Publications by authors named "Joan Montaner"

369 Publications

Thrombolysis by PLAT/tPA increases serum free IGF1 leading to a decrease of deleterious autophagy following brain ischemia.

Autophagy 2021 Sep 14:1-21. Epub 2021 Sep 14.

Physiopathology and Imaging of Neurological Disorders (PhIND), Institute Blood and Brain @Caen-Normandie ([email protected]), GIP Cyceron, Normandy University, UNICAEN, INSERM, UMR-S U1237, Caen, France.

Cerebral ischemia is a pathology involving a cascade of cellular mechanisms, leading to the deregulation of proteostasis, including macroautophagy/autophagy, and finally to neuronal death. If it is now accepted that cerebral ischemia induces autophagy, the effect of thrombolysis/energy recovery on proteostasis remains unknown. Here, we investigated the effect of thrombolysis by PLAT/tPA (plasminogen activator, tissue) on autophagy and neuronal death. In two models of hypoxia reperfusion and an model of thromboembolic stroke with thrombolysis by PLAT/tPA, we found that ischemia enhances neuronal deleterious autophagy. Interestingly, PLAT/tPA decreases autophagy to mediate neuroprotection by modulating the PI3K-AKT-MTOR pathways both and . We identified IGF1R (insulin-like growth factor I receptor; a tyrosine kinase receptor) as the effective receptor and showed and in human stroke patients and that PLAT/tPA is able to degrade IGFBP3 (insulin-like growth factor binding protein 3) to increase IGF1 (insulin-like growth factor 1) bioavailability and thus IGF1R activation. AKT/protein kinase B: thymoma viral proto-oncogene 1; EGFR: epidermal growth factor receptor; Hx: hypoxia; IGF1: insulin-like growth factor 1; IGF1R: insulin-like growth factor I receptor; IGFBP3: insulin-like growth factor binding protein 3; Ka: Kainate; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MAPK/ERK: mitogen-activated protein kinase; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; OGD: oxygen and glucose deprivation; OGD: oxygen and glucose deprivation + reoxygentation; PepA: pepstatin A1; PI3K: phosphoinositide 3-kinase; PLAT/tPA: plasminogen activator, tissue; PPP: picropodophyllin; SCH77: SCH772984; ULK1: unc-51 like kinase 1; Wort: wortmannin.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/15548627.2021.1973339DOI Listing
September 2021

Gender Gap in the Leadership of Health Institutions: The Influence of Hospital-Level Factors.

Health Equity 2021 13;5(1):521-525. Epub 2021 Aug 13.

Stroke Unit, Neurology Department, Hospital Universitario Virgen Macarena, Sevilla, Spain.

To analyze whether the increased representation of women in the health field is accompanied by a greater presence in leadership positions in the public health system and whether there are differences according to the hospital level. A descriptive study of the distribution of leadership positions by sex and type of hospital within the health centers of a regional public health system. In total, 74.01% of the professionals were women. The representation of women in management positions was 33.1%, and among service chiefs, it was 24.01%. In the service headings, we observed that surgical specialties had a lower representation of women (30.9% in medical specialties vs. 18.1% in surgical specialties, <0.0001). By type of hospital, no differences were found in the management positions, but there were differences in the medical chiefs, with less female representation in the regional hospitals (28.6% vs. 39.7%, =0.003). Women represent the majority in the public health system. Nonetheless, their representation in positions of greater responsibility and decision-making is very limited, being particularly low in county hospitals. Increasing female representation in these positions is a current challenge for society, and equality policies need to be developed and applied to minimize this gender gap.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1089/heq.2021.0013DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8409238PMC
August 2021

Allogeneic adipose tissue-derived mesenchymal stem cells in ischaemic stroke (AMASCIS-02): a phase IIb, multicentre, double-blind, placebo-controlled clinical trial protocol.

BMJ Open 2021 08 9;11(8):e051790. Epub 2021 Aug 9.

Department of Neurology and Stroke Centre; Neurosciences Area, Hospital La Paz Institute for Health Research-IdiPAZ (La Paz University Hospital-Universidad Autónoma de Madrid), Madrid, Spain.

Introduction: Stroke is a serious public health problem, given it is a major cause of disability worldwide despite the spread of recanalisation therapies. Enhancement of brain plasticity with stem cell administration is a promising innovative therapy to reduce sequelae in these patients.

Methods And Analysis: We have developed a phase IIb, multicentre, randomised, double-blind, placebo-controlled clinical trial protocol to evaluate the safety and efficacy of intravenous administration of allogeneic adipose tissue-derived mesenchymal stem cells (AD-MSCs) in patients with acute ischaemic stroke, concurrently with conventional stroke treatment. Thirty patients will be randomised on a 1:1 basis to receive either intravenous placebo or allogeneic AD-MSCs as soon as possible within the first 4 days from stroke symptom onset. Patients will be followed up to 24 months after randomisation. The primary objective is the safety assessment of early intravenous administration of allogeneic AD-MSCs by reporting all adverse events and neurological or systemic complications in both treatment groups. Secondary objectives assess efficacy of early intravenous AD-MSC treatment in acute ischaemic stroke by evaluating changes in the modified Rankin Scale and the National Institutes of Health Stroke Scale throughout the follow-up period. In addition, brain repair biomarkers will be measured at various visits.

Ethics And Dissemination: This clinical trial has been approved by the Clinical Research Ethics Committee of La Paz University Hospital (Madrid, Spain) and by the Spanish Agency of Medication and Health Products and has been registered in Eudra CT (2019-001724-35) and ClinicalTrials.gov (NCT04280003). Study results will be disseminated through peer-reviewed publications in Open Access format and at conference presentations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1136/bmjopen-2021-051790DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8354278PMC
August 2021

Genetic Variation Is Associated with Post-Reperfusion Therapy Parenchymal Hematoma. A GWAS Meta-Analysis.

J Clin Med 2021 Jul 16;10(14). Epub 2021 Jul 16.

Department of Neurology, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain.

