapidly in nude mice and showed highly vascularised morphology. Perfusion studies, pO2 measurements, [18F]EF5 and [18F]FDG uptake as well as IHC staining for glucose transport protein (GLUT1) and hypoxia inducible factor (HIF) 1 showed that VEGF xenografts were well-perfused and oxygenised, as expected, whereas FGF8b tumours were as hypoxic as mock tumours. These results suggest that FGF8b-induced tumour capillaries are defective. Nevertheless, the growth rate of hypoxic FGF8b tumours was highly increased, as that of well-oxygenised VEGF tumours, when compared with hypoxic mock tumour controls.

Conclusion: FGF8b is able to induce fast growth in strongly hypoxic tumour microenvironment whereas VEGF-stimulated growth advantage is associated with improved perfusion and oxygenation of prostate tumour xenografts.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/1471-2407-10-596DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2984431PMC
October 2010