Publications by authors named "Johan Buyse"

78 Publications

Effect of temperature manipulation during incubation on body weight, plasma parameters, muscle histology, and expression of myogenic genes in breast muscle of embryos and broiler chickens from two commercial strains.

Br Poult Sci 2021 Jul 26. Epub 2021 Jul 26.

Ege University, Faculty of Agriculture, Department of Animal Science, İzmir, Turkey.

This study evaluated the effect of a higher incubation temperature on body weight, plasma profile, histology and expression of myogenin (MYOG), insulin-like growth factor-I (IGF-I) and vascular endothelial growth factor A (VEGFA) genes in breast muscle of embryos and broilers from two commercial strains.A total of 784 eggs from Ross 308 and Cobb 500 broiler breeder flocks were used. Half of the eggs per strain were incubated at control temperature (37.8°C), whereas the other half were exposed to heat treatment (HT) of 38.8°C between embryonic day (ED) 10 and 14, for 6 h/day. Embryos and chicks were sampled on ED 19 and at hatch. A total of 480, one-day-old chicks per strain and incubation temperature were reared up to 42 d post-hatch.The HT increased hatch weight of Ross chicks and 42-d body weight of broilers from both strains. Lower plasma triacylglycerol levels were measured for HT embryos and broilers on ED 19 and 42 d post-hatch, respectively. HT reduced plasma T levels in Ross embryos and broilers for the same periods. Hepatic TBARS concentrations were elevated by HT compared to the control incubation.The HT reduced breast muscle VEGF-A gene expression of Cobb embryos on ED 19, whereas expression was stimulated in day-old chicks. At 42 d post-hatch, fibre area was increased by HT regardless of strain. Compared to the control incubation, HT increased the breast yield of Ross broilers and leg yield of Cobb. Ross-HT broilers had a higher pH at 24 h after slaughter and better water holding capacity than Cobb-HT broilers.These results suggested that HT increased body weight, fibre area, IGF-I gene expression and lowered plasma triacylglycerol levels of broiler chickens from both strains at 42 d. However, HT influenced the expression of VEGF-A and MYOG genes and meat quality differently between the broiler strains.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/00071668.2021.1958297DOI Listing
July 2021

Effect of dexamethasone on gene expression of cannabinoid receptor type 1 and adenosine monophosphate-activated protein kinase in the hypothalamus of broilers (Gallus domesticus).

Comp Biochem Physiol A Mol Integr Physiol 2021 Jun 15;260:111018. Epub 2021 Jun 15.

Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China. Electronic address:

Hypothalamic neural circuits play a critical role in integrating peripheral signals and conveying information about energy and nutrient status. We detected cannabinoid receptor type 1 (CB1) distribution in the hypothalamus, liver, duodenum, jejunum, and ileum among 7- and 35-day-old broilers. The effects of dexamethasone (DEX) on CB1 gene expression were evaluated by in vitro and in vivo experiments on glucocorticoid receptor (GR) and adenosine monophosphate-activated protein kinase (AMPK) in the hypothalamus of broilers. In vitro, hypothalamic cells from 17-day-old broiler embryos were incubated with either 0.1% dimethyl sulfoxide or DEX (100 nmol/mL) for 1 h. In the in vivo study, 28-day-old broilers were injected with DEX for 24 h or 72 h. Results showed that CB1 was mainly expressed in the hypothalamus, and 72 h DEX treatment increased the expression. One-day treatment of broilers with DEX did not change the hypothalamic CB1 gene expression. Moreover, DEX treatment for 24 h and 72 h increased the mRNA level of hypothalamic AMPKα2 and GR. However, no differences were observed on the gene expression of CB1, GR, and AMPKα2 in hypothalamic cells with DEX-treated for 1 h. In conclusion, CB1 is mainly expressed in the hypothalamus of broilers; 72-h DEX exposure can regulate the CB1 system and AMPK signaling pathway of the broiler hypothalamus.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpa.2021.111018DOI Listing
June 2021

Fasting Finisher Pigs before Slaughter Influences Pork Safety, Pork Quality and Animal Welfare.

Animals (Basel) 2020 Nov 25;10(12). Epub 2020 Nov 25.

Laboratory of Livestock Physiology, Department of Biosystems, B-3001 KU Leuven, Heverlee, Belgium.

The final phase in pork production is the transport of finisher pigs to the slaughterhouse. Fasting is one of the parameters that influence the stress coping ability of the pigs during transport and lairage. When implemented correctly with attention to the local factors, pre-slaughter fasting can improve animal welfare, pathogen risk and carcass hygiene. The length of pre-slaughter feed withdrawal time is important to the success of the production practice. In practice, a fasting time before slaughter between 12 and 18 h enhances pork safety, pork quality, and animal welfare. This means that communication between producer and slaughterhouse is essential when planning the fasting and lairage times to avoid carcass and technological pork quality problems (such as pale, soft, and exudative (PSE) meat or dark, firm and dry (DFD) meat).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ani10122206DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7761097PMC
November 2020

Effects of dietary corticosterone on the central adenosine monophosphate-activated protein kinase (AMPK) signaling pathway in broiler chickens.

J Anim Sci 2020 Jul;98(7)

Department of Biosystems, Division of Animal and Human Health Engineering, KU Leuven, Leuven, Belgium.

Glucocorticoids (GCs) induce the activation of the central adenosine 5'-monophosphate-activated protein kinase (AMPK) signaling pathway in birds. In this study, we aimed to investigate the effects of corticosterone (CORT) supplemented in diet on the central AMPK signaling pathway in broilers. The average daily gain was reduced by CORT treatment, and the average daily feed intake remained unchanged. Plasma glucose, triglyceride, total cholesterol, and CORT contents were increased by CORT administration. In addition, CORT treatment decreased the relative weights of heart, spleen, and bursa and increased the relative weights of liver and abdominal fat. The glycogen contents in the liver and breast muscle were higher in the chicks treated with CORT. CORT treatment upregulated the gene expression of mammalian target of rapamycin, glucocorticoid receptor, AMPKα2, neuropeptide Y(NPY), liver kinase B1 (LKB1), AMPKα1, and fatty acid synthase in the hypothalamus. Moreover, CORT treatment increased the protein levels of acetyl-coenzyme A carboxylase (ACC) phosphorylation and total AMPK and phosphorylated AMPK in the hypothalamus. Hence, CORT administration in the diet activated the LKB1-AMPK-NPY/ACC signaling pathway in the hypothalamus of broiler.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/jas/skaa202DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7373321PMC
July 2020

Effects of Housing, Short Distance Transport and Lairage on Meat Quality of Finisher Pigs.

Animals (Basel) 2020 May 2;10(5). Epub 2020 May 2.

