Publications by authors named "Joe Dennis"

161 Publications

Mendelian randomisation study of smoking exposure in relation to breast cancer risk.

Br J Cancer 2021 Aug 2. Epub 2021 Aug 2.

Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA.

Background: Despite a modest association between tobacco smoking and breast cancer risk reported by recent epidemiological studies, it is still equivocal whether smoking is causally related to breast cancer risk.

Methods: We applied Mendelian randomisation (MR) to evaluate a potential causal effect of cigarette smoking on breast cancer risk. Both individual-level data as well as summary statistics for 164 single-nucleotide polymorphisms (SNPs) reported in genome-wide association studies of lifetime smoking index (LSI) or cigarette per day (CPD) were used to obtain MR effect estimates. Data from 108,420 invasive breast cancer cases and 87,681 controls were used for the LSI analysis and for the CPD analysis conducted among ever-smokers from 26,147 cancer cases and 26,072 controls. Sensitivity analyses were conducted to address pleiotropy.

Results: Genetically predicted LSI was associated with increased breast cancer risk (OR 1.18 per SD, 95% CI: 1.07-1.30, P = 0.11 × 10), but there was no evidence of association for genetically predicted CPD (OR 1.02, 95% CI: 0.78-1.19, P = 0.85). The sensitivity analyses yielded similar results and showed no strong evidence of pleiotropic effect.

Conclusion: Our MR study provides supportive evidence for a potential causal association with breast cancer risk for lifetime smoking exposure but not cigarettes per day among smokers.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41416-021-01432-8DOI Listing
August 2021

Breast and Prostate Cancer Risks for Male BRCA1 and BRCA2 Pathogenic Variant Carriers Using Polygenic Risk Scores.

J Natl Cancer Inst 2021 Jul 28. Epub 2021 Jul 28.

Department of Molecular Medicine, University La Sapienza, Rome, Italy.

Background: Recent population-based female breast cancer and prostate cancer polygenic risk scores (PRS) have been developed. We assessed the associations of these PRS with breast and prostate cancer risks for male BRCA1 and BRCA2 pathogenic variant carriers.

Methods: 483 BRCA1 and 1,318 BRCA2 European ancestry male carriers were available from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). A 147-single nucleotide polymorphism (SNP) prostate cancer PRS (PRSPC) and a 313-SNP breast cancer PRS were evaluated. There were three versions of the breast cancer PRS, optimized to predict overall (PRSBC), estrogen-receptor (ER) negative (PRSER-) or ER-positive (PRSER+) breast cancer risk.

Results: PRSER+ yielded the strongest association with breast cancer risk. The odds ratios (ORs) per PRSER+ standard deviation estimates were 1.40 (95% confidence interval [CI] =1.07-1.83) for BRCA1 and 1.33 (95% CI = 1.16-1.52) for BRCA2 carriers. PRSPC was associated with prostate cancer risk for both BRCA1 (OR = 1.73, 95% CI = 1.28-2.33) and BRCA2 (OR = 1.60, 95% CI = 1.34-1.91) carriers. The estimated breast cancer ORs were larger after adjusting for female relative breast cancer family history. By age 85 years, for BRCA2 carriers, the breast cancer risk varied from 7.7% to 18.4% and prostate cancer risk from 34.1% to 87.6% between the 5th and 95th percentiles of the PRS distributions.

Conclusions: Population-based prostate and female breast cancer PRS are associated with a wide range of absolute breast and prostate cancer risks for male BRCA1 and BRCA2 carriers. These findings warrant further investigation aimed at providing personalized cancer risks for male carriers and to inform clinical management.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/jnci/djab147DOI Listing
July 2021

Cross-ancestry GWAS meta-analysis identifies six breast cancer loci in African and European ancestry women.

Nat Commun 2021 07 7;12(1):4198. Epub 2021 Jul 7.

Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.

Our study describes breast cancer risk loci using a cross-ancestry GWAS approach. We first identify variants that are associated with breast cancer at P < 0.05 from African ancestry GWAS meta-analysis (9241 cases and 10193 controls), then meta-analyze with European ancestry GWAS data (122977 cases and 105974 controls) from the Breast Cancer Association Consortium. The approach identifies four loci for overall breast cancer risk [1p13.3, 5q31.1, 15q24 (two independent signals), and 15q26.3] and two loci for estrogen receptor-negative disease (1q41 and 7q11.23) at genome-wide significance. Four of the index single nucleotide polymorphisms (SNPs) lie within introns of genes (KCNK2, C5orf56, SCAMP2, and SIN3A) and the other index SNPs are located close to GSTM4, AMPD2, CASTOR2, and RP11-168G16.2. Here we present risk loci with consistent direction of associations in African and European descendants. The study suggests that replication across multiple ancestry populations can help improve the understanding of breast cancer genetics and identify causal variants.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-021-24327-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8263739PMC
July 2021

Functional annotation of the 2q35 breast cancer risk locus implicates a structural variant in influencing activity of a long-range enhancer element.

Am J Hum Genet 2021 Jul 18;108(7):1190-1203. Epub 2021 Jun 18.

Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany.

A combination of genetic and functional approaches has identified three independent breast cancer risk loci at 2q35. A recent fine-scale mapping analysis to refine these associations resulted in 1 (signal 1), 5 (signal 2), and 42 (signal 3) credible causal variants at these loci. We used publicly available in silico DNase I and ChIP-seq data with in vitro reporter gene and CRISPR assays to annotate signals 2 and 3. We identified putative regulatory elements that enhanced cell-type-specific transcription from the IGFBP5 promoter at both signals (30- to 40-fold increased expression by the putative regulatory element at signal 2, 2- to 3-fold by the putative regulatory element at signal 3). We further identified one of the five credible causal variants at signal 2, a 1.4 kb deletion (esv3594306), as the likely causal variant; the deletion allele of this variant was associated with an average additional increase in IGFBP5 expression of 1.3-fold (MCF-7) and 2.2-fold (T-47D). We propose a model in which the deletion allele of esv3594306 juxtaposes two transcription factor binding regions (annotated by estrogen receptor alpha ChIP-seq peaks) to generate a single extended regulatory element. This regulatory element increases cell-type-specific expression of the tumor suppressor gene IGFBP5 and, thereby, reduces risk of estrogen receptor-positive breast cancer (odds ratio = 0.77, 95% CI 0.74-0.81, p = 3.1 × 10).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2021.05.013DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8322933PMC
July 2021

The predictive ability of the 313 variant-based polygenic risk score for contralateral breast cancer risk prediction in women of European ancestry with a heterozygous BRCA1 or BRCA2 pathogenic variant.

Genet Med 2021 Jun 10. Epub 2021 Jun 10.

Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic.

Purpose: To evaluate the association between a previously published 313 variant-based breast cancer (BC) polygenic risk score (PRS) and contralateral breast cancer (CBC) risk, in BRCA1 and BRCA2 pathogenic variant heterozygotes.

Methods: We included women of European ancestry with a prevalent first primary invasive BC (BRCA1 = 6,591 with 1,402 prevalent CBC cases; BRCA2 = 4,208 with 647 prevalent CBC cases) from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA), a large international retrospective series. Cox regression analysis was performed to assess the association between overall and ER-specific PRS and CBC risk.