Stroke is one of the most common causes of death and disability. Reperfusion therapies are the only treatment available during the acute phase of stroke. Due to recent clinical trials, these therapies may increase their frequency of use by extending the time-window administration, which may lead to an increase in complications such as hemorrhagic transformation, with parenchymal hematoma (PH) being the more severe subtype, associated with higher mortality and disability rates. Our aim was to find genetic risk factors associated with PH, as that could provide molecular targets/pathways for their prevention/treatment and study its genetic correlations to find traits sharing genetic background. We performed a GWAS and meta-analysis, following standard quality controls and association analysis (fastGWAS), adjusting age, NIHSS, and principal components. FUMA was used to annotate, prioritize, visualize, and interpret the meta-analysis results. The total number of patients in the meta-analysis was 2034 (216 cases and 1818 controls). We found rs79770152 having a genome-wide significant association (beta 0.09, -value 3.90 × 10) located in the gene and a suggestive variant (rs13297983: beta 0.07, -value 6.10 × 10) located in associated with PH occurrence. The genetic correlation showed a shared genetic background of PH with Alzheimer's disease and white matter hyperintensities. In addition, genes containing the ten most significant associations have been related to aggregated amyloid-β, tau protein, white matter microstructure, inflammation, and matrix metalloproteinases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/jcm10143137DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8305811PMC
July 2021

New candidate blood biomarkers potentially associated with white matter hyperintensities progression.

Sci Rep 2021 Jul 12;11(1):14324. Epub 2021 Jul 12.

Neurovascular Research Lab. Vall D'Hebron Research Institute, Universitat Autònoma de Barcelona, Edifici Mediterrània, Planta 1ª, Laboratori 123, Passeig Vall d'Hebron 119-129, 08035, Barcelona, CP, Spain.

We aimed to discover blood biomarkers associated with longitudinal changes in white matter hyperintensities (WMH). This study was divided into a discovery phase and a replication phase. Subjects in both studies were patients with hypertension, aged 50-70, who underwent two magnetic resonance imaging (MRI) sessions and blood extractions over a 4-year follow-up period. In the discovery phase, we screened 1305 proteins in 12 subjects with WMH progression and in 12 matched control subjects. We found that 41 proteins were differentially expressed: 13 were upregulated and 28 were downregulated. We subsequently selected three biomarkers for replication in baseline and follow-up samples in 80 subjects with WMH progression and in 80 control subjects. The selected protein candidates for the replication were MMP9 (matrix metalloproteinase-9), which was higher in cases, MET (hepatocyte growth factor receptor) and ASAH2 (neutral ceramidase), which were both lower in cases of WMH progression. Baseline biomarker concentrations did not predict WMH progression. In contrast, patients with WMH progression presented a steeper decline in MET over time. Furthermore, cases showed higher MMP9 and lower ASAH2 levels than controls at the follow-up. These results indicate that MMP9, MET, and ASAH2 are potentially associated with the progression of WMH, and could therefore be interesting candidates to validate in future studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-021-93498-wDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8275657PMC
July 2021

Angiogenin in the Neurogenic Subventricular Zone After Stroke.

Front Neurol 2021 21;12:662235. Epub 2021 Jun 21.

Neurovascular Research Laboratory and Neurology Service, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain.

Ischemic stroke is a leading cause of death and disability worldwide with effective acute thrombolytic treatments. However, brain repair mechanisms related to spontaneous or rehabilitation-induced recovery are still under investigation, and little is known about the molecules involved. The present study examines the potential role of angiogenin (ANG), a known regulator of cell function and metabolism linked to neurological disorders, focusing in the neurogenic subventricular zone (SVZ). Angiogenin expression was examined in the mouse SVZ and in SVZ-derived neural stem cells (NSCs), which were exposed to exogenous ANG treatment during neurosphere formation as well as in other neuron-like cells (SH-SY5Y). Additionally, male C57Bl/6 mice underwent a distal permanent occlusion of the middle cerebral artery to study endogenous and exercise-induced expression of SVZ-ANG and neuroblast migration. Our results show that SVZ areas are rich in ANG, primarily expressed in DCX+ neuroblasts but not in nestin+NSCs. , treatment with ANG increased the number of SVZ-derived NSCs forming neurospheres but could not modify SH-SY5Y neurite differentiation. Finally, physical exercise rapidly increased the amount of endogenous ANG in the ipsilateral SVZ niche after ischemia, where DCX-migrating cells increased as part of the post-stroke neurogenesis process. Our findings position for the first time ANG in the SVZ during post-stroke recovery, which could be linked to neurogenesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fneur.2021.662235DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8256153PMC
June 2021

Predictive model for atrial fibrillation in hypertensive diabetic patients.

Eur J Clin Invest 2021 Jun 19:e13633. Epub 2021 Jun 19.

Departament de Pediatria, d'Obstetrícia i Ginecologia i de Medicina Preventiva, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallés), Spain.

Background: Several scores to identify patients at high risk of suffering atrial fibrillation have been developed. Their applicability in hypertensive diabetic patients, however, remains uncertain. Our aim is to develop and validate a diagnostic predictive model to calculate the risk of developing atrial fibrillation at five years in a hypertensive diabetic population.

Methods: The derivation cohort consisted of patients with both hypertension and diabetes attended in any of the 52 primary healthcare centres of Barcelona; the validation cohort came from the 11 primary healthcare centres of Terres de l'Ebre (Catalonia South) from January 2013 to December 2017. Multivariable Cox regression identified clinical risk factors associated with the development of atrial fibrillation. The overall performance, discrimination and calibration of the model were carried out.

Results: The derivation data set comprised 54 575 patients. The atrial fibrillation rate incidence was 15.3 per 1000 person/year. A 5-year predictive model included age, male gender, overweight, heart failure, valvular heart disease, peripheral vascular disease, chronic kidney disease, number of antihypertensive drugs, systolic and diastolic blood pressure, heart rate, thromboembolism, stroke and previous history of myocardial infarction. The discrimination of the model was good (c-index = 0.692; 95% confidence interval, 0.684-0.700), and calibration was adequate. In the validation cohort, the discrimination was lower (c-index = 0.670).

Conclusions: The model accurately predicts future atrial fibrillation in a population with both diabetes and hypertension. Early detection allows the prevention of possible complications arising from this disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/eci.13633DOI Listing
June 2021

Stroke-induced immunosuppression: implications for the prevention and prediction of post-stroke infections.

J Neuroinflammation 2021 Jun 6;18(1):127. Epub 2021 Jun 6.

Neurovascular Research Laboratory, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.