Laboratory of Livestock Physiology, Department of Biosystems, 3001 KU Leuven, 3001 Leuven, Belgium.

Transport and associated handling can have adverse effects on pig welfare and meat quality. The purpose of the study was to determine (the variation of) effects of farm management, climate parameters, transport and lairage conditions on the meat quality of fattening pigs, heterozygous for the halothane gene. A total of 4763 fattening pigs were transported from 1 farm to a commercial slaughterhouse (distance 110 km) in 121 transports. From 2404 carcasses, carcass temperature and pH were measured 45 min post-mortem; 48 hours post-mortem pH, electrical conductivity, drip loss and meat color were registered. During the raising period sex, conditions at weaning (purchased or not as piglet, vaccination against mycoplasma) and (type of) pen during fattening (i.e., from about 22 kg to 105 kg) were registered to relate with pork quality. Transport season, weather parameters, regrouping or not during loading, transport combination (truck, trailer and driver), transport compartment and transport conditions (loading density, transport duration and unloading time) were monitored. At the slaughterhouse, duration of lairage and carcass conformation were followed up to examine correlations with meat quality parameters. Effects of farm management, climate parameters during transport, transport and slaughterhouse conditions on pork quality were demonstrated. Specifically, reducing lung lesions by vaccination during raising, no mixing of pigs during the transport process, sufficient lairage time and transporting no extreme muscled pigs can improve meat quality.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ani10050788DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7278422PMC
May 2020

Effects of Transport and Lairage on the Skin Damage of Pig Carcasses.

Animals (Basel) 2020 Mar 29;10(4). Epub 2020 Mar 29.

Laboratory of Livestock Physiology, Department of Biosystems, KU Leuven, 3001 Heverlee, Belgium.

Transport and associated handling can have adverse effects on pig welfare. The transport of fattening pigs can cause economic losses by virtue of mortality, skin damage, and the general deterioration of meat quality. A total of 4507 fattening pigs were transported from a farm to a commercial slaughterhouse (distance 110 km) in 128 transports. Skin damage was visually assessed in the slaughter line in different parts of the carcass, i.e., shoulder, middle, and ham, using a 4-point scale. The incidence of skin damage was most prevalent (31%) in the shoulder region of the pig carcass. Sex, wind velocity, regrouping, transport combination, transport compartment, lairage time, and ham angle affected the skin damage incidence. In conclusion, scoring the incidence of skin damage is an indicator of the level of welfare exercised during transport and the slaughterhouse conditions. Furthermore, skin damage monitoring can be used to determine critical control points in the transport procedure. Given the importance from both a commercial and welfare perspective, it should be a powerful incentive to handle fattening pigs with care during the transport process and the lairage period.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ani10040575DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7222379PMC
March 2020

The Impact of Grouping on Skin Lesions and Meat Quality of Pig Carcasses.

Animals (Basel) 2020 Mar 25;10(4). Epub 2020 Mar 25.

Laboratory of Livestock Physiology, Department of Biosystems, KU Leuven, 3001 Heverlee, Belgium.

In practice, unfamiliar pigs are frequently mixed prior to loading in order to obtain groups of uniform weight and to adjust the group size to the dimensions of the trailer compartments. Mixing pigs induces aggressive interactions to establish a new social rank. Fighting results in skin lesions and pre-slaughter stress and, in turn, reduced meat quality. A study was performed to compare the effect of non-regrouping and regrouping at fattening (at 80 kg and kept till slaughter), loading and lairage. A total of 1332 pigs were included over 30 transports from one pig farm to one slaughterhouse (110 km). Skin lesions were determined on 1314 carcasses. Meat quality was measured on 620 pigs. The non-regrouped pigs had fewer skin lesions and better meat quality than the pigs regrouped at loading or in lairage. Pigs mixed at 80 kg at the farm had, in general, a comparable amount of skin lesions and comparable meat quality as the non-mixed group. If mixing is unavoidable, due to large within-group weight variations, mixing at 80 kg can be an alternative to reduce skin lesions at slaughter and to optimise meat quality.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ani10040544DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7222386PMC
March 2020

Effects of sex and fasting/refeeding on hepatic AMPK signaling in chickens (Gallus gallus).

Comp Biochem Physiol A Mol Integr Physiol 2020 02 30;240:110606. Epub 2019 Oct 30.

BOA, INRA, Université de Tours, 37380 Nouzilly, France.

The alpha-1 isoform of chicken AMPK situates on the Z-chromosome, in contrast, the other isoforms in birds and the mammalian AMPKα1 are located on the autosomes. The present study aimed to investigate the role of hepatic AMPK signaling in adaptation to nutritional status and the potential sex-specific response in chickens. Hepatic genes and proteins were compared between the two sexes immediately after hatching. From 20d of age, chicks from each sex received feed treatments: Control was fed ad libitum; Fasted was starved for 24 h; Refed was fed for 4 h after a 24 h fasting. As a result, hepatic AMPKα1 mRNA level in males was significantly higher at both ages compared to females, due to the presence of Z-chromosomes. However, this did not make this kinase "male-bias" as it was eventually compensated at a translational level, which was not reported in previous studies. The protein levels and activation of AMPKα were even lower in newly-hatched male compared to female chicks, accompanied with a higher FAS and SREBP-1 gene expressions. Accordingly, hepatic G6PC2 mRNA levels in males were significantly lower associated with lower plasma glucose levels after hatching. Fasting activated hepatic AMPK, which in turn inhibited gene expression of GS, FAS and SREBP-1, and stimulated the downstream G6PC2 in both sexes. These changes recovered after refeeding. In conclusion, AMPK plays a role in adaptation to nutritional environment for both sexes. The Z-linked AMPK did not exert a sex-specific signaling, due to a "translational compensation" of AMPKα1.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpa.2019.110606DOI Listing
February 2020

Effects of dietary energy level on appetite and central adenosine monophosphate-activated protein kinase (AMPK) in broilers.

J Anim Sci 2019 Nov;97(11):4488-4495

Department of Animal Science, Shandong Agricultural University, Taian, Shandong, China.