Results: For BRCA1 heterozygotes the estrogen receptor (ER)-negative PRS showed the largest association with CBC risk, hazard ratio (HR) per SD = 1.12, 95% confidence interval (CI) (1.06-1.18), C-index = 0.53; for BRCA2 heterozygotes, this was the ER-positive PRS, HR = 1.15, 95% CI (1.07-1.25), C-index = 0.57. Adjusting for family history, age at diagnosis, treatment, or pathological characteristics for the first BC did not change association effect sizes. For women developing first BC < age 40 years, the cumulative PRS 5th and 95th percentile 10-year CBC risks were 22% and 32% for BRCA1 and 13% and 23% for BRCA2 heterozygotes, respectively.

Conclusion: The PRS can be used to refine individual CBC risks for BRCA1/2 heterozygotes of European ancestry, however the PRS needs to be considered in the context of a multifactorial risk model to evaluate whether it might influence clinical decision-making.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41436-021-01198-7DOI Listing
June 2021

Gene-Environment Interactions Relevant to Estrogen and Risk of Breast Cancer: Can Gene-Environment Interactions Be Detected Only among Candidate SNPs from Genome-Wide Association Studies?

Cancers (Basel) 2021 May 14;13(10). Epub 2021 May 14.

Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, 2730 Herlev, Denmark.

In this study we aim to examine gene-environment interactions (GxEs) between genes involved with estrogen metabolism and environmental factors related to estrogen exposure. GxE analyses were conducted with 1970 Korean breast cancer cases and 2052 controls in the case-control study, the Seoul Breast Cancer Study (SEBCS). A total of 11,555 SNPs from the 137 candidate genes were included in the GxE analyses with eight established environmental factors. A replication test was conducted by using an independent population from the Breast Cancer Association Consortium (BCAC), with 62,485 Europeans and 9047 Asians. The GxE tests were performed by using two-step methods in GxEScan software. Two interactions were found in the SEBCS. The first interaction was shown between rs13035764 of NCOA1 and age at menarche in the GE|2df model (-2df = 1.2 × 10). The age at menarche before 14 years old was associated with the high risk of breast cancer, and the risk was higher when subjects had homozygous minor allele G. The second GxE was shown between rs851998 near ESR1 and height in the GE|2df model (-2df = 1.1 × 10). Height taller than 160 cm was associated with a high risk of breast cancer, and the risk increased when the minor allele was added. The findings were not replicated in the BCAC. These results would suggest specificity in Koreans for breast cancer risk.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/cancers13102370DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8156547PMC
May 2021

Evaluating Polygenic Risk Scores for Breast Cancer in Women of African Ancestry.

J Natl Cancer Inst 2021 Mar 26. Epub 2021 Mar 26.

Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK.

Background: Polygenic risk scores (PRS) have been demonstrated to identify women of European, Asian and Latino ancestry at elevated risk of developing breast cancer (BC). We evaluated the performance of existing PRSs trained in European ancestry populations among women of African ancestry.

Methods: We assembled genotype data for women of African ancestry, including 9,241 cases and 10,193 controls. We evaluated associations of 179- and 313-variant PRSs with overall and subtype-specific BC risk. PRS discriminatory accuracy was assessed using area under the receiver operating characteristic curve (AUC). We also evaluated a recalibrated PRS, replacing the index variant with variants in each region that better captured risk in women of African ancestry, and estimated lifetime absolute risk of BC in African Americans by PRS category.

Results: For overall BC, the odds ratios per standard deviation of PRS313 was 1.27 (95%CI = 1.23 to 1.31), with an AUC of 0.571 (95%CI = 0.562 to 0.579). Compared to women with average risk (40th-60th PRS percentile), women in the top decile of PRS313 had a 1.54-fold increased risk (95% CI = 1.38 to 1.72). By age 85 years, the absolute risk of overall BC was 19.6% for African American women in the top 1% of PRS313 and 6.7% for those in the lowest 1%. The recalibrated PRS did not improve BC risk prediction.

Conclusion: The PRSs stratify BC risk in women of African ancestry, with attenuated performance compared to that reported in European, Asian and Latina populations. Future work is needed to improve BC risk stratification for women of African ancestry.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/jnci/djab050DOI Listing
March 2021

A case-only study to identify genetic modifiers of breast cancer risk for BRCA1/BRCA2 mutation carriers.

Nat Commun 2021 02 17;12(1):1078. Epub 2021 Feb 17.

Copenhagen General Population Study, Herlev and Gentofte Hospital Copenhagen University Hospital, Herlev, Denmark.

Breast cancer (BC) risk for BRCA1 and BRCA2 mutation carriers varies by genetic and familial factors. About 50 common variants have been shown to modify BC risk for mutation carriers. All but three, were identified in general population studies. Other mutation carrier-specific susceptibility variants may exist but studies of mutation carriers have so far been underpowered. We conduct a novel case-only genome-wide association study comparing genotype frequencies between 60,212 general population BC cases and 13,007 cases with BRCA1 or BRCA2 mutations. We identify robust novel associations for 2 variants with BC for BRCA1 and 3 for BRCA2 mutation carriers, P < 10, at 5 loci, which are not associated with risk in the general population. They include rs60882887 at 11p11.2 where MADD, SP11 and EIF1, genes previously implicated in BC biology, are predicted as potential targets. These findings will contribute towards customising BC polygenic risk scores for BRCA1 and BRCA2 mutation carriers.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-020-20496-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7890067PMC
February 2021

CYP3A7*1C allele: linking premenopausal oestrone and progesterone levels with risk of hormone receptor-positive breast cancers.

Br J Cancer 2021 02 26;124(4):842-854. Epub 2021 Jan 26.

Molecular Epidemiology Group, C080, German Cancer Research Center (DKFZ), Heidelberg, Germany.

Background: Epidemiological studies provide strong evidence for a role of endogenous sex hormones in the aetiology of breast cancer. The aim of this analysis was to identify genetic variants that are associated with urinary sex-hormone levels and breast cancer risk.

Methods: We carried out a genome-wide association study of urinary oestrone-3-glucuronide and pregnanediol-3-glucuronide levels in 560 premenopausal women, with additional analysis of progesterone levels in 298 premenopausal women. To test for the association with breast cancer risk, we carried out follow-up genotyping in 90,916 cases and 89,893 controls from the Breast Cancer Association Consortium. All women were of European ancestry.

Results: For pregnanediol-3-glucuronide, there were no genome-wide significant associations; for oestrone-3-glucuronide, we identified a single peak mapping to the CYP3A locus, annotated by rs45446698. The minor rs45446698-C allele was associated with lower oestrone-3-glucuronide (-49.2%, 95% CI -56.1% to -41.1%, P = 3.1 × 10); in follow-up analyses, rs45446698-C was also associated with lower progesterone (-26.7%, 95% CI -39.4% to -11.6%, P = 0.001) and reduced risk of oestrogen and progesterone receptor-positive breast cancer (OR = 0.86, 95% CI 0.82-0.91, P = 6.9 × 10).

Conclusions: The CYP3A7*1C allele is associated with reduced risk of hormone receptor-positive breast cancer possibly mediated via an effect on the metabolism of endogenous sex hormones in premenopausal women.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41416-020-01185-wDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7884683PMC
February 2021

Breast Cancer Risk Genes - Association Analysis in More than 113,000 Women.