Stroke produces a powerful inflammatory cascade in the brain, but also a suppression of the peripheral immune system, which is also called stroke-induced immunosuppression (SIIS). The main processes that lead to SIIS are a shift from a lymphocyte phenotype T-helper (Th) 1 to a Th2 phenotype, a decrease of the lymphocyte counts and NK cells in the blood and spleen, and an impairment of the defense mechanisms of neutrophils and monocytes. The direct clinical consequence of SIIS in stroke patients is an increased susceptibility to stroke-associated infections, which is enhanced by clinical factors like dysphagia. Among these infections, stroke-associated pneumonia (SAP) is the one that accounts for the highest impact on stroke outcome, so research is focused on its early diagnosis and prevention. Biomarkers indicating modifications in SIIS pathways could have an important role in the early prediction of SAP, but currently, there are no individual biomarkers or panels of biomarkers that are accurate enough to be translated to clinical practice. Similarly, there is still no efficient therapy to prevent the onset of SAP, and clinical trials testing prophylactic antibiotic treatment and β-blockers have failed. However, local immunomodulation could open up a new research opportunity to find a preventive therapy for SAP. Recent studies have focused on the pulmonary immune changes that could be caused by stroke similarly to other acquired brain injuries. Some of the traits observed in animal models of stroke include lung edema and inflammation, as well as inflammation of the bronchoalveolar lavage fluid.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12974-021-02177-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8183083PMC
June 2021

Integrative Multi-omics Analysis to Characterize Human Brain Ischemia.

Mol Neurobiol 2021 Aug 3;58(8):4107-4121. Epub 2021 May 3.

Neurovascular Research Laboratory, Vall D'Hebron Institute of Research (VHIR), Hospital Vall D'Hebron, Universitat Autònoma de Barcelona, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain.

Stroke is a major cause of death and disability. A better comprehension of stroke pathophysiology is fundamental to reduce its dramatic outcome. The use of high-throughput unbiased omics approaches and the integration of these data might deepen the knowledge of stroke at the molecular level, depicting the interaction between different molecular units. We aimed to identify protein and gene expression changes in the human brain after ischemia through an integrative approach to join the information of both omics analyses. The translational potential of our results was explored in a pilot study with blood samples from ischemic stroke patients. Proteomics and transcriptomics discovery studies were performed in human brain samples from six deceased stroke patients, comparing the infarct core with the corresponding contralateral brain region, unveiling 128 proteins and 2716 genes significantly dysregulated after stroke. Integrative bioinformatics analyses joining both datasets exposed canonical pathways altered in the ischemic area, highlighting the most influential molecules. Among the molecules with the highest fold-change, 28 genes and 9 proteins were selected to be validated in five independent human brain samples using orthogonal techniques. Our results were confirmed for NCDN, RAB3C, ST4A1, DNM1L, A1AG1, A1AT, JAM3, VTDB, ANXA1, ANXA2, and IL8. Finally, circulating levels of the validated proteins were explored in ischemic stroke patients. Fluctuations of A1AG1 and A1AT, both up-regulated in the ischemic brain, were detected in blood along the first week after onset. In summary, our results expand the knowledge of ischemic stroke pathology, revealing key molecules to be further explored as biomarkers and/or therapeutic targets.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12035-021-02401-1DOI Listing
August 2021

Role of microglial and endothelial CD36 in post-ischemic inflammasome activation and interleukin-1β-induced endothelial activation.

Brain Behav Immun 2021 07 17;95:489-501. Epub 2021 Apr 17.

Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA. Electronic address:

Cerebral ischemia is associated with an acute inflammatory response that contributes to the resulting injury. The innate immunity receptor CD36, expressed in microglia and endothelium, and the pro-inflammatory cytokine interleukin-1β (IL-1β) are involved in the mechanisms of ischemic injury. Since CD36 has been implicated in activation of the inflammasome, the main source of IL-1β, we investigated whether CD36 mediates brain injury through the inflammasome and IL-1β. We found that active caspase-1, a key inflammasome component, is decreased in microglia of CD36-deficient mice subjected to transient middle cerebral artery occlusion, an effect associated with a reduction in brain IL-1β. Conditional deletion of CD36 either in microglia or endothelium reduced ischemic injury in mice, attesting to the pathogenic involvement of CD36 in both cell types. Application of an ischemic brain extract to primary brain endothelial cell cultures from wild type (WT) mice induced IL-1β-dependent endothelial activation, reflected by increases in the cytokine colony stimulating factor-3, a response markedly attenuated in CD36-deficient endothelia. Similarly, the increase in colony stimulating factor-3 induced by recombinant IL-1β was attenuated in CD36-deficient compared to WT endothelia. We conclude that microglial CD36 is a key determinant of post-ischemic IL-1β production by regulating caspase-1 activity, whereas endothelial CD36 is required for the full expression of the endothelial activation induced by IL-1β. The data identify microglial and endothelial CD36 as critical upstream components of the acute inflammatory response to cerebral ischemia and viable putative therapeutic targets.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbi.2021.04.010DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8187325PMC
July 2021

Nutraceuticals in the Prevention of Neonatal Hypoxia-Ischemia: A Comprehensive Review of their Neuroprotective Properties, Mechanisms of Action and Future Directions.

Int J Mol Sci 2021 Mar 3;22(5). Epub 2021 Mar 3.

Neurodevelopment Research Group, Institute of Biomedicine of Seville, IBIS/HUVR/CSIC/US, 41013 Seville, Spain.

Neonatal hypoxia-ischemia (HI) is a brain injury caused by oxygen deprivation to the brain due to birth asphyxia or reduced cerebral blood perfusion, and it often leads to lifelong limiting sequelae such as cerebral palsy, seizures, or mental retardation. HI remains one of the leading causes of neonatal mortality and morbidity worldwide, and current therapies are limited. Hypothermia has been successful in reducing mortality and some disabilities, but it is only applied to a subset of newborns that meet strict inclusion criteria. Given the unpredictable nature of the obstetric complications that contribute to neonatal HI, prophylactic treatments that prevent, rather than rescue, HI brain injury are emerging as a therapeutic alternative. Nutraceuticals are natural compounds present in the diet or used as dietary supplements that have antioxidant, anti-inflammatory, or antiapoptotic properties. This review summarizes the preclinical in vivo studies, mostly conducted on rodent models, that have investigated the neuroprotective properties of nutraceuticals in preventing and reducing HI-induced brain damage and cognitive impairments. The natural products reviewed include polyphenols, omega-3 fatty acids, vitamins, plant-derived compounds (tanshinones, sulforaphane, and capsaicin), and endogenous compounds (melatonin, carnitine, creatine, and lactate). These nutraceuticals were administered before the damage occurred, either to the mothers as a dietary supplement during pregnancy and/or lactation or to the pups prior to HI induction. To date, very few of these nutritional interventions have been investigated in humans, but we refer to those that have been successful in reducing ischemic stroke in adults. Overall, there is a robust body of preclinical evidence that supports the neuroprotective properties of nutraceuticals, and these may represent a safe and inexpensive nutritional strategy for the prevention of neonatal HI encephalopathy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms22052524DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7959318PMC
March 2021

Circulating AQP4 Levels in Patients with Cerebral Amyloid Angiopathy-Associated Intracerebral Hemorrhage.