Adenosine monophosphate-activated protein kinase (AMPK) acts as a sensor of cellular energy changes and is involved in the control of food intake. A total of 216 1-d-old broilers were randomly allotted into 3 treatments with 6 replicates per treatment and 12 broilers in each cage. The dietary treatments included 1) high-energy (HE) diet (3,500 kcal/kg), 2) normal-energy (NE) diet (3,200 kcal/kg), and 3) low-energy (LE) diet (2,900 kcal/kg). The present study was conducted to investigate the effects of dietary energy level on appetite and the central AMPK signal pathway. The results showed that a HE diet increased average daily gain (ADG), whereas a LE diet had the opposite effect (P < 0.05, N = 6). The average daily feed intake (ADFI) of the chickens fed the LE diet was significantly higher than that of the control (P < 0.05, N = 6). Overall, the feed conversion rate gradually decreased with increasing dietary energy level (P < 0.05, N = 6). Moreover, the chickens fed the LE and HE diets demonstrated markedly improved urea content compared with the control group (P < 0.0001, N = 8). The triglyceride (TG) content in the LE group was obviously higher than that in the HE group but showed no change compared with the control (P = 0.0678, N = 8). The abdominal fat rate gradually increased with increased dietary energy level (P = 0.0927, N = 8). The HE group showed downregulated gene expression levels of liver kinase B1 (LKB1), neuropeptide Y (NPY), cholecystokinin (CCK), and glucocorticoid receptor (GR) in the hypothalamus compared with the control group (P < 0.05, N = 8). However, LE treatment significantly increased the mRNA level of AMP-activated protein kinase α2 (AMPKα2) compared with other groups (P = 0.0110, N = 8). In conclusion, a HE diet inhibited appetite and central AMPK signaling. In contrast, a LE diet activated central AMPK and appetite. Overall, the central AMPK signal pathway and appetite were modulated in accordance with the energy level in the diet to regulate nutritional status and maintain energy homeostasis in birds.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/jas/skz312DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6827410PMC
November 2019

Box-Behnken optimisation of growth performance, plasma metabolites and carcass traits as influenced by dietary energy, amino acid and starch to lipid ratios in broiler chickens.

PLoS One 2019 21;14(3):e0213875. Epub 2019 Mar 21.

Poultry Research Foundation, Faculty of Science, The University of Sydney, Camden NSW, Australia.

A Box-Behnken designed study was completed to predict growth performance, carcass characteristics and plasma hormone and metabolite levels as influenced by dietary energy, amino acid densities and starch to lipid ratios in male broiler chickens. The design comprised three dietary energy densities (11.25, 12.375 and 13.5 MJ/kg), three digestible lysine concentrations (9.2, 10.65 and 12.1 g/kg) and three starch to lipid ratios (4.5, 12.25 and 20.0) in broiler diets based on maize and soybean meal. Each of thirteen dietary treatments was offered to 10 replicates of 15 birds per replicate floor pen or a total of 1,950 Ross 308 male broiler chickens from 21 to 35 days post-hatch. Increasing dietary energy decreased feed intake with a quadratic relationship between feed intake and dietary standardised ileal digestible (SID) Lys concentrations, where increasing SID Lys initially increased and then depressed feed intake. Increasing dietary amino acid density increased body weight gain and carcass weight; however, dietary energy did not influence body weight gain, carcass and breast meat weight. Feed efficiency was positively influenced by energy and amino acid densities but negatively influenced by starch to lipid ratios and energy and amino acids had more pronounced impacts than starch to lipid ratios. This study indicated that both energy and amino acid densities regulate feed intakes in broiler chickens. Body weight gain of modern broiler chickens is more responsive to amino acid densities; nevertheless, dietary energy density continues to play an important role in protein utilisation, as reflected in significantly reduced plasma uric acid levels.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0213875PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6428332PMC
December 2019

Effects of glucocorticoids on lipid metabolism and AMPK in broiler chickens' liver.

Comp Biochem Physiol B Biochem Mol Biol 2019 Jun 19;232:23-30. Epub 2019 Feb 19.

Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China. Electronic address:

Adenosine monophosphate-activated protein kinase (AMPK) plays a pivotal role in the regulation of carbohydrate, lipid, and protein metabolism in animals. In this study, we examined whether any cross talk exists between glucocorticoids and AMPK in the regulation of the liver bile acid biosynthesis pathway. Dexamethasone treatment decreased the growth performance of broiler chickens. The liver mRNA levels of fatty acid transport protein (FATP-1), farnesoid X receptor (FXR), AMPK alpha 1 subunit (AMPKα1), and glucocorticoid receptor were significantly upregulated in DEX-treated broilers; the gene expression of liver cholesterol 7 alpha-hydroxylase (CYP7A1) was significantly downregulated. The protein level of liver CYP7A1 was significantly decreased by DEX treatment at both 24 and 72 h, while the protein level of p-AMPK/ t-AMPK stayed unchanged. In the in vitro cultured hepatocytes, compound C pretreatment blocked the increase in CYP7A1 protein level by DEX and significantly suppressed FATP-1, SREBP-1c, FXR, and CYP7A1 gene expression stimulated by DEX. Compound C treatment significantly reduces the protein level of p-AMPK, and the combination of compound C and DEX significantly reduces the protein level of t-AMPK. Thus, glucocorticoids affected liver AMPK and the bile acid synthesis signal pathway, and AMPK might be involved in the glucocorticoid effect of liver bile acid synthesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpb.2019.02.001DOI Listing
June 2019

Heat exposure affects jejunal tight junction remodeling independently of adenosine monophosphate-activated protein kinase in 9-day-old broiler chicks.

Poult Sci 2018 Oct;97(10):3681-3690

Precision Livestock and Nutrition Unit, TERRA Teaching and Research Centre, University of Liege, Gembloux 5030, Belgium.

Dysfunction of the intestinal epithelial barrier under elevated temperatures is assumed to prompt pathological conditions and to eventually impede chickens' growth, resulting in massive economic losses in broiler industries. The aims of this research were to determine the impact of acute heat stress on the intestinal tight junction network of broiler chicks (Gallus domesticus L.) and to elucidate whether adenosine monophosphate-activated protein kinase (AMPK) was involved in the integrated response of the broiler's gastrointestinal tract to heat stress. A total of 80 9-day-old Arbor Acres chicks were subjected to temperature treatment (thermoneutral versus heat stress) and AMPK inhibition treatment (5 mg/kg body weight intraperitoneal injection of compound C vs. sham treatment) for 72 h. In addition to monitoring growth performance, the mRNA and protein levels of key tight junction proteins, target components of the AMPK pathway, and biomarkers of intestinal inflammation and oxidative stress were assessed in the jejunum under both stressors at 24 and 72 h. An increase of the major tight junction proteins, claudin-1 and zonula occludens-1, was implemented in response to an exacerbated expression of the AMP-activated protein kinase. Heat stress did not affect zootechnical performance but was confirmed by an increased gene expression of heat shock proteins 70 and 90 as well as heat shock factor-1. In addition, hyperthermia induced significant effects on tight junction proteins, although it was independent of AMPK.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3382/ps/pey229DOI Listing
October 2018

Alpha-lipoic acid impairs body weight gain of young broiler chicks via modulating peripheral AMPK.