N Engl J Med 2021 02 20;384(5):428-439. Epub 2021 Jan 20.

The authors' affiliations are as follows: the Centre for Cancer Genetic Epidemiology, Departments of Public Health and Primary Care (L.D., S. Carvalho, J.A., K.A.P., Q.W., M.K.B., J.D., B.D., N. Mavaddat, K. Michailidou, A.C.A., P.D.P.P., D.F.E.) and Oncology (C.L., P.A.H., C. Baynes, D.M.C., L.F., V.R., M. Shah, P.D.P.P., A.M.D., D.F.E.), University of Cambridge, Cambridge, the Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine (A. Campbell, D.J.P.), and the Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology (D.J.P.), University of Edinburgh, the Cancer Research UK Edinburgh Centre (D.A.C., J.F.), and the Usher Institute of Population Health Sciences and Informatics, University of Edinburgh Medical School (A. Campbell, J.F.), Edinburgh, the Divisions of Informatics, Imaging, and Data Sciences (E.F.H.), Cancer Sciences (A. Howell), Population Health, Health Services Research, and Primary Care (A. Lophatananon, K. Muir), and Evolution and Genomic Sciences, School of Biological Sciences (W.G.N., E.M.V., D.G.E.), University of Manchester, the NIHR Manchester Biomedical Research Unit (E.F.H.) and the Nightingale Breast Screening Centre, Wythenshawe Hospital (E.F.H., H.I.), Academic Health Science Centre and North West Genomics Laboratory Hub, and the Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust (W.G.N., E.M.V., D.G.E.), Manchester, the School of Cancer and Pharmaceutical Sciences, Comprehensive Cancer Centre, Guy's Campus, King's College London, London (E.J.S.), the Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham (I.T.), and the Wellcome Trust Centre for Human Genetics and Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford (I.T.) - all in the United Kingdom; the Human Genotyping-CEGEN Unit, Human Cancer Genetic Program (A.G.-N., M.R.A., N.Á., B.H., R.N.-T.), and the Human Genetics Group (V.F., A.O., J.B.), Spanish National Cancer Research Center, Centro de Investigación en Red de Enfermedades Raras (A.O., J.B.), Servicio de Oncología Médica, Hospital Universitario La Paz (M.P.Z.), and Molecular Oncology Laboratory, Hospital Clinico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (M. de la Hoya), Madrid, the Genomic Medicine Group, Galician Foundation of Genomic Medicine, Instituto de Investigación Sanitaria de Santiago de Compostela, Complejo Hospitalario Universitario de Santiago (A. Carracedo, M.G.-D.), and Centro de Investigación en Red de Enfermedades Raras y Centro Nacional de Genotipado, Universidad de Santiago de Compostela (A. Carracedo), Santiago de Compostela, the Oncology and Genetics Unit, Instituto de Investigacion Sanitaria Galicia Sur, Xerencia de Xestion Integrada de Vigo-Servizo Galeo de Saúde, Vigo (J.E.C.), and Servicio de Cirugía General y Especialidades, Hospital Monte Naranco, Oviedo (J.I.A.P.) - all in Spain; the Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund (C. Wahlström, J.V., M.L., T. Törngren, Å.B., A.K.), the Department of Oncology, Örebro University Hospital, Örebro (C. Blomqvist), and the Departments of Medical Epidemiology and Biostatistics (K.C., M.E., M.G., P. Hall, W.H., K.H.), Oncology, Södersjukhuset (P. Hall, S. Margolin), Molecular Medicine and Surgery (A. Lindblom), and Clinical Science and Education, Södersjukhuset (S. Margolin, C. Wendt), Karolinska Institutet, and the Department of Clinical Genetics, Karolinska University Hospital (A. Lindblom), Stockholm - all in Sweden; the Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD (M.T.P., C.F., G.C.-T., A.B.S.), the Cancer Epidemiology Division, Cancer Council Victoria (G.G.G., R.J.M., R.L.M.), the Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health (G.G.G., R.J.M., R.L.M.), and the Department of Clinical Pathology (M.C.S.), University of Melbourne, Anatomical Pathology, Alfred Hospital (C.M.), and the Cancer Epidemiology Division, Cancer Council Victoria (M.C.S.), Melbourne, VIC, and Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC (G.G.G., M.C.S., R.L.M.) - all in Australia; the Division of Molecular Pathology (R.K., S. Cornelissen, M.K.S.), Family Cancer Clinic (F.B.L.H., L.E.K.), Department of Epidemiology (M.A.R.), and Division of Psychosocial Research and Epidemiology (M.K.S.), the Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, Division Laboratories, Pharmacy and Biomedical Genetics, Department of Genetics, University Medical Center, Utrecht (M.G.E.M.A.), the Department of Clinical Genetics, Erasmus University Medical Center (J.M.C., A.M.W.O.), and the Department of Medical Oncology, Family Cancer Clinic, Erasmus MC Cancer Institute (B.A.M.H.-G., A. Hollestelle, M.J.H.), Rotterdam, the Department of Clinical Genetics, Maastricht University Medical Center, Maastricht (E.B.G.G.), the Departments of Human Genetics (I.M.M.L., M.P.G.V., P.D.), Clinical Genetics (C.J.A.), and Pathology (P.D.), Leiden University Medical Center, Leiden, the Department of Human Genetics, Radboud University Medical Center, Nijmegen (A.R.M.), and the Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen (J.C.O.) - all in the Netherlands; the Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute (B.D.), and the Division of Cancer Epidemiology and Genetics, National Cancer Institute (T.A., S.J.C., X.R.Y., M.G.-C.), National Institutes of Health, Bethesda, MD; the Department of Pathology, Brigham and Women's Hospital, Harvard Medical School (B.D.), and the Department of Nutrition, Harvard T.H. Chan School of Public Health (R.M.V.D.), Boston; the Departments of Clinical Genetics (K.A.), Oncology (C. Blomqvist), and Obstetrics and Gynecology (H.N., M. Suvanto), Helsinki University Hospital, University of Helsinki, Helsinki, and the Unit of Clinical Oncology, Kuopio University Hospital (P. Auvinen), the Institute of Clinical Medicine, Oncology (P. Auvinen), the Translational Cancer Research Area (J.M.H., V.-M.K., A. Mannermaa), and the Institute of Clinical Medicine, Pathology, and Forensic Medicine (J.M.H., V.-M.K., A. Mannermaa), University of Eastern Finland, and the Biobank of Eastern Finland, Kuopio University Hospital (V.-M.K., A. Mannermaa), Kuopio - both in Finland; the N.N. Alexandrov Research Institute of Oncology and Medical Radiology, Minsk, Belarus (N.N.A., N.V.B.); the Department of Gynecology and Obstetrics and Institute of Clinical Molecular Biology, University Hospital of Schleswig-Holstein, Campus Kiel, Christian-Albrechts University Kiel, Kiel (N.A.), the Institute of Medical Biometry and Epidemiology (H. Becher) and Cancer Epidemiology Group (T.M., J.C.-C.), University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, the Department of Gynecology and Obstetrics (M.W.B., P.A.F., L.H.) and Institute of Human Genetics (A.B.E.