J Clin Med 2021 Mar 2;10(5). Epub 2021 Mar 2.

Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain.

Cerebral amyloid angiopathy (CAA) is a major cause of lobar intracerebral hemorrhage (ICH) in elderly patients. Growing evidence suggests a potential role of aquaporin 4 (AQP4) in amyloid-beta-associated diseases, including CAA pathology. Our aim was to investigate the circulating levels of AQP4 in a cohort of patients who had suffered a lobar ICH with a clinical diagnosis of CAA. AQP4 levels were analyzed in the serum of 60 CAA-related ICH patients and 19 non-stroke subjects by enzyme-linked immunosorbent assay (ELISA). The CAA-ICH cohort was divided according to the time point of the functional outcome evaluation: mid-term (12 ± 18.6 months) and long-term (38.5 ± 32.9 months) after the last ICH. Although no differences were found in AQP4 serum levels between cases and controls, lower levels were found in CAA patients presenting specific hemorrhagic features such as ≥2 lobar ICHs and ≥5 lobar microbleeds detected by magnetic resonance imaging (MRI). In addition, CAA-related ICH patients who presented a long-term good functional outcome had higher circulating AQP4 levels than subjects with a poor outcome or controls. Our data suggest that AQP4 could potentially predict a long-term functional outcome and may play a protective role after a lobar ICH.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/jcm10050989DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7957864PMC
March 2021

Genome-wide transcriptome study in skin biopsies reveals an association of E2F4 with cadasil and cognitive impairment.

Sci Rep 2021 03 25;11(1):6846. Epub 2021 Mar 25.

Stroke Pharmacogenomics and Genetics Group, Institut de Recerca de l`Hospital de la Santa Creu i Sant Pau, C/Sant Antoni María Claret 167, Barcelona, Spain.

CADASIL is a small vessel disease caused by mutations in NOTCH3 that lead to an odd number of cysteines in the EGF-like repeat domain, causing protein misfolding and aggregation. The main symptoms are migraine, psychiatric disturbances, recurrent strokes and dementia, being executive function characteristically impaired. The molecular pathways altered by this receptor aggregation need to be studied further. A genome-wide transcriptome study (four cases paired with three healthy siblings) was carried out, in addition to a qRT-PCR for validation purposes (ten new cases and eight new controls). To study the expression profile by cell type of the significant mRNAs found, we performed an in situ hybridization (ISH) (nine cases and eight controls) and a research in the Single-nuclei Brain RNA-seq expression browser (SNBREB). Pathway analysis enrichment was carried out with Gene Ontology and Reactome. Neuropsychological tests were performed in five of the qRT-PCR cases. The two most significant differentially expressed mRNAs (BANP, p-value = 7.23 × 10 and PDCD6IP, p-value = 8.36 × 10) were selected for the validation study by qRT-PCR. Additionally, we selected two more mRNAs (CAMK2G, p-value = 4.52 × 10 and E2F4, p-value = 4.77 × 10) due to their association with ischemic neuronal death. E2F4 showed differential expression in the genome-wide transcriptome study and in the qRT-PCR (p = 1.23 × 10), and it was upregulated in CADASIL cases. Furthermore, higher E2F4 expression was associated with worse executive function (p = 2.04 × 10) and attention and information processing speed (IPS) (p = 8.73 × 10). In situ hibridization showed E2F4 expression in endothelial and vascular smooth vessel cells. In silico studies indicated that E2F4 is also expressed in brain endothelial cells. Among the most significant pathways analyzed, there was an enrichment of vascular development, cell adhesion and vesicular machinery terms and autophagy process. E2F4 is more highly expressed in the skin biopsy of CADASIL patients compared to controls, and its expression is present in endothelial cells and VSMCs. Further studies are needed to understand whether E2F4 could be useful as a biomarker, to monitor the disease or be used as a therapeutic target.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-021-86349-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7994794PMC
March 2021

Global Impact of COVID-19 on Stroke Care and IV Thrombolysis.

Neurology 2021 06 25;96(23):e2824-e2838. Epub 2021 Mar 25.