Comp Biochem Physiol A Mol Integr Physiol 2017 09 8;211:34-40. Epub 2017 Jun 8.

Laboratory of Livestock Physiology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30, 3001 Leuven, Belgium. Electronic address:

In mammals, the AMP-activated protein kinase (AMPK) pathways in the central and peripheral tissues coordinately integrate inputs from multiple sources to regulate energy balance. The present study was aimed to explore the potential role of hepatic AMPK in the energy homeostasis of broiler chickens. Diets with 0, 0.05% or 0.1% alpha-lipoic acid (α-LA), a known AMPK inhibitor were provided to broiler chicks for 7days. As a result, α-LA supplementation decreased the relative growth rate of broiler chicks. Hepatic AMPKα2 mRNA levels were significantly upregulated by dietary α-LA, in concert with the increased phosphorylated AMPKα protein levels. In addition, hepatic FAS mRNA levels together with the malonyl-CoA to total CoA ester ratio were reduced by α-LA supplementation. Moreover, the hepatic phosphorylated glycogen synthase levels were increased resulting in a markedly decreased hepatic glycogen content. In conclusion, dietary α-LA supplementation decreased the in vivo hepatic glycogenesis and lipogenesis via stimulating hepatic AMPKα mRNA levels and the phosphorylated gene product. The stimulatory effect of α-LA on hepatic AMPK mRNA and pAMPKα protein levels together with our previous observations regarding its inhibitory effect on hypothalamic AMPK may have altered the energy balance and hence impaired body weight gain of broiler chicks.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpa.2017.06.005DOI Listing
September 2017

Impact of transportation duration on stress responses in day-old chicks from young and old breeders.

Res Vet Sci 2017 Jun 25;112:172-176. Epub 2017 Apr 25.

Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Scheldeweg 68, 9090 Melle, Belgium; Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium. Electronic address:

The aim of this study was to assess the interaction effect of transportation duration and parental age on physiological stress responses and quality in day-old chicks. After hatch, 3240 chicks from either 29-week old (young) or 60-week old (old) broiler breeders were transported for 1.5h (short) or 11h (long). Thereafter, 228 chicks were assessed for quality and blood plasma was assayed for corticosterone (CORT), lactate, glucose, and thiobarbituric acid-reactive substances (TBARS, increased concentrations can indicate oxidative stress). No interaction effects of parental age and transportation duration were found (all P>0.10). Chicks from young breeders showed higher CORT levels (P=0.007) and were of higher quality (Tona method, P<0.001) than those from old breeders. After long transportation, chicks showed increased CORT (P<0.001) and lower TBARS levels (P<0.001) compared to after short transportation. No evidence was provided that long transportation differently affected the quality or stress responses of chicks from breeder flocks of two ages.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.rvsc.2017.04.015DOI Listing
June 2017

Chenodeoxycholic acid reduces feed intake and modulates the expression of hypothalamic neuropeptides and hepatic lipogenic genes in broiler chickens.

Gen Comp Endocrinol 2016 04 7;229:74-83. Epub 2016 Mar 7.

Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, United States. Electronic address:

Bile acids have recently become an emerging research hot spot in mammals due to their roles as metabolic regulators and molecular signatures controlling whole-body metabolic homeostasis. Such effects are still unknown in avian (non-mammalian) species. We, therefore, undertook this study to determine the effect of chenodeoxycholic acid (CDCA) on growth performance and on the expression of hypothalamic neuropeptides and hepatic lipogenic genes in broiler chickens. Chickens fed with diet-containing 0.1% or 0.5% CDCA for two weeks exhibited a significant and a dose dependent reduction of feed intake and body weight compared to the control (standard diet). These changes were accompanied with a significant decrease in plasma glucose levels at d10 and d15 post-treatment. At molecular levels, CDCA treatment significantly up-regulated the expression of feeding-related hypothalamic neuropeptides (NPY, AgRP, ORX, CRH, Ghrl, and MC1R) and down-regulated the hypothalamic expression of SOCS3. CDCA treatment also decreased the mRNA levels of key hepatic lipogenic genes (FAS, ACCα, ME, ATPcl, and SCD-1) and their related transcription factors SREBP-1/2 and PPARα. In addition, CDCA reduced the hepatic expression of FXR and the adipokine, visfatin, and adiponectin genes compared to the control. Together, our data provide evidence that CDCA alters growth performances in broilers and modulates the expression of hypothalamic neuropeptides and hepatic lipogenic and adipocytokine genes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ygcen.2016.03.007DOI Listing
April 2016

AMPK is involved in the differential neonatal performance of chicks hatching at different time.

Gen Comp Endocrinol 2016 Mar 9;228:53-59. Epub 2016 Feb 9.

Laboratory of Livestock Physiology, Department of Biosystems, KU Leuven. Kasteelpark Arenberg 30, 3001 Leuven, Belgium; Animal Science Unit, University of Liège, Gembloux Agro-Bio Tech, Passage des Déportés 2, 5030 Gembloux, Belgium.

We have recently reported that the hatching time may be in relation to the distinct neonatal performance of female chicks. The present study was aimed to investigate the potential involvement of AMPK, an energy sensor which plays a pivotal role in energy homeostasis, in the distinct performance of the spread of hatching time model. As a result, hypothalamic AMPKα1 isoform gene expression was significantly higher in the late hatcher as compared to that of their early counterparts, whereas the total and phosphorylated levels of AMPKα subunit did not differ between the three hatchers. The hypothalamic orexigenic NPY and AgRP mRNA levels were higher in the late hatchers as compared to the early, and that of the middle hatchers was at an intermediate level. However, the anorexigenic POMC and CRH was also higher expressed in the late hatchers as compared to the early hatchers. In the liver, AMPKα2 mRNA level and the phosphorylation ratio of AMPKα was significantly lower in the late hatchers, as compared to their early counterparts. The hepatic phosphorylated GS levels of the late and middle hatchers were lower than that of their early counterparts. The expression of hepatic FTO gene of the late hatchers was significantly higher than that of their early and middle counterparts. Taken together, AMPK may play a significant role in the different neonatal performance of the spread of hatching time model. The central and peripheral AMPK in late hatchers exhibited a pattern of higher energy intake and lower energy expenditure, which resulted in a faster post-hatch growth.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ygcen.2016.02.008DOI Listing
March 2016

Differential Expression of Genes and DNA Methylation associated with Prenatal Protein Undernutrition by Albumen Removal in an avian model.

Sci Rep 2016 Feb 10;6:20837. Epub 2016 Feb 10.

KU Leuven, Department of Biosystems, Laboratory of Livestock Physiology, Kasteelpark Arenberg 30 box 2456, 3001 Leuven, Belgium.