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-European Metropolitan Region of Nuremberg, Erlangen, the Division of Cancer Epidemiology (S.B., A. Jung, P.M.K., J.C.-C.), Molecular Epidemiology Group, C080 (B. Burwinkel, H.S.), Division of Pediatric Neurooncology (A.F.), and Molecular Genetics of Breast Cancer (U.H., M.M., M.U.R., D.T.), German Cancer Research Center, Molecular Biology of Breast Cancer, University Women's Clinic Heidelberg, University of Heidelberg (B. Burwinkel, A.S., H.S.), Hopp Children's Cancer Center (A.F.), Faculty of Medicine, University of Heidelberg (P.M.K.), and National Center for Tumor Diseases, University Hospital and German Cancer Research Center (A.S., C.S.), Heidelberg, the Department of Radiation Oncology (N.V.B., M. Bremer, H.C.) and the Gynecology Research Unit (N.V.B., T.D., P. Hillemanns, T.-W.P.-S., P.S.), Hannover Medical School, Hannover, the Institute of Human Genetics, University of Münster, Münster (N.B.-M.), Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart (H. Brauch, W.-Y.L.), iFIT-Cluster of Excellence, University of Tübingen, and the German Cancer Consortium, German Cancer Research Center, Partner Site Tübingen (H. Brauch), and the University of Tübingen (W.-Y.L.), Tübingen, Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum, Bochum (T.B.), Institute for Medical Informatics, Statistics, and Epidemiology, University of Leipzig, Leipzig (C.E.), Center for Hereditary Breast and Ovarian Cancer (E.H., R.K.S.) and Center for Integrated Oncology (E.H., R.K.S.), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, the Department of Internal Medicine, Evangelische Kliniken Bonn, Johanniter Krankenhaus, Bonn (Y.-D.K.), the Department of Gynecology and Obstetrics, University of Munich, Campus Großhadern, Munich (A. Meindl), and the Institute of Pathology, Städtisches Klinikum Karlsruhe, Karlsruhe (T.R.) - all in Germany; the Gynecological Cancer Registry, Centre Georges-François Leclerc, Dijon (P. Arveux), and the Center for Research in Epidemiology and Population Health, Team Exposome and Heredity, INSERM, University Paris-Saclay, Villejuif (E.C.-D., P.G., T. Truong) - both in France; the Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences (M. Bermisheva, E.K.), the Department of Genetics and Fundamental Medicine, Bashkir State University (E.K., D.P., Y.V.), and the Ufa Research Institute of Occupational Health and Human Ecology (Y.V.), Ufa, Russia; the Department of Genetics and Pathology (K.B., A. Jakubowska, J. Lubiński, K.P.) and the Independent Laboratory of Molecular Biology and Genetic Diagnostics (A. Jakubowska), Pomeranian Medical University, Szczecin, Poland; the Copenhagen General Population Study, the Department of Clinical Biochemistry (S.E.B., B.G.N.), and the Department of Breast Surgery (H.F.), Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, and the Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen (S.E.B., B.G.N.) - both in Denmark; the Division of Cancer Prevention and Genetics, European Institute of Oncology Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) (B. Bonanni), the Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano (S. Manoukian), the Genome Diagnostics Program, FIRC Institute of Molecular Oncology (P.P.), and the Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori (P.R.), Milan; the Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet (A.-L.B.-D., G.I.G.A., V.N.K.), and the Institute of Clinical Medicine, Faculty of Medicine, University of Oslo (A.-L.B.-D., V.N.K.), Oslo; Medical Faculty, Universidad de La Sabana (I.B.), and the Clinical Epidemiology and Biostatistics Department (F.G.) and Institute of Human Genetics (D.T.), Pontificia Universidad Javeriana, Bogota, Colombia; the Department of Internal Medicine and Huntsman Cancer Institute, University of Utah (N.J.C., M.J.M., J.A.W.), and the Intermountain Healthcare Biorepository and Department of Pathology, Intermountain Healthcare (M.H.C.), Salt Lake City; the David Geffen School of Medicine, Department of Medicine Division of Hematology and Oncology, University of California, Los Angeles (P.A.F.), and Moores Cancer Center (M.G.-D., M.E.M.) and the Department of Family Medicine and Public Health (M.E.M.), University of California San Diego, La Jolla; the Departments of Medical Oncology (V.G., D.M.) and Pathology (M.T.), University Hospital of Heraklion, Heraklion, and the Department of Oncology, University Hospital of Larissa, Larissa (E.S.) - both in Greece; the Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital (G.G., I.L.A.), the Departments of Laboratory Medicine and Pathobiology (A.M.M.) and Molecular Genetics (I.L.A.), University of Toronto, and the Laboratory Medicine Program, University Health Network (A.M.M.), Toronto, and the Genomics Center, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Québec City, QC (J.S.) - both in Canada; the Department of Electron Microscopy and Molecular Pathology (A. Hadjisavvas, K.K., M.A.L.), the Cyprus School of Molecular Medicine (A. Hadjisavvas, K.K., M.A.L., K. Michailidou), and the Biostatistics Unit (K. Michailidou), Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus; the Saw Swee Hock School of Public Health (M. Hartman, R.M.V.D.) and the Department of Medicine, Yong Loo Lin School of Medicine (R.M.V.D.), National University of Singapore, the Department of Surgery, National University Health System (M. Hartman, J. Li), and the Human Genetics Division, Genome Institute of Singapore (J. Li), Singapore; the Department of Mathematical Sciences, Faculty of Science and Engineering, University of Nottingham Malaysia (W.K.H.), and the Breast Cancer Research Programme, Cancer Research Malaysia (W.K.H., P.S.N., S.-Y.Y., S.H.T.), Selangor, and the Breast Cancer Research Unit, Cancer Research Institute (N.A.M.T.), and the Department of Surgery, Faculty of Medicine (N.A.M.T., P.S.N., S.H.T.), University Malaya, Kuala Lumpur - both in Malaysia; Surgery, School of Medicine, National University of Ireland, Galway (M.J.K., N. Miller); the Department of Surgery, Daerim Saint Mary's Hospital (S.-W.K.), the Department of Surgery, Ulsan University College of Medicine and Asan Medical Center (J.W.L.), the Department of Surgery, Soonchunhyang University College of Medicine and Soonchunhyang University Hospital (M.H.L.), Integrated Major in Innovative Medical Science, Seoul National University College of Medicine (S.K.P.), and the Cancer Research Institute, Seoul National University (S.K.P.), Seoul, South Korea; the Department of Basic Sciences, Shaukat Khanum Memorial Cancer Hospital and Research Center, Lahore, Pakistan (M.U.R.); and the National Cancer Institute, Ministry of Public Health, Nonthaburi, Thailand (S.T.).