Department of Neurology (R.G.N., M.H.M., M.Frankel, D.C.H.), Marcus Stroke and Neuroscience Center, Grady Memorial Hospital, Emory University School of Medicine, Atlanta; Department of Radiology (M.M.Q., M.A., T.N.N., A.K.) and Radiation Oncology (M.M.Q.), Boston Medical Center, Boston University School of Medicine, Massachusetts; Department of Neurology (S.O.M.), Federal University of Rio Grande do Sul, Porto Alegre; Hospital de Clínicas de Porto Alegre (S.O.M.), Brazil; Department of Stroke Neurology (H. Yamagami), National Hospital Organization, Osaka National Hospital, Japan; Department of Neurology (Z.Q.), Xinqiao Hospital of the Army Medical University, Chongqing, China; Department of Neurology (O.Y.M.), Stroke and Neurointervention Division, Alexandria University Hospital, Alexandria University, Egypt; Boston University School of Medicine (A.S.), Massachusetts; 2nd Department of Neurology (A.C.), Institute of Psychiatry and Neurology, Warsaw, Poland; Department of Neurology (G.T., L.P.), National & Kapodistrian University of Athens, School of Medicine, Attikon University Hospital, Athens, Greece; Faculdade de Medicina (D.A.d.S.), Universidade de Lisboa, Lisbon, Portugal; Department of Neurology (J.D., R.L.), Leuven University Hospital, Belgium; International Clinical Research Center and Department of Neurology (R.M.), St. Anne´s University Hospital in Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic; Department of Neurology (P.V.), Groeninge Hospital, Kortrijk; Department of Neurology (P.V.), University Hospitals Antwerp; Department of Translational Neuroscience (P.V.), University of Antwerp, Belgium; Department of Neurology (J.E.S., T.G.J.), Cooper Neurological Institute, Cooper University Hospital, Camden, New Jersey; Department of Neurology and Neurosurgery (J. Kõrv), University of Tartu, Estonia; Department of Neurology (J.B., R.V.,S.R.), Loyola University Chicago Stritch School of Medicine, Illinois; Department of Neurosurgery (C.W.L.), Kaiser Permanente Fontana Medical Center; Department of Neurology (N.S.S.), Kaiser Permanente Los Angeles Medical Center; Department of Neurology (A.M.Z., S.A.S.), UT Health McGovern Medical School, Houston, Texas; Department of Neurology (A.L.Z.), Medical University of South Carolina, Charleston; Department of Internal Medicine (G.N.), School of Health Sciences, University of Thessaly, Larissa, Greece; Department of Neurology (K.M., A.T.), Allegheny Health Network, Pittsburgh, Pennsylvania; Department of Neurology (A.L.), Ohio Health Riverside Methodist Hospital Columbus; Department of Medicine and Neurology (A.R.), University of Otago and Wellington Hospital, New Zealand; Department of Neurology (E.A.M.), Vanderbilt University Medical Center, Nashville, Tennessee; Department of Neurology (A.W.A., D. Alsbrook), University of Tennessee Health Center, Memphis; Department of Neurology (D.Y.H.), University of North Carolina at Chapel Hill; Departments of Neurology (S.Y.) and Radiology (E.R.), New York University Grossman School of Medicine; Douala Gynaeco-Obstetric and Pediatric Hospital (E.G.B.L.), University of Douala, Faculty of Medicine and Pharmaceutical Science, Cameroon; Ain Shams University Specialized Hospital (H.M.A., H.M.S., A.E., T.R.); Cairo University Affiliated MOH Network (F.H.); Department of Neurology (TM.), Nasser Institute for Research and Treatment, Cairo; Mansoura University Affiliated Private Hospitals Network (W.M.), Egypt; Kwame Nkrumah University of Science and Technology (F.S.S.), Kumasi, Ghana; Stroke Unit (T.O.A., K.W.), University of Ilorin Teaching Hospital; Neurology Unit (B.A.), Department of Medicine, Lagos State University Teaching Hospital; Department of Medicine (E.O.N.), Federal Medical Centre Owerri, Imo State, Nigeria; Neurology Unit (T.A.S.), Department of Medicine, Federal Medical Centre, Owo, Ondo State, Nigeria; University College Hospital (J.Y.), Ibadan, Nigeria; The National Ribat University Affiliated Hospitals (H.H.M.), Khartoum, Sudan; Neurology Section (P.B.A.), Department of Internal Medicine, Aga-Khan University, Medical College East Africa, Dar es Salaam, Tanzania; Tunis El Manar University (A.D.R.), Military Hospital of Tunis; Department of Neurology (S.B.S.), Mongi Ben Hmida National Institute of Neurology, Faculty of Medicine of Tunis, University Tunis El Manar, Tunisia; Department of Physiology (L.G.), Parirenyatwa Hospital, and Departments of Physiology and Medicine (G.W.N.), University of Zimbabwe, Harare; Department of Cerebrovascular/Endovascular Neurosurgery Division (D.S.), Erebouni Medical Center, Yerevan, Armenia; Department of Neurology (A.R.), Sir Salimulah College, Dhaka, Bangladesh; Department of Neurology (Z.A.), Taihe Hospital of Shiyan City, Hubei; Department of Neurology (F.B.), Nanyang Central Hospital, Henan; Department of Neurology (Z.D.), Wuhan No. 1 Hospital, Hubei, China; Department of Neurology (Y. Hao.), Sir Run Run Shaw Hospital, Zhejiang University School of Medicine; Department of Neurology (W.H.), Traditional Chinese Medicine Hospital of Maoming, Guangdong; Department of Neurology (G.Li.), Affiliated Hospital of Qingdao University, Shandong; Department of Neurology (W.L), The First Affiliated Hospital of Hainan Medical College; Department of Neurology (G.Liu.), Wuhan Central Hospital, Hubei; Department of Neurology (J.L.), Mianyang 404th Hospital, Sichuan; Department of Neurology (X.S.), Yijishan Hospital of Wannan Medical College, Anhui; Department of Neurology and Neuroscience (Y.S.), Shenyang Brain Institute, Shenyang First People's Hospital, Shenyang Medical College Affiliated Brain Hospital; Department of Neurology (L.T.), Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong; Department of Neurology (H.W.), Xiangyang Central Hospital, Hubei; Department of Neurology (B.W., Y.Yan), West China Hospital, Sichuan University, Chengdu; Department of Neurology (Z.Y.), Affiliated Hospital of Southwest Medical University, Sichuan; Department of Neurology (H.Z.), Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine; Department