Previously, long-term effects on body weight and reproductive performance have been demonstrated in the chicken model of prenatal protein undernutrition by albumen removal. Introduction of such persistent alterations in phenotype suggests stable changes in gene expression. Therefore, a genome-wide screening of the hepatic transcriptome by RNA-Seq was performed in adult hens. The albumen-deprived hens were created by partial removal of the albumen from eggs and replacement with saline early during embryonic development. Results were compared to sham-manipulated hens and non-manipulated hens. Grouping of the differentially expressed (DE) genes according to biological functions revealed the involvement of processes such as 'embryonic and organismal development' and 'reproductive system development and function'. Molecular pathways that were altered were 'amino acid metabolism', 'carbohydrate metabolism' and 'protein synthesis'. Three key central genes interacting with many DE genes were identified: UBC, NR3C1, and ELAVL1. The DNA methylation of 9 DE genes and 3 key central genes was examined by MeDIP-qPCR. The DNA methylation of a fragment (UBC_3) of the UBC gene was increased in the albumen-deprived hens compared to the non-manipulated hens. In conclusion, these results demonstrated that prenatal protein undernutrition by albumen removal leads to long-term alterations of the hepatic transcriptome in the chicken.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/srep20837DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4748411PMC
February 2016

The effect of insulin on plasma glucose concentrations, expression of hepatic glucose transporters and key gluconeogenic enzymes during the perinatal period in broiler chickens.

Gen Comp Endocrinol 2016 06 23;232:67-75. Epub 2015 Dec 23.

KU Leuven, Department of Biosystems, Laboratory of Livestock Physiology, Kasteelpark Arenberg 30, Box 2456, 3001 Leuven, Belgium; University of Liège, Gembloux Agro-Bio Tech, Animal Science Unit, Passage des Déportés 2, 5030 Gembloux, Belgium.

Chickens have blood glucose concentrations that are twofold higher than those observed in mammals. Moreover, the insulin sensitivity seems to decrease with postnatal age in both broiler and layer chickens. However, little is known about the response of insulin on plasma glucose concentrations and mRNA abundance of hepatic glucose transporters 1, 2, 3, 8, 9 and 12 (GLUT1, 2, 3, 8, 9 and 12) and three regulatory enzymes of the gluconeogenesis, phosphoenolpyruvate carboxykinase 1 and 2 (PCK1 and 2) or fructose-1,6-biphosphatase 1 (FBP1) in chicks during the perinatal period. In the present study, broiler embryos on embryonic day (ED)16, ED18 or newly-hatched broiler chicks were injected intravenously with bovine insulin (1μg/g body weight (BW)) to examine plasma glucose response and changes in hepatic mRNA abundance of the GLUTs, PCK1 and 2 and FBP1. Results were compared with a non-treated control group and a saline-injected sham group. Plasma glucose levels of insulin-treated ED18 embryos recovered faster from their minimum level than those of insulin-treated ED16 embryos or newly-hatched chicks. In addition, at the minimum plasma glucose level seven hours post-injection (PI), hepatic GLUT2, FBP1 and PCK2 mRNA abundance was decreased in insulin-injected embryos, compared to sham and control groups, being most pronounced when insulin injection occurred on ED16.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ygcen.2015.12.026DOI Listing
June 2016

The Gustatory Signaling Pathway and Bitter Taste Receptors Affect the Development of Obesity and Adipocyte Metabolism in Mice.

PLoS One 2015 21;10(12):e0145538. Epub 2015 Dec 21.

Translational Research Center for Gastrointestinal Disorders, Gut Peptide Research Lab, University of Leuven, Gasthuisberg O&N1, box 701, 3000 Leuven, Belgium.

Intestinal chemosensory signaling pathways involving the gustatory G-protein, gustducin, and bitter taste receptors (TAS2R) have been implicated in gut hormone release. Alterations in gut hormone profiles may contribute to the success of bariatric surgery. This study investigated the involvement of the gustatory signaling pathway in the development of diet-induced obesity and the therapeutic potential of targeting TAS2Rs to induce body weight loss. α-gustducin-deficient (α-gust-/-) mice became less obese than wild type (WT) mice when fed a high-fat diet (HFD). White adipose tissue (WAT) mass was lower in α-gust-/- mice due to increased heat production as a result of increases in brown adipose tissue (BAT) thermogenic activity, involving increased protein expression of uncoupling protein 1. Intra-gastric treatment of obese WT and α-gust-/- mice with the bitter agonists denatonium benzoate (DB) or quinine (Q) during 4 weeks resulted in an α-gustducin-dependent decrease in body weight gain associated with a decrease in food intake (DB), but not involving major changes in gut peptide release. Both WAT and 3T3-F442A pre-adipocytes express TAS2Rs. Treatment of pre-adipocytes with DB or Q decreased differentiation into mature adipocytes. In conclusion, interfering with the gustatory signaling pathway protects against the development of HFD-induced obesity presumably through promoting BAT activity. Intra-gastric bitter treatment inhibits weight gain, possibly by directly affecting adipocyte metabolism.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0145538PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4686985PMC
July 2016

Effects of feed deprivation on the AMPK signaling pathway in skeletal muscle of broiler chickens.

Comp Biochem Physiol B Biochem Mol Biol 2016 Jan 21;191:146-54. Epub 2015 Oct 21.

Laboratory of Livestock Physiology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg, 30, 3001 Leuven, Belgium.

The 5'-adenosine monophosphate-activated protein kinase (AMPK) plays a key role in rapid metabolic adaptations to maintain energy homeostasis in poultry. It remains unclear if AMPK is involved in muscular energy metabolism in broiler chickens. Hence, in the present study, seven-day-old male broilers were equally divided into three groups: fed ad libitum (control); feed-deprived for 24h (S24); feed-deprived for 24h and then refed for 24h (S24R24). Compared to the control group, the plasma levels of glucose, insulin, T3 and triglycerides in the S24 group were significantly lower (P<0.05), whereas the uric acid levels were significantly higher (P<0.01). Except for glucose, refeeding for 24h reversed the fasting-induced alterations in plasma metabolite. Fasting decreased the liver kinase B1 (LKB1), AMPK alpha 2 subunit (AMPKα2), and fatty acid synthase (FAS) mRNA levels (P<0.05) in M. pectoralis major (PM). Feed deprivation did not affect the phosphorylated AKT, mammalian target of rapamycin (mTOR) and ribosomal protein S6 kinase (p70S6K) in PM (P>0.05), but upregulated carnitine palmitoyltransferase 1 (CPT1) gene expression and increased phosphorylated LKB1 (0.050.05). However, refeeding after 24h of fasting increased the phosphorylated mTOR level in BF muscle which was in parallel with increased plasma insulin concentration. It was likely that increased phospho-mTOR level in the BF muscle was due to the higher sensitivity of BF to insulin. Together, the results suggested that the AMPK signaling pathway might be involved in the energy metabolism alterations in the skeletal muscles of broiler chickens and was also dependent upon the muscle fiber type. Furthermore, the regulatory effects of AMPK on energy metabolism in muscles of broiler chickens might be mediated by the AMPK/FAS pathway.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpb.2015.10.007DOI Listing
January 2016

Reduced protein availability by albumen removal during chicken embryogenesis decreases body weight and induces hormonal changes.