Background: Genetic testing for breast cancer susceptibility is widely used, but for many genes, evidence of an association with breast cancer is weak, underlying risk estimates are imprecise, and reliable subtype-specific risk estimates are lacking.

Methods: We used a panel of 34 putative susceptibility genes to perform sequencing on samples from 60,466 women with breast cancer and 53,461 controls. In separate analyses for protein-truncating variants and rare missense variants in these genes, we estimated odds ratios for breast cancer overall and tumor subtypes. We evaluated missense-variant associations according to domain and classification of pathogenicity.

Results: Protein-truncating variants in 5 genes (, , , , and ) were associated with a risk of breast cancer overall with a P value of less than 0.0001. Protein-truncating variants in 4 other genes (, , , and ) were associated with a risk of breast cancer overall with a P value of less than 0.05 and a Bayesian false-discovery probability of less than 0.05. For protein-truncating variants in 19 of the remaining 25 genes, the upper limit of the 95% confidence interval of the odds ratio for breast cancer overall was less than 2.0. For protein-truncating variants in and , odds ratios were higher for estrogen receptor (ER)-positive disease than for ER-negative disease; for protein-truncating variants in , , , , , and , odds ratios were higher for ER-negative disease than for ER-positive disease. Rare missense variants (in aggregate) in , , and were associated with a risk of breast cancer overall with a P value of less than 0.001. For , , and , missense variants (in aggregate) that would be classified as pathogenic according to standard criteria were associated with a risk of breast cancer overall, with the risk being similar to that of protein-truncating variants.

Conclusions: The results of this study define the genes that are most clinically useful for inclusion on panels for the prediction of breast cancer risk, as well as provide estimates of the risks associated with protein-truncating variants, to guide genetic counseling. (Funded by European Union Horizon 2020 programs and others.).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1056/NEJMoa1913948DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7611105PMC
February 2021

Detecting rare copy number variants from Illumina genotyping arrays with the CamCNV pipeline: Segmentation of z-scores improves detection and reliability.

Genet Epidemiol 2021 Apr 5;45(3):237-248. Epub 2020 Oct 5.

Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK.

The intensities from genotyping array data can be used to detect copy number variants (CNVs) but a high level of noise in the data and overlap between different copy-number intensity distributions produces unreliable calls, particularly when only a few probes are covered by the CNV. We present a novel pipeline (CamCNV) with a series of steps to reduce noise and detect more reliably CNVs covering as few as three probes. The pipeline aims to detect rare CNVs (below 1% frequency) for association tests in large cohorts. The method uses the information from all samples to convert intensities to z-scores, thus adjusting for variance between probes. We tested the sensitivity of our pipeline by looking for known CNVs from the 1000 Genomes Project in our genotyping of 1000 Genomes samples. We also compared the CNV calls for 1661 pairs of genotyped replicate samples. At the chosen mean z-score cut-off, sensitivity to detect the 1000 Genomes CNVs was approximately 85% for deletions and 65% for duplications. From the replicates, we estimate the false discovery rate is controlled at ∼10% for deletions (falling to below 3% with more than five probes) and ∼28% for duplications. The pipeline demonstrates improved sensitivity when compared to calling with PennCNV, particularly for short deletions covering only a few probes. For each called CNV, the mean z-score is a useful metric for controlling the false discovery rate.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/gepi.22367DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8005414PMC
April 2021

Association of germline variation with the survival of women with pathogenic variants and breast cancer.

NPJ Breast Cancer 2020 10;6:44. Epub 2020 Sep 10.

Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Fred A. Litwin Center for Cancer Genetics, Toronto, ON Canada.

Germline genetic variation has been suggested to influence the survival of breast cancer patients independently of tumor pathology. We have studied survival associations of genetic variants in two etiologically unique groups of breast cancer patients, the carriers of germline pathogenic variants in or genes. We found that rs57025206 was significantly associated with the overall survival, predicting higher mortality of carrier patients with estrogen receptor-negative breast cancer, with a hazard ratio 4.37 (95% confidence interval 3.03-6.30,  = 3.1 × 10). Multivariable analysis adjusted for tumor characteristics suggested that rs57025206 was an independent survival marker. In addition, our exploratory analyses suggest that the associations between genetic variants and breast cancer patient survival may depend on tumor biological subgroup and clinical patient characteristics.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41523-020-00185-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7483417PMC
September 2020

Mendelian randomization analyses suggest a role for cholesterol in the development of endometrial cancer.

Int J Cancer 2021 01 7;148(2):307-319. Epub 2020 Aug 7.

Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia, USA.

Blood lipids have been associated with the development of a range of cancers, including breast, lung and colorectal cancer. For endometrial cancer, observational studies have reported inconsistent associations between blood lipids and cancer risk. To reduce biases from unmeasured confounding, we performed a bidirectional, two-sample Mendelian randomization analysis to investigate the relationship between levels of three blood lipids (low-density lipoprotein [LDL] and high-density lipoprotein [HDL] cholesterol, and triglycerides) and endometrial cancer risk. Genetic variants associated with each of these blood lipid levels (P < 5 × 10 ) were identified as instrumental variables, and assessed using genome-wide association study data from the Endometrial Cancer Association Consortium (12 906 cases and 108 979 controls) and the Global Lipids Genetic Consortium (n = 188 578). Mendelian randomization analyses found genetically raised LDL cholesterol levels to be associated with lower risks of endometrial cancer of all histologies combined, and of endometrioid and non-endometrioid subtypes. Conversely, higher genetically predicted HDL cholesterol levels were associated with increased risk of non-endometrioid endometrial cancer. After accounting for the potential confounding role of obesity (as measured by genetic variants associated with body mass index), the association between genetically predicted increased LDL cholesterol levels and lower endometrial cancer risk remained significant, especially for non-endometrioid endometrial cancer. There was no evidence to support a role for triglycerides in endometrial cancer development. Our study supports a role for LDL and HDL cholesterol in the development of non-endometrioid endometrial cancer. Further studies are required to understand the mechanisms underlying these findings.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ijc.33206DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7757859PMC
January 2021

European polygenic risk score for prediction of breast cancer shows similar performance in Asian women.

Nat Commun 2020 07 31;11(1):3833. Epub 2020 Jul 31.

Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore, Singapore.

Polygenic risk scores (PRS) have been shown to predict breast cancer risk in European women, but their utility in Asian women is unclear. Here we evaluate the best performing PRSs for European-ancestry women using data from 17,262 breast cancer cases and 17,695 controls of Asian ancestry from 13 case-control studies, and 10,255 Chinese women from a prospective cohort (413 incident breast cancers). Compared to women in the middle quintile of the risk distribution, women in the highest 1% of PRS distribution have a ~2.7-fold risk and women in the lowest 1% of PRS distribution has ~0.4-fold risk of developing breast cancer. There is no evidence of heterogeneity in PRS performance in Chinese, Malay and Indian women. A PRS developed for European-ancestry women is also predictive of breast cancer risk in Asian women and can help in developing risk-stratified screening programmes in Asia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-020-17680-wDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7395776PMC
July 2020

Polygenic risk scores and breast and epithelial ovarian cancer risks for carriers of BRCA1 and BRCA2 pathogenic variants.

Genet Med 2020 10 15;22(10):1653-1666. Epub 2020 Jul 15.

Royal Devon & Exeter Hospital, Department of Clinical Genetics, Exeter, UK.

Purpose: We assessed the associations between population-based polygenic risk scores (PRS) for breast (BC) or epithelial ovarian cancer (EOC) with cancer risks for BRCA1 and BRCA2 pathogenic variant carriers.

Methods: Retrospective cohort data on 18,935 BRCA1 and 12,339 BRCA2 female pathogenic variant carriers of European ancestry were available. Three versions of a 313 single-nucleotide polymorphism (SNP) BC PRS were evaluated based on whether they predict overall, estrogen receptor (ER)-negative, or ER-positive BC, and two PRS for overall or high-grade serous EOC. Associations were validated in a prospective cohort.