of Neurology (J.Z.), The First Affiliated Hospital of Shandong First Medical University; Department of Neurology (W.Z.), First Affiliated Hospital of Fujian Medical University, China; Acute Stroke Unit (T.W.L.), The Prince of Wales Hospital, Kwok Tak Seng Centre for Stroke Research and Intervention, The Chinese University of Hong Kong; Interventional Neurology (C.C.), MAX Superspecialty Hospital, Saket, New Delhi; NH Institute of Neurosciences (V.H.), NH Mazumdar Shaw Medical Center, Bangalore; Department of Neurology (B.M.), Apollo Speciality Hospitals Nellore; Department of Neurology (J.D.P.), Christian Medical College, Ludhiana, Punjab; Sree Chitra Tirunal Institute for Medical Sciences and Technology (P.N.S.), Kerala, India; Stroke Unit (F.S.U.), Pelni Hospital, Jakarta, Indonesia; Neurosciences Research Center (M. Farhoudi, E.S.H.), Tabriz University of Medical Sciences, Tabriz, Iran; Beer Sheva Hospital (A.H.); Department of Interventional Neuroradiology, Rambam Healthcare Campus, Haifa, Israel (A.R., R.S.H.); Departments of Neurology (N.O.) and Neurosurgery (N.S.), Kobe City Medical Center General Hospital, Kobe; Department of Stroke and Neurovascular Surgery (D.W.), IMS Tokyo-Katsushika General Hospital; Yokohama Brain and Spine Center (R.Y.); Iwate Prefectural Central (R.D.); Department of Neurology and Stroke Treatment (N.T.), Japanese Red Cross Kyoto Daiichi Hospital; Department of Neurology (T.Y.), Kyoto Second Red Cross Hospital; Department of Neurology (T.T.), Japanese Red Cross Kumamoto Hospital; Department of Stroke Neurology (Y. Yazawa), Kohnan Hospital, Sendai; Department of Cerebrovascular Medicine (T.U.), Saga-Ken Medical Centre; Department of Neurology (T.D.), Saitama Medical Center, Kawagoe; Department of Neurology (H.S.), Nara City Hospital; Department of Neurology (Y.S.), Toyonaka Municipal Hospital, Osaka; Department of Neurology (F. Miyashita), Kagoshima City Hospital; Department of Neurology (H.F.), Japanese Red Cross Matsue Hospital, Shimane; Department of Neurology (K.M.), Shiroyama Hospital, Osaka; Department of Cerebrovascular Medicine (J.E.S.), Niigata City General Hospital; Department of Neurology (Y.S.), Sugimura Hospital, Kumamoto; Stroke Medicine (Y. Yagita), Kawasaki Medical School, Okayama; Department of Neurology (Y.T.), Osaka Red Cross Hospital; Department of Stroke Prevention and Treatment (Y.M.), Department of Neurosurgery, University of Tsukuba, Ibaraki; Department of Neurology (S.Y.), Stroke Center and Neuroendovascular Therapy, Saiseikai Central Hospital, Tokyo; Department of Neurology (R.K.), Kin-ikyo Chuo Hospital, Hokkaido; Department of Cerebrovascular Medicine (T.K.), NTT Medical Center Tokyo; Department of Neurology and Neuroendovascular Treatment (H. Yamazaki), Yokohama Shintoshi Neurosurgical Hospital; Department of Neurology (M.S.), Osaka General Medical Center; Department of Neurology (K.T.), Osaka University Hospital; Department of Advanced Brain Research (N.Y.), Tokushima University Hospital Tokushima; Department of Neurology (K.S.), Saiseikai Fukuoka General Hospital, Fukuoka; Department of Neurology (T.Y.), Tane General Hospital, Osaka; Division of Stroke (H.H.), Department of Internal Medicine, Osaka Rosai Hospital; Department of Comprehensive Stroke (I.N.), Fujita Health University School of Medicine, Toyoake, Japan; Department of Neurology (A.K.), Asfendiyarov Kazakh National Medical University; Republican Center for eHealth (K.F.), Ministry of Health of the Republic of Kazakhstan; Department of Medicine (S.K.), Al-Farabi Kazakh National University; Kazakh-Russian Medical University (M.Z.), Kazakhstan; Department of Neurology (J.-H.B.), Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul; Department of Neurology (Y. Hwang), Kyungpook National University Hospital, School of Medicine, Kyungpook National University; Ajou University Hospital (J.S.L.); Department of Neurology (S.B.L.), Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea; Department of Neurology (J.M.), National Medical Center, Seoul; Department of Neurology (H.P., S.I.S.), Keimyung University School of Medicine, Dongsan Medical Center, Daegu; Department of Neurology (J.H.S.), Busan Paik Hospital, School of Medicine, Inje University, Busan; Department of Neurology (K.-D.S.), National Health Insurance Service Ilsan Hospital, Goyang; Asan Medical Center (C.J.Y.), Seoul, South Korea; Department of Neurology (R.A.), LAU Medical Center-Rizk Hospital, Beirut, Lebanon; Department of Medicine (W.A.W.Z., N.W.Y.), Pusat Perubatan Universiti Kebangsaan Malaysia, Kuala Lumpur; Sultanah Nur Zahirah (Z.A.A., K.A.I.), Kuala Terengganu; University Putra Malaysia (H.b.B.); Sarawak General Hospital, Kuching (L.W.C.); Hospital Sultan Abdul Halim (A.B.I.), Sungai Petani Kedah; Hospital Seberang Jaya (I.L.), Pulau Pinang; Thomson Hospital Kota Damansara (W.Y.T.), Malaysia; "Nicolae Testemitanu" State University of Medicine and Pharmacy (S.G., P.L.), and Department of Neurology, Emergency Medicine Institute, Chisinau, Republic of Moldova; Department of Stroke Unit (A.M.A.H.), Royal Hospital Muscat, Oman; Neuroscience Institute (Y.Z.I., N.A.), Hamad Medical Corporation, Doha, Qatar; St. Luke's Medical Center-Institute of Neurosciences (M.C.P.-F., C.O.C.), Quezon City, Philippines; Endovascular Neurosurgery (D.K.), Saint-Petersburg Dzhanelidze Research Institute of Emergency Medicine, St. Petersburg, Russia; Department of Neurology (A.A.), Stroke Unit, King Saud University, College of Medicine, Riyadh; Department of Neurosurgery (H.A.-J.), Interventional Radiology, and Critical Care Medicine, King Fahad Hospital of the University, Imam Abdulrahman bin Faisal University, Saudi Arabia; Singapore National Neuroscience Institute (C.H.T.); Changi General Hospital (M.J.M.), Singapore; Neuroscience Center, Raffles Hospital (N.V.), Singapore; Department of Neurology (C.-H.C., S.