Exp Physiol 2015 Nov 20;100(11):1298-308. Epub 2015 Oct 20.

Department of Biosystems, Laboratory of Livestock Physiology, KU Leuven, Leuven, Belgium.

New Findings: What is the central question of this study? Prenatal protein undernutrition by albumen removal in an avian model of fetal programming leads to long-term programming effects, but when do these effects first appear and are these programming effects regulated by the same candidate genes as in mammals? What is the main finding and its importance? The present results indicate that prenatal protein undernutrition by albumen removal induces phenotypical and hormonal changes in the early posthatch period, when the mismatch between the prenatal and postnatal environment first arises, but these changes are not accompanied by an altered gene expression of the selected candidate genes. Studies of the chicken offer a unique model for investigation of the direct effects of reduced prenatal protein availability by the partial replacement of albumen with saline in eggs at embryonic day 1 (albumen-deprived group). The results were compared with mock-treated sham chicks and non-treated control chicks. Although no differences in hatch weight were found, body weight and growth were reduced in the albumen-deprived chicks until 3 weeks of age. The feed intake of the albumen-deprived chicks, however, was increased compared with the control (day 13-21) and the sham chicks (day 16-18). In the albumen-deprived chicks, the ratio of thyroxine to 3,5,3'-triiodothyronine in the plasma was increased compared with the control chicks, whereas the plasma corticosterone level was increased only at day 7 compared with both other groups. The plasma glucose concentration and glucose tolerance were not affected by treatment. Several candidate genes previously associated with effects of prenatal protein deprivation in mammals were examined in the liver of newly hatched chicks. Gene expression of glycogen synthase 2, glycogen phosphorylase 1, peroxisome proliferator-activated receptor α and γ and glucocorticoid receptor was not affected by the treatment. In conclusion, reduction of prenatal protein availability led to differences in body weight and influenced hormones involved in metabolism and growth. Gene expression of the selected candidate genes was not altered, in contrast to mammals.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1113/EP085313DOI Listing
November 2015

Effects of nutritional programing on growth and metabolism caused by albumen removal in an avian model.

J Endocrinol 2015 May;225(2):89-100

Laboratory of Livestock Physiology Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30 Box 2456, 3001 Leuven, Belgium ILVO Animal Sciences Unit Scheldeweg 68, 9090 Melle, Belgium Division of MeBioS Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30 Box 2456, 3001 Leuven, Belgium Animal Science Unit Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium Laboratory of Livestock Physiology Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30 Box 2456, 3001 Leuven, Belgium ILVO Animal Sciences Unit Scheldeweg 68, 9090 Melle, Belgium Division of MeBioS Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30 Box 2456, 3001 Leuven, Belgium Animal Science Unit Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium.

In mammalian models of prenatal undernutrition the maternal diet is manipulated, exerting both nutritional and hormonal effects on the offspring. In contrast, in the chicken, strictly nutritional effects can be applied. Prenatal protein undernutrition in chickens was induced by partial replacement of albumen with saline during early embryonic development (albumen-deprived group) and results were compared with a sham-manipulated and a non-manipulated group. Body weight of the albumen-deprived hens was reduced throughout the entire experimental period (0-55 weeks). The reproductive capacity was diminished in the albumen-deprived hens as reflected in the reduced number of eggs and lower egg weight. The plasma triiodothyronine levels were increased in the albumen-deprived group compared with the non-manipulated hens, but not the sham-manipulated hens. An oral glucose tolerance test (OGTT) at 10 weeks of age revealed a decreased glucose tolerance in the albumen-deprived hens. During adulthood, an age-related loss of glucose tolerance was observed in the hens, leading to disappearance of treatment differences in the OGTT. The offspring of the albumen-deprived hens (PA chicks) had reduced body weight until at least 3 weeks of age. In addition, the PA chicks had a decreased relative residual yolk weight at hatching. An insulin tolerance test revealed increased sensitivity to insulin for the PA chicks compared with the offspring of the non-manipulated (PN) and sham-manipulated hens (PS). In conclusion, prenatal protein undernutrition by albumen removal caused long-term effects on body weight, reproductive performance, and physiology.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1530/JOE-14-0525DOI Listing
May 2015

Limited evidence for trans-generational effects of maternal dietary supplementation with ω-3 fatty acids on immunity in broiler chickens.

Vet J 2015 Feb 12;203(2):244-9. Epub 2014 Dec 12.

Laboratory of Livestock Physiology, Department of Biosystems, KU Leuven, Kasteelpark Arenber 30 Box 2456, 3001 Leuven, Belgium; Animal Science Unit, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium.

The aim of the present study was to investigate whether the immune response of broiler chickens is modulated by including different omega-3 (ω-3) polyunsaturated fatty acids (PUFAs) in the maternal diet. Broiler breeder hens (n = 120 birds per group) were fed one of four diets, differing in the ratios of n-6:n-3 PUFAs and eicosapentaenoic acid (EPA):docosahexaenoic acid (DHA). At 28 weeks of age, the eggs produced were incubated to obtain 720 chicks (n = 180 per group). All broiler chicks were fed a control diet and were vaccinated against Newcastle disease virus (NDV). Blood samples were taken at different time points after immunisation with human serum albumin (HuSA) in Freund's adjuvant to determine the acute phase response, antibody response and cytokine production. Addition of EPA to the maternal diet was associated with greater ovotransferrin concentrations post-immunisation, compared to other groups. Altering the ratios of n-6:n-3 PUFA or EPA:DHA in the maternal diet did not affect the offspring in terms of production of caeruloplasmin, α1-acid glycoprotein, interleukin (IL)-1β, IL-6, IL-12 or tumour necrosis factor (TNF)-α. Dietary manipulation of the maternal diet did not influence the specific antibody response to HuSA or NDV, nor did it alter the levels of natural antibody binding to keyhole limpet haemocyanin in the offspring. Thus, maternal supplementation with n-3 PUFAs played a minor role in perinatal programming of the immune response of broiler chickens.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tvjl.2014.12.006DOI Listing
February 2015

Transition of maternal dietary n-3 fatty acids from the yolk to the liver of broiler breeder progeny via the residual yolk sac.