Results: The ER-negative PRS showed the strongest association with BC risk for BRCA1 carriers (hazard ratio [HR] per standard deviation = 1.29 [95% CI 1.25-1.33], P = 3×10). For BRCA2, the strongest association was with overall BC PRS (HR = 1.31 [95% CI 1.27-1.36], P = 7×10). HR estimates decreased significantly with age and there was evidence for differences in associations by predicted variant effects on protein expression. The HR estimates were smaller than general population estimates. The high-grade serous PRS yielded the strongest associations with EOC risk for BRCA1 (HR = 1.32 [95% CI 1.25-1.40], P = 3×10) and BRCA2 (HR = 1.44 [95% CI 1.30-1.60], P = 4×10) carriers. The associations in the prospective cohort were similar.

Conclusion: Population-based PRS are strongly associated with BC and EOC risks for BRCA1/2 carriers and predict substantial absolute risk differences for women at PRS distribution extremes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41436-020-0862-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7521995PMC
October 2020

Assessment of polygenic architecture and risk prediction based on common variants across fourteen cancers.

Nat Commun 2020 07 3;11(1):3353. Epub 2020 Jul 3.

Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK.

Genome-wide association studies (GWAS) have led to the identification of hundreds of susceptibility loci across cancers, but the impact of further studies remains uncertain. Here we analyse summary-level data from GWAS of European ancestry across fourteen cancer sites to estimate the number of common susceptibility variants (polygenicity) and underlying effect-size distribution. All cancers show a high degree of polygenicity, involving at a minimum of thousands of loci. We project that sample sizes required to explain 80% of GWAS heritability vary from 60,000 cases for testicular to over 1,000,000 cases for lung cancer. The maximum relative risk achievable for subjects at the 99th risk percentile of underlying polygenic risk scores (PRS), compared to average risk, ranges from 12 for testicular to 2.5 for ovarian cancer. We show that PRS have potential for risk stratification for cancers of breast, colon and prostate, but less so for others because of modest heritability and lower incidence.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-020-16483-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7335068PMC
July 2020

Germline HOXB13 mutations p.G84E and p.R217C do not confer an increased breast cancer risk.

Sci Rep 2020 06 16;10(1):9688. Epub 2020 Jun 16.

Department of Gynecology and Obstetrics, University of Tübingen, Tübingen, Germany.

In breast cancer, high levels of homeobox protein Hox-B13 (HOXB13) have been associated with disease progression of ER-positive breast cancer patients and resistance to tamoxifen treatment. Since HOXB13 p.G84E is a prostate cancer risk allele, we evaluated the association between HOXB13 germline mutations and breast cancer risk in a previous study consisting of 3,270 familial non-BRCA1/2 breast cancer cases and 2,327 controls from the Netherlands. Although both recurrent HOXB13 mutations p.G84E and p.R217C were not associated with breast cancer risk, the risk estimation for p.R217C was not very precise. To provide more conclusive evidence regarding the role of HOXB13 in breast cancer susceptibility, we here evaluated the association between HOXB13 mutations and increased breast cancer risk within 81 studies of the international Breast Cancer Association Consortium containing 68,521 invasive breast cancer patients and 54,865 controls. Both HOXB13 p.G84E and p.R217C did not associate with the development of breast cancer in European women, neither in the overall analysis (OR = 1.035, 95% CI = 0.859-1.246, P = 0.718 and OR = 0.798, 95% CI = 0.482-1.322, P = 0.381 respectively), nor in specific high-risk subgroups or breast cancer subtypes. Thus, although involved in breast cancer progression, HOXB13 is not a material breast cancer susceptibility gene.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-020-65665-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7297796PMC
June 2020

Population Study of Ovarian Cancer Risk Prediction for Targeted Screening and Prevention.

Cancers (Basel) 2020 May 15;12(5). Epub 2020 May 15.

Wolfson Institute of Preventative Medicine, Barts CRUK Cancer Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.

Unselected population-based personalised ovarian cancer (OC) risk assessment combining genetic/epidemiology/hormonal data has not previously been undertaken. We aimed to perform a feasibility study of OC risk stratification of general population women using a personalised OC risk tool followed by risk management. Volunteers were recruited through London primary care networks.

Inclusion Criteria: women ≥18 years.

Exclusion Criteria: prior ovarian/tubal/peritoneal cancer, previous genetic testing for OC genes. Participants accessed an online/web-based decision aid along with optional telephone helpline use. Consenting individuals completed risk assessment and underwent genetic testing (, OC susceptibility single-nucleotide polymorphisms). A validated OC risk prediction algorithm provided a personalised OC risk estimate using genetic/lifestyle/hormonal OC risk factors. Population genetic testing (PGT)/OC risk stratification uptake/acceptability, satisfaction, decision aid/telephone helpline use, psychological health and quality of life were assessed using validated/customised questionnaires over six months. Linear-mixed models/contrast tests analysed impact on study outcomes.

Main Outcomes: feasibility/acceptability, uptake, decision aid/telephone helpline use, satisfaction/regret, and impact on psychological health/quality of life. In total, 123 volunteers (mean age = 48.5 (SD = 15.4) years) used the decision aid, 105 (85%) consented. None fulfilled NHS genetic testing clinical criteria. OC risk stratification revealed 1/103 at ≥10% (high), 0/103 at ≥5%-<10% (intermediate), and 100/103 at <5% (low) lifetime OC risk. Decision aid satisfaction was 92.2%. The telephone helpline use rate was 13% and the questionnaire response rate at six months was 75%. Contrast tests indicated that overall depression ( = 0.30), anxiety ( = 0.10), quality-of-life ( = 0.99), and distress ( = 0.25) levels did not jointly change, while OC worry ( = 0.021) and general cancer risk perception ( = 0.015) decreased over six months. In total, 85.5-98.7% were satisfied with their decision. Findings suggest population-based personalised OC risk stratification is feasible and acceptable, has high satisfaction, reduces cancer worry/risk perception, and does not negatively impact psychological health/quality of life.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/cancers12051241DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7281662PMC
May 2020

Genome-wide association study identifies 32 novel breast cancer susceptibility loci from overall and subtype-specific analyses.

Nat Genet 2020 06 18;52(6):572-581. Epub 2020 May 18.

Molecular Medicine Unit, Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain.

Breast cancer susceptibility variants frequently show heterogeneity in associations by tumor subtype. To identify novel loci, we performed a genome-wide association study including 133,384 breast cancer cases and 113,789 controls, plus 18,908 BRCA1 mutation carriers (9,414 with breast cancer) of European ancestry, using both standard and novel methodologies that account for underlying tumor heterogeneity by estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2 status and tumor grade. We identified 32 novel susceptibility loci (P < 5.0 × 10), 15 of which showed evidence for associations with at least one tumor feature (false discovery rate < 0.05). Five loci showed associations (P < 0.05) in opposite directions between luminal and non-luminal subtypes. In silico analyses showed that these five loci contained cell-specific enhancers that differed between normal luminal and basal mammary cells. The genetic correlations between five intrinsic-like subtypes ranged from 0.35 to 0.80. The proportion of genome-wide chip heritability explained by all known susceptibility loci was 54.2% for luminal A-like disease and 37.6% for triple-negative disease. The odds ratios of polygenic risk scores, which included 330 variants, for the highest 1% of quantiles compared with middle quantiles were 5.63 and 3.02 for luminal A-like and triple-negative disease, respectively. These findings provide an improved understanding of genetic predisposition to breast cancer subtypes and will inform the development of subtype-specific polygenic risk scores.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-020-0609-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7808397PMC
June 2020

Clustering of known low and moderate risk alleles rather than a novel recessive high-risk gene in non-BRCA1/2 sib trios affected with breast cancer.