-C.T.), National Taiwan University Hospital; Department of Radiology (A.C.), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Dicle University Medical School and Hospital (E.A.), Diyarbakir; Stroke and Neurointervention Unit (O.A., A.O.O.), Eskisehir Osmangazi University; Gaziantep University Faculty of Medicine (S.G.), Turkey; Department of Neurology (S.I.H., S.J.), Neurological Institute at Cleveland Clinic Abu Dhabi, United Arab Emirates; Stroke Center (H.L.V., A.D.C.), Hue Central Hospital, Hue, Vietnam; Stroke Department (H.H.N., T.N.P.), Da Nang Hospital, Da Nang City; 115 People's Hospital (T.H.N., T.Q.N.), Ho Chi Minh City, Vietnam; Department of Neurology (T.G., C.E.), Medical University of Graz; Department of Neurology (M. K.-O.), Research Institute of Neurointervention, University Hospital Salzburg/Paracelsus Medical University, Austria; Department of Neurology (F.B., A.D.), Centre Hospitalier Universitaire de Charleroi, Belgium; Department of Neurology (S.D.B., G.V.), Sint Jan Hospital, Bruges; Department of Neurology (S.D.R.), Brussels University Hospital (UZ Brussel); Department of Neurology (N.L.), ULB Erasme Hospitals Brussels; Department of Neurology (M.P.R.), Europe Hospitals Brussels; Department of Neurology (L.Y.), Antwerp University Hospital, Belgium; Neurology Clinic (F.A., T.S.), St. Anna University Hospital, Sofia, Bulgaria; Department of Neurology (M.R.B.), Sestre Milosrdnice University Hospital, Zagreb; Department of Neurology (H.B.), Sveti Duh University Hospital, Zagreb; Department of Neurology (I.C.), General Hospital Virovitica; Department of Neurology (Z.H.), General Hospital Zabok; Department of Radiology (F. Pfeifer), University Hospital Centre Zagreb, Croatia; Regional Hospital Karlovy Vary (I.K.); Masaryk Hospital Usti nad Labem (D.C.); Military University Hospital Praha (M. Sramek); Oblastní Nemocnice Náchod (M. Skoda); Regional Hospital Pribram (H.H.); Municipal Hospital Ostrava (L.K.); Hospital Mlada Boleslav (M. Koutny); Hospital Vitkovice (D.V.); Hospital Jihlava (O.S.); General University Hospital Praha (J.F.); Hospital Litomysl (K.H.); Hospital České Budejovice (M.N.); Hospital Pisek (R.R.); Hospital Uherske Hradiste (P.P.); Hospital Prostejov (G.K.); Regional Hospital Chomutov (J.N.); Hospital Teplice (M.V.); Mining Hospital Karvina (H.B.); Thomayer Hospital Praha (D.H.); Hospital Blansko (D.T.); University Hospital Brno (R.J.); Regional Hospital Liberec (L.J.); Hospital Ceska Lipa (J.N.); Hospital Sokolov (A.N.); Regional Hospital Kolin (Z.T.); Hospital Trutnov (P. Fibrich); Hospital Trinec (H.S.); Department of Neurology (O.V.), University Hospital Ostrava, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Bispebjerg Hospital (H.K.C.), University of Copenhagen; Stroke Center (H.K.I., T.C.T.), Rigshospitalet, University of Copenhagen; Aarhus University Hospital (C.Z.S.), Aarhus; Neurovascular Center, Zealand University Hospital, University of Copenhagen (T.W.), Roskilde, Denmark; Department of Neurology and Neurosurgery (R.V.), University of Tartu, Estonia; Neurology Clinic (K.G.-P.), West Tallinn Central Hospital; Center of Neurology (T.T.), East Tallinn Central Hospital, School of Natural Sciences and Health, Tallinn University; Internal Medicine Clinic (K.A.), Pärnu Hospital, Estonia; Université Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition (C.C., F.C.); Centre Hospitalier d'Arcachon (M.D.), Gujan-Mestras; Centre Hospitalier d'Agen (J.-M.F.); Neurologie Vasculaire (L.M.) and Neuroradiologie (O.E.), Hospices Civils de Lyon, Hôpital Pierre Wertheimer, Bron; Centre Hospitalier et Universitaire de Bordeaux (E.L., F.R.); Centre Hospitalier de Mont de Marsan (B.O.); Neurologie (R.P.), Fondation Ophtalmologique Adolphe de Rothschild; Versailles Saint-Quentin-en-Yvelines University (F. Pico); Neuroradiologie Interventionelle (M.P.), Fondation Ophtalmologique Adolphe de Rothschild; Neuroradiologie Interventionelle (R.P.), Hôpitaux Universitaires de Strasbourg, France; K. Eristavi National Center of Experimental and Clinical Surgery (T.G.), Tbilisi; Department of Neurosurgery (M. Khinikadze), New Vision University Hospital, Tbilisi; Vivamedi Medical Center (M. Khinikadze), Tbilisi; Pineo Medical Ecosystem (N.L.), Tbilisi; Ivane Javakhishvili Tbilisi State University (A.T.), Tbilisi, Georgia; Department of Neurology (S.N., P.A.R.), University Hospital Heidelberg; Department of Neurology (M. Rosenkranz), Albertinen Krankenhaus, Hamburg; Department of Neurology (H.S.), Elbe Klinken Stade, University Medical Center Göttingen; Department of Neurology (T.S.), University Hospital Carl Gustav Carus, Dresden; Kristina Szabo (K.S.), Department of Neurology, Medical Faculty Mannheim, University Heidelberg, Mannheim; Klinik und Poliklinik für Neurologie (G.T.), Kopf- und Neurozentrum, Universitätsklinikum Hamburg-Eppendorf, Germany; Department of Internal Medicine (D.S.), School of Health Sciences, University of Thessaly, Larissa; Second Department of Neurology (O.K.), Stroke Unit, Metropolitan Hospital, Piraeus, Greece; University of Szeged (P.K.), Szeged; University of Pecs (L.S., G.T.), Hungary; Stroke Center (A.A.), IRCCS Istituto di Ricovero e Cura a Carattere Scientifico, Negrar, Verona; Department of Neurology (F.B.), Ospedale San Paolo, Savona,; Institute of Neurology (P.C., G.F.), Fondazione Policlinico Universitario Agostino Gemelli, Rome; Interventional Neurovascular Unit (L.R.), Careggi University Hospital, Florence; Stroke Unit (D.S.), Azienda Socio Sanitaria Territoriale (ASST) di Lecco, Italy; Maastricht University Medical Center; Department of Neurology (M.U.), Radiology, University Medical Center Groningen; Department of Neurology (I.v.d.W.), Haaglanden Medical Center, the Hague, the Netherlands; Department of Neurology (E.S.K.), Akershus University Hospital, Lørenskog, General Practice, HELSAM, University of Oslo, Norway; Neurological Ward with Stroke Unit (W.B.), Specialist Hospital in Konskie, Gimnazjalna, Poland and Collegium Medicum, Jan Kochanowski University, Kielce, Poland; Neurological Ward with Stroke Unit (M.F.), District Hospital in Skarzysko-Kamienna; Department of Neurology (E.H.L.), Szpitala im T. Marciniaka in Wroclaw; 2nd Department of Neurology (M. Karlinski), Institute of Psychiatry and Neurology, Warsaw; Department of Neurology and Cerebrovascular Disorders (R.K., P.K.), Poznan University of Medical Sciences; 107th Military Hospital with Polyclinic (M.R.), Walcz; Department of Neurology (R.K.), St. Queen Jadwiga, Clinical Regional Hospital No. 2, Rzeszow; Department of Neurology (P.L.), Medical University of Lublin; 1st Department of Neurology (H.S.-J.), Institute of Psychiatry and Neurology, Warsaw; Department of Neurology and Stroke Unit (P.S.), Holy Spirit Specialist Hospital in Sandomierz, Collegium Medicum Jan Kochanowski University in Kielce; Copernicus PL (W.F.), Neurology and Stroke Department, Hospital M. Kopernik, Gdansk; Stroke Unit (M.W.), Neurological Department, Stanislaw Staszic University of Applied Sciences, Pila, Poland; Hospital São José (Patricia Ferreira), Centro Hospitalar Universitário de Lisboa Central, Lisbon; Stroke Unit (Paulo Ferreira, V.T.C.), Hospital Pedro Hispano, Matosinhos; Stroke Unit, Internal Medicine Department (L.F.), Neuroradiology Department, Centro Hospitalar Universitário de São João, Porto; Department of Neurology (J.P.M.), Hospital de Egas Moniz, Centro Hospitalar Lisboa Ocidental, Lisbon, Portugal; Department of Neurosciences (T.P.e.M.), Hospital de Santa Maria-CHLN, North Lisbon University Hospital; Hospital São José (A.P.N.), Centro Hospitalar Universitário de Lisboa Central, Lisbon; Department of Neurology (M. Rodrigues), Hospital Garcia de Orta, Portugal; Department of Neurology (C.F.-P.), Transilvania University, Brasov, Romania; Department of Neurology (G.K., M. Mako), Faculty Hospital Trnava, Slovakia; Department of Neurology and Stroke Center (M.A.d.L., E.D.T.), Hospital Universitario La Paz, Madrid; Department of Neurology (J.F.A.), Hospital Clínico Universitario, Universidad de Valladolid; Department of Neurology (O.A.-M.), Complejo Hospitalario Universitario de Albacete; Department of Neurology (A.C.C.), Unidad de Ictus, Hospital Universitario Ramon y Cajal, Madrid; Department of Neurology (S.P.-S), Hospital Universitario Virgen Macarena & Neurovascular Research Laboratory (J.M.), Instituto de Biomedicina de Sevilla-IbiS; Rio Hortega University Hospital (M.A.T.A.), University of Valladolid; Cerebrovascular Diseases (A.R.V.), Hospital Clinic of Barcelona, Spain; Department of Neurology (M. Mazya), Karolinska University Hospital and Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden; Department of Interventional Neuroradiology (G.B.), University Hospitals of Geneva; Department of Interventional and Diagnostic Neuroradiology (A.B., M.-N.P.), Radiology and Nuclear Medicine, University Hospital Basel; Department of Neurology (U.F.), University of Bern; Department of Neuroradiology (J.G.), University of Bern; Department of Neuroscience (P.L.M., D.S.), Lausanne University Hospital, Switzerland; Department of Stroke Medicine (S.B., J. Kwan), Imperial College Healthcare NHS Trust, Charing Cross Hospital, London; Department of Neurology (K.K.), Queen's Medical Centre, Nottingham University Hospitals NHS Trust, United Kingdom; Department of Neurology (A.B., A. Shuaib), University of Alberta, Edmonton; Department of Neurology (L.C., A. Shoamanesh), McMaster University, Hamilton; Department of Clinical Neurosciences and Hotchkiss Brain Institute (A.M.D., M.D.H.), University of Calgary; Department of Neurology (T.F., S.Y.), University of British Columbia, Vancouver; Mackenzie Health (J.H., C.A.S.) Richmond Hill, Ontario; Department of Neurology (H.K.), Sunnybrook Health Sciences Centre, University of Toronto; Department of Neurology (A. Mackey), Hopital Enfant Jesus, Centre Hospitalier de l'Universite Laval, Quebec City; Department of Neurology (A.P.), University of Toronto; Medicine (G.S.), St. Michael's Hospital, University of Toronto, Canada; Department of Neurosciences (M.A.B.), Hospital Dr. Rafael A. Calderon Guardia, CCSS. San Jose, Costa Rica; Neurovascular Service (J.D.B.), Hospital General San Juan de Dios, Guatemala City; Department of Neurología (L.I.P.R.), Hospital General de Enfermedades, Instituto Guatemalteco de Seguridad Social, Guatemala City, Guatemala; Department of Neurology (F.G.-R.), University Hospital Jose Eleuterio Gonzalez, Universidad Autonoma de Nuevo Leon, Mexico; Pacífica Salud-Hospital Punta Pacífica (N.N.-E., A.B., R.K.), Panama; Department of Neurology, Radiology (M.A.), University of Kansas Medical Center; Department of Neurointerventional Neurosurgery (D. Altschul), The Valley Baptist Hospital, Ridgewood, New Jersey; Palmetto General Hospital (A.J.A.-O.), Tenet, Florida; Neurology (I.B., P.K.), University Hospital Newark, New Jersey Medical School, Rutgers, Newark, New Jersey; Community Healthcare System (A.B.), Munster, Indiana; Department of Neurology (N.B., C.B.N.), California Pacific Medical Center, San Francisco; Department of Neurology (C.B.), Mount Sinai South Nassau, New York; University of Toledo (A.C.), Ohio; Department of Neurology (S.C.), University of Maryland School of Medicine, Baltimore, Maryland; Neuroscience (S.A.C.), Inova Fairfax Hospital, Virginia; Department of Neurology (H.C.), Abington Jefferson Hospital, Pennsylvania; Department of Neurology (J.H.C.), Mount Sinai South Nassau, New York; Baptist Health Medical Center (S.D.), Little Rock, Arkansas; Department of Neurology (K.D.), HCA Houston Healthcare Clearlake, Texas; Department of Neurology (T.G.D., R.S.), Erlanger, Tennessee; Wilmington North Carolina (V.T.D.); Department of Vascular and Neurointerventional Services (R.E.), St. Louis University, Missouri; Department of Neurology (M.E.), Massachusetts General Hospital, Boston; Department of Neurology, Neurosurgery, and Radiology (M.F., S.O.-G., N.R.), University of Iowa Hospitals and Clinics, Iowa City; Department of Radiology (D.F.), Swedish Medical Center, Englewood, Colorado; Department of Radiology (D.G.), Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland; Adventist Health Glendale Comprehensive Stroke Center (