Poult Sci 2015 Jan 19;94(1):43-52. Epub 2014 Dec 19.

Institute for Agricultural and Fisheries Research (ILVO), Animal Sciences Unit, Scheldeweg 68, 9090 Melle, Belgium.

The aim of the present study was to evaluate the transfer of maternal dietary fatty acids (FA) from the yolk to the developing offspring, with special emphasis on n-3 FA eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Six hundred forty Ross 308 breeders were housed from 6 to 58 wk of age in 16 pens resulting in 4 replicates per dietary treatment. They were fed 1 of 4 diets: a basal diet, rich in n-6 FA (CON), or an n-3 FA enriched diet formulated to obtain an EPA/DHA ratio of 1/1 (EPA=DHA), 1/2 (DHA), or 2/1 (EPA). At 28, 43, and 58 wk of age, 20 eggs per treatment were collected and analyzed for FA composition. At these same breeder ages, 600 fertilized eggs per treatment were incubated. At hatch the residual yolks of 25 chicks per treatment were collected and analyzed for FA composition. At every hatch, 180 chicks per treatment were raised under standard conditions and livers were sampled at d 1, 14, 28, and 38 d for FA analysis. Concentrations of EPA in the yolk and residual yolk of eggs laid by EPA-fed breeders were highest, next-to-highest for EPA=DHA-fed breeders, next-to-lowest for DHA-fed breeders, and lowest in those laid by control hens, reflecting the inclusion levels in the maternal diets. Yolk and residual yolk DHA concentrations, however, were not only elevated due to DHA supplementation, compared with the control diet, but also due to EPA supplementation. Offspring hepatic EPA concentrations were elevated until d 28 in all n-3 enriched groups, whereas hepatic DHA concentrations were only affected by EPA=DHA and DHA supplementation at d 1. No differences were found in hepatic DHA concentrations at later offspring ages. Considering the role of EPA and DHA in early development and growth, the maternal supply of these n-3 FA might improve offspring health and performance.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3382/ps/peu006DOI Listing
January 2015

Changes in oxidative stress in response to different levels of energy restriction in obese ponies.

Br J Nutr 2014 Oct 2;112(8):1402-11. Epub 2014 Sep 2.

Laboratory of Animal Nutrition, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University,Heidestraat 19,B-9820Merelbeke,Belgium.

The present study evaluated the effect of different levels of energy restriction on metabolic parameters in obese ponies. Relative weight changes, markers of lipid metabolism and oxidant/antioxidant balance were monitored. A total of eighteen obese (body condition score ≥ 7/9) Shetland ponies were studied over a 23·5-week trial, which was divided into three periods. The first period involved a 4-week adaptation period in which each animal was fed 100% of their maintenance energy requirements needed to maintain a stable obese body weight (MERob). This was followed by a 16·5-week weight-loss period in which ponies were assigned to receive either 100% (control group, CONTROL), 80% (slow weight-loss (SLOW) group) or 60% (rapid weight-loss (RAPID) group) of their MERob. During the 3-week end-phase period, all ponies were again fed 100% of their MERob. Relative weight loss was higher in the RAPID group (P< 0·001) compared with the SLOW group. No linear relationship was found as a doubling of the percentage of energy restriction was accompanied by a tripling of the percentage of weight loss. Relative weight gain afterwards in the end-phase period was higher in the RAPID group (P< 0·001) compared with the SLOW and CONTROL groups. During the weight-loss period, TAG and NEFA concentrations were highest in the RAPID group, as were α-tocopherol and ferric-reducing ability of plasma concentrations. After 8 weeks of weight loss, the concentrations of advanced oxidation protein products were higher in the RAPID group compared with the SLOW and CONTROL groups (P< 0·001). In conclusion, the level of energy restriction influences the extent of changes in oxidant/antioxidant balance. Practically, more severe energy restriction regimens may be associated with a greater regain of weight after the restriction period.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1017/S0007114514001974DOI Listing
October 2014

The anorectic effects of alpha-lipoicacid are mediated by central AMPK and are not due to taste aversion in chicken (Gallus gallus).

Physiol Behav 2014 Jun 9;132:66-72. Epub 2014 May 9.

Laboratory of Livestock Physiology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30, 3001 Leuven, Belgium. Electronic address:

AMP-activated protein kinase (AMPK) is an evolutionary conserved cellular energy sensor, which plays a pivotal role in mammalian energy homeostasis. The present study was aimed to explore the possible involvement of hypothalamic AMPK in feed intake regulation of broiler chickens. Hence, diets with 0, 0.05% or 0.1% α-lipoicacid (α-LA), a known AMPK inhibitor in mammals, were provided to broiler chicks for 7days. Alpha-LA exerted an anorectic effect, and the conditioned taste aversion test demonstrated that the effect was due to the alteration in satiety and not taste effects. However, the curtailed feed intake induced by α-LA disappeared on day 7. Hypothalamic AMPKα1 mRNA levels were significantly decreased by the dietary α-LA in concert with the reduced abundance in total AMPKα protein. The phosphorylated AMPKα was also decreased to a similar extend, resulting in an unaltered phosphorylated AMPKα/total AMPKα ratio. In addition, hypothalamic corticotropin releasing hormone mRNA levels were enhanced by α-LA. Interestingly, the mRNA expressions of hypothalamic orexigenic agouti-related peptide and neuropeptide Y were up-regulated, while the anorexigenic proopiomelanocortin and its transcription regulator hypoxia-inducible factor-1α were down-regulated, probably as a physiological reaction in order to counteract the altered energy balance. In conclusion, dietary α-LA decreased feed intake of broiler chicks. The anorectic effect was due to the reduced hypothalamic phosphorylated AMPKα as reflected in its decreased mRNA and protein levels. However, the anorectic effect of α-LA was progressively diminished after 7days of treatment, likely by a physiological counteractive feedback via changing neuropeptides involved in energy balance regulation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.physbeh.2014.04.047DOI Listing
June 2014

Embryonic protein undernutrition by albumen removal programs the hepatic amino acid and glucose metabolism during the perinatal period in an avian model.

PLoS One 2014 16;9(4):e94902. Epub 2014 Apr 16.

Laboratory of Livestock Physiology, Department of Biosystems, KU Leuven, Leuven, Belgium; Animal Science Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium.