Int J Cancer 2020 11 30;147(10):2708-2716. Epub 2020 May 30.

Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands.

Breast cancer risk is approximately twice as high in first-degree relatives of female breast cancer cases than in women in the general population. Less than half of this risk can be attributed to the currently known genetic risk factors. Recessive risk alleles represent a relatively underexplored explanation for the remainder of familial risk. To address this, we selected 19 non-BRCA1/2 breast cancer families in which at least three siblings were affected, while no first-degree relatives of the previous or following generation had breast cancer. Germline DNA from one of the siblings was subjected to exome sequencing, while all affected siblings were genotyped using SNP arrays to assess haplotype sharing and to calculate a polygenic risk score (PRS) based on 160 low-risk variants. We found no convincing candidate recessive alleles among exome sequencing variants in genomic regions for which all three siblings shared two haplotypes. However, we found two families in which all affected siblings carried the CHEK2*1100delC. In addition, the average normalized PRS of the "recessive" family probands (0.81) was significantly higher than that in both general population cases (0.35, P = .026) and controls (P = .0004). These findings suggest that the familial aggregation is, at least in part, explained by a polygenic effect of common low-risk variants and rarer intermediate-risk variants, while we did not find evidence of a role for novel recessive risk alleles.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ijc.33039DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7540545PMC
November 2020

Combined Associations of a Polygenic Risk Score and Classical Risk Factors With Breast Cancer Risk.

J Natl Cancer Inst 2021 Mar;113(3):329-337

Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.

We evaluated the joint associations between a new 313-variant PRS (PRS313) and questionnaire-based breast cancer risk factors for women of European ancestry, using 72 284 cases and 80 354 controls from the Breast Cancer Association Consortium. Interactions were evaluated using standard logistic regression and a newly developed case-only method for breast cancer risk overall and by estrogen receptor status. After accounting for multiple testing, we did not find evidence that per-standard deviation PRS313 odds ratio differed across strata defined by individual risk factors. Goodness-of-fit tests did not reject the assumption of a multiplicative model between PRS313 and each risk factor. Variation in projected absolute lifetime risk of breast cancer associated with classical risk factors was greater for women with higher genetic risk (PRS313 and family history) and, on average, 17.5% higher in the highest vs lowest deciles of genetic risk. These findings have implications for risk prevention for women at increased risk of breast cancer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/jnci/djaa056DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7936056PMC
March 2021

Identification of novel breast cancer susceptibility loci in meta-analyses conducted among Asian and European descendants.

Nat Commun 2020 03 5;11(1):1217. Epub 2020 Mar 5.

Departments of Health Research and Policy, School of Medicine, Stanford University, California, CA, USA.

Known risk variants explain only a small proportion of breast cancer heritability, particularly in Asian women. To search for additional genetic susceptibility loci for breast cancer, here we perform a meta-analysis of data from genome-wide association studies (GWAS) conducted in Asians (24,206 cases and 24,775 controls) and European descendants (122,977 cases and 105,974 controls). We identified 31 potential novel loci with the lead variant showing an association with breast cancer risk at P < 5 × 10. The associations for 10 of these loci were replicated in an independent sample of 16,787 cases and 16,680 controls of Asian women (P < 0.05). In addition, we replicated the associations for 78 of the 166 known risk variants at P < 0.05 in Asians. These findings improve our understanding of breast cancer genetics and etiology and extend previous findings from studies of European descendants to Asian women.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-020-15046-wDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7057957PMC
March 2020

Transcriptome-wide association study of breast cancer risk by estrogen-receptor status.

Genet Epidemiol 2020 07 1;44(5):442-468. Epub 2020 Mar 1.

Department of Radiation Oncology, Hannover Medical School, Hannover, Germany.

Previous transcriptome-wide association studies (TWAS) have identified breast cancer risk genes by integrating data from expression quantitative loci and genome-wide association studies (GWAS), but analyses of breast cancer subtype-specific associations have been limited. In this study, we conducted a TWAS using gene expression data from GTEx and summary statistics from the hitherto largest GWAS meta-analysis conducted for breast cancer overall, and by estrogen receptor subtypes (ER+ and ER-). We further compared associations with ER+ and ER- subtypes, using a case-only TWAS approach. We also conducted multigene conditional analyses in regions with multiple TWAS associations. Two genes, STXBP4 and HIST2H2BA, were specifically associated with ER+ but not with ER- breast cancer. We further identified 30 TWAS-significant genes associated with overall breast cancer risk, including four that were not identified in previous studies. Conditional analyses identified single independent breast-cancer gene in three of six regions harboring multiple TWAS-significant genes. Our study provides new information on breast cancer genetics and biology, particularly about genomic differences between ER+ and ER- breast cancer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/gepi.22288DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7987299PMC
July 2020

Ovarian and Breast Cancer Risks Associated With Pathogenic Variants in RAD51C and RAD51D.

J Natl Cancer Inst 2020 12;112(12):1242-1250

Department of Clinical Genetics Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.

Background: The purpose of this study was to estimate precise age-specific tubo-ovarian carcinoma (TOC) and breast cancer (BC) risks for carriers of pathogenic variants in RAD51C and RAD51D.

Methods: We analyzed data from 6178 families, 125 with pathogenic variants in RAD51C, and 6690 families, 60 with pathogenic variants in RAD51D. TOC and BC relative and cumulative risks were estimated using complex segregation analysis to model the cancer inheritance patterns in families while adjusting for the mode of ascertainment of each family. All statistical tests were two-sided.

Results: Pathogenic variants in both RAD51C and RAD51D were associated with TOC (RAD51C: relative risk [RR] = 7.55, 95% confidence interval [CI] = 5.60 to 10.19; P = 5 × 10-40; RAD51D: RR = 7.60, 95% CI = 5.61 to 10.30; P = 5 × 10-39) and BC (RAD51C: RR = 1.99, 95% CI = 1.39 to 2.85; P = 1.55 × 10-4; RAD51D: RR = 1.83, 95% CI = 1.24 to 2.72; P = .002). For both RAD51C and RAD51D, there was a suggestion that the TOC relative risks increased with age until around age 60 years and decreased thereafter. The estimated cumulative risks of developing TOC to age 80 years were 11% (95% CI = 6% to 21%) for RAD51C and 13% (95% CI = 7% to 23%) for RAD51D pathogenic variant carriers. The estimated cumulative risks of developing BC to 80 years were 21% (95% CI = 15% to 29%) for RAD51C and 20% (95% CI = 14% to 28%) for RAD51D pathogenic variant carriers. Both TOC and BC risks for RAD51C and RAD51D pathogenic variant carriers varied by cancer family history and could be as high as 32-36% for TOC, for carriers with two first-degree relatives diagnosed with TOC, or 44-46% for BC, for carriers with two first-degree relatives diagnosed with BC.