Different animal models have been used to study the effects of prenatal protein undernutrition and the mechanisms by which these occur. In mammals, the maternal diet is manipulated, exerting both direct nutritional and indirect hormonal effects. Chicken embryos develop independent from the hen in the egg. Therefore, in the chicken, the direct effects of protein deficiency by albumen removal early during incubation can be examined. Prenatal protein undernutrition was established in layer-type eggs by the partial replacement of albumen by saline at embryonic day 1 (albumen-deprived group), compared to a mock-treated sham and a non-treated control group. At hatch, survival of the albumen-deprived group was lower compared to the control and sham group due to increased early mortality by the manipulation. No treatment differences in yolk-free body weight or yolk weight could be detected. The water content of the yolk was reduced, whereas the water content of the carcass was increased in the albumen-deprived group, compared to the control group, indicating less uptake of nutrients from the yolk. At embryonic day 16, 20 and at hatch, plasma triiodothyronine (T3), corticosterone, lactate or glucose concentrations and hepatic glycogen content were not affected by treatment. At embryonic day 20, the plasma thyroxine (T4) concentrations of the albumen-deprived embryos was reduced compared to the control group, indicating a decreased metabolic rate. Screening for differential protein expression in the liver at hatch using two-dimensional difference gel electrophoresis revealed not only changed abundance of proteins important for amino acid metabolism, but also of enzymes related to energy and glucose metabolism. Interestingly, GLUT1, a glucose transporter, and PCK2 and FBP1, two out of three regulatory enzymes of the gluconeogenesis were dysregulated. No parallel differences in gene expressions causing the differences in protein abundance could be detected pointing to post-transcriptional or post-translational regulation of the observed differences.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0094902PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3989345PMC
February 2015

Cerulenin upregulates heat shock protein-70 gene expression in chicken muscle.

Poult Sci 2013 Oct;92(10):2745-53

Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville 72701; and.

Lines of evidence suggested that systems involved in the regulation of the stress responses and energy homeostasis are highly integrated. Because cerulenin, the natural antibiotic product of the fungus Cephalosporium ceruleans and a broad-spectrum fatty acid synthesis (FAS) inhibitor, has been shown to affect food intake and energy balance, and because the biomarker of stress Hsp-70 gene was found to interact directly with fatty acids, we hypothesized that cerulenin may regulate Hsp-70 gene expression. Therefore, the present study was undertaken to examine this issue. Cerulenin administration significantly (P < 0.05) decreased food intake and induced Hsp-70 mRNA levels in muscle, but not in liver or hypothalamus of 2-wk-old broiler chickens. These changes were accompanied by an unpregulation of muscle uncoupling protein and carnitine palmitoyltransferase 1 mRNA levels. This result indicated that the regulation of Hsp-70 gene expression in normal chickens, as estimated by oxidative stress indices [TBA reacting substances, ferric reducing/antioxidant power, and ceruloplasmin oxidase activity] levels, is tissue-specific. In attempt to discriminate between the effect of cerulenin and cerulenin-reduced food intake on Hsp-70 gene expression, we also evaluated the effect of food deprivation on the same cellular responses. Food deprivation for 16 h did not affect Hsp-70 gene expression in all tissues examined, indicating that the effect of cerulenin is independent of the inhibition of food intake. To ascertain whether the effect of cerulenin is direct or indirect, we carried out in vitro studies. Cerulenin treatment did not affect Hsp-70 gene expression in Leghorn male hepatoma and quail myoblast cell lines, suggesting that the observed effect in vivo may be mediated through the central nervous system.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3382/ps.2013-03242DOI Listing
October 2013

Impact of feed supplementation with different omega-3 rich microalgae species on enrichment of eggs of laying hens.

Food Chem 2013 Dec 28;141(4):4051-9. Epub 2013 Jun 28.

Research Unit Food and Lipids, KU Leuven Kulak, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium.

Four different omega-3 rich autotrophic microalgae, Phaeodactylum tricornutum, Nannochloropsis oculata, Isochrysis galbana and Chlorella fusca, were supplemented to the diet of laying hens in order to increase the level of omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) in egg yolk. The microalgae were supplemented in two doses: 125 mg and 250 mg extra n-3 PUFA per 100g feed. Supplementing these microalgae resulted in increased but different n-3 LC-PUFA levels in egg yolk, mainly docosahexaenoic acid enrichment. Only supplementation of Chlorella gave rise to mainly α-linolenic acid enrichment. The highest efficiency of n-3 LC-PUFA enrichment was obtained by supplementation of Phaeodactylum and Isochrysis. Furthermore, yolk colour shifted from yellow to a more intense red colour with supplementation of Phaeodactylum, Nannochloropsis and Isochrysis, due to transfer of carotenoids from microalgae to eggs. This study shows that besides Nannochloropsis other microalgae offer an alternative to current sources for enrichment of hen eggs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2013.06.078DOI Listing
December 2013

Effects of dietary arabinoxylan-oligosaccharides (AXOS) and endogenous probiotics on the growth performance, non-specific immunity and gut microbiota of juvenile Siberian sturgeon (Acipenser baerii).

Fish Shellfish Immunol 2013 Sep 25;35(3):766-75. Epub 2013 Jun 25.

Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven, Leuven, Belgium.

We investigated the effects of administration of putative endogenous probiotics Lactococcus lactis spp. lactis or Bacillus circulans, alone and in combination with arabinoxylan-oligosaccharides (AXOS), a new class of candidate prebiotics, in juvenile Siberian sturgeon (Acipenser baerii). Eight experimental diets were tested: basal diet (Diet 1), basal diet supplemented with 2% AXOS (Diet 2), or L. lactis ST G81 (Diet 3), L. lactis ST G45 (Diet 4), B. circulans ST M53 (Diet 5), L. lactis ST G81 + 2% AXOS (Diet 6), L. lactis ST G45 + 2% AXOS (Diet 7), B. circulans ST M53 + 2% AXOS (Diet 8). After four weeks, growth performance and feed conversion ratio significantly improved in fish fed diet 7. Innate immune responses of fish were boosted with both AXOS and probiotic diets, however synergistic effects of AXOS and probiotic diets were only observed for phagocytic and alternative complement activity. Phagocytic and respiratory burst activity of fish macrophage increased in fish fed diet 2 and 7, while humoral immune responses only increased in fish fed diet 7. Pyrosequencing analysis (16S rDNA) of the hindgut microbiota demonstrated that AXOS improved the colonization or/and growth capacity of L. lactis, as a higher relative abundance of L. lactis was observed in fish receiving diet 7. However, no observable colonization of B. circulans was found in the hindgut of fish fed diet 5 or 8, containing this bacterium. The dietary L. lactis ST G45 + 2% AXOS caused significant alterations in the intestinal microbiota by significantly decreasing in bacterial diversity, demonstrated by the fall in richness and Shannon diversity, and improved growth performance and boosted immune responses of Siberian sturgeon.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsi.2013.06.014DOI Listing
September 2013
-->