Conclusions: These estimates will facilitate the genetic counseling of RAD51C and RAD51D pathogenic variant carriers and justify the incorporation of RAD51C and RAD51D into cancer risk prediction models.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/jnci/djaa030DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7735771PMC
December 2020

External Validation of Risk Prediction Models Incorporating Common Genetic Variants for Incident Colorectal Cancer Using UK Biobank.

Cancer Prev Res (Phila) 2020 06 18;13(6):509-520. Epub 2020 Feb 18.

The Primary Care Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom.

The aim of this study was to compare and externally validate risk scores developed to predict incident colorectal cancer that include common genetic variants (SNPs), with or without established lifestyle/environmental (questionnaire-based/classical/phenotypic) risk factors. We externally validated 23 risk models from a previous systematic review in 443,888 participants ages 37 to 73 from the UK Biobank cohort who had 6-year prospective follow-up, no prior history of colorectal cancer, and data for incidence of colorectal cancer through linkage to national cancer registries. There were 2,679 (0.6%) cases of incident colorectal cancer. We assessed model discrimination using the area under the operating characteristic curve (AUC) and relative risk calibration. The AUC of models including only SNPs increased with the number of included SNPs and was similar in men and women: the model by Huyghe with 120 SNPs had the highest AUC of 0.62 [95% confidence interval (CI), 0.59-0.64] in women and 0.64 (95% CI, 0.61-0.66) in men. Adding phenotypic risk factors without age improved discrimination in men but not in women. Adding phenotypic risk factors and age increased discrimination in all cases ( < 0.05), with the best performing models including SNPs, phenotypic risk factors, and age having AUCs between 0.64 and 0.67 in women and 0.67 and 0.71 in men. Relative risk calibration varied substantially across the models. Among middle-aged people in the UK, existing polygenic risk scores discriminate moderately well between those who do and do not develop colorectal cancer over 6 years. Consideration should be given to exploring the feasibility of incorporating genetic and lifestyle/environmental information in any future stratified colorectal cancer screening program.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/1940-6207.CAPR-19-0521DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610623PMC
June 2020

A network analysis to identify mediators of germline-driven differences in breast cancer prognosis.

Nat Commun 2020 01 16;11(1):312. Epub 2020 Jan 16.

Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.

Identifying the underlying genetic drivers of the heritability of breast cancer prognosis remains elusive. We adapt a network-based approach to handle underpowered complex datasets to provide new insights into the potential function of germline variants in breast cancer prognosis. This network-based analysis studies ~7.3 million variants in 84,457 breast cancer patients in relation to breast cancer survival and confirms the results on 12,381 independent patients. Aggregating the prognostic effects of genetic variants across multiple genes, we identify four gene modules associated with survival in estrogen receptor (ER)-negative and one in ER-positive disease. The modules show biological enrichment for cancer-related processes such as G-alpha signaling, circadian clock, angiogenesis, and Rho-GTPases in apoptosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-019-14100-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6965101PMC
January 2020

Fine-mapping of 150 breast cancer risk regions identifies 191 likely target genes.

Nat Genet 2020 01 7;52(1):56-73. Epub 2020 Jan 7.

Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy.

Genome-wide association studies have identified breast cancer risk variants in over 150 genomic regions, but the mechanisms underlying risk remain largely unknown. These regions were explored by combining association analysis with in silico genomic feature annotations. We defined 205 independent risk-associated signals with the set of credible causal variants in each one. In parallel, we used a Bayesian approach (PAINTOR) that combines genetic association, linkage disequilibrium and enriched genomic features to determine variants with high posterior probabilities of being causal. Potentially causal variants were significantly over-represented in active gene regulatory regions and transcription factor binding sites. We applied our INQUSIT pipeline for prioritizing genes as targets of those potentially causal variants, using gene expression (expression quantitative trait loci), chromatin interaction and functional annotations. Known cancer drivers, transcription factors and genes in the developmental, apoptosis, immune system and DNA integrity checkpoint gene ontology pathways were over-represented among the highest-confidence target genes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-019-0537-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6974400PMC
January 2020

A Mendelian randomization analysis of circulating lipid traits and breast cancer risk.

Int J Epidemiol 2020 08;49(4):1117-1131

Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA.

Background: Conventional epidemiologic studies have evaluated associations between circulating lipid levels and breast cancer risk, but results have been inconsistent. As Mendelian randomization analyses may provide evidence for causal inference, we sought to evaluate potentially unbiased associations between breast cancer risk and four genetically predicted lipid traits.

Methods: Previous genome-wide association studies (GWAS) have identified 164 discrete variants associated with high density lipoprotein-cholesterol (HDL-C), low density lipoprotein-cholesterol (LDL-C), triglycerides and total cholesterol. We used 162 of these unique variants to construct weighted genetic scores (wGSs) for a total of 101 424 breast cancer cases and 80 253 controls of European ancestry from the Breast Cancer Association Consortium (BCAC). Unconditional logistic regression was used to estimate odds ratios (OR) and 95% confidence intervals (CI) for associations between per standard deviation increase in genetically predicted lipid traits and breast cancer risk. Additional Mendelian randomization analysis approaches and sensitivity analyses were conducted to assess pleiotropy and instrument validity.

Results: Corresponding to approximately 15 mg/dL, one standard deviation increase in genetically predicted HDL-C was associated with a 12% increased breast cancer risk (OR: 1.12, 95% CI: 1.08-1.16). Findings were consistent after adjustment for breast cancer risk factors and were robust in several sensitivity analyses. Associations with genetically predicted triglycerides and total cholesterol were inconsistent, and no association for genetically predicted LDL-C was observed.

Conclusions: This study provides strong evidence that circulating HDL-C may be associated with an increased risk of breast cancer, whereas LDL-C may not be related to breast cancer risk.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/ije/dyz242DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7750975PMC
August 2020

Genetic predisposition to mosaic Y chromosome loss in blood.

Nature 2019 11 20;575(7784):652-657. Epub 2019 Nov 20.

Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK.

Mosaic loss of chromosome Y (LOY) in circulating white blood cells is the most common form of clonal mosaicism, yet our knowledge of the causes and consequences of this is limited. Here, using a computational approach, we estimate that 20% of the male population represented in the UK Biobank study (n = 205,011) has detectable LOY. We identify 156 autosomal genetic determinants of LOY, which we replicate in 757,114 men of European and Japanese ancestry. These loci highlight genes that are involved in cell-cycle regulation and cancer susceptibility, as well as somatic drivers of tumour growth and targets of cancer therapy. We demonstrate that genetic susceptibility to LOY is associated with non-haematological effects on health in both men and women, which supports the hypothesis that clonal haematopoiesis is a biomarker of genomic instability in other tissues. Single-cell RNA sequencing identifies dysregulated expression of autosomal genes in leukocytes with LOY and provides insights into why clonal expansion of these cells may occur. Collectively, these data highlight the value of studying clonal mosaicism to uncover fundamental mechanisms that underlie cancer and other ageing-related diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-019-1765-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6887549PMC
November 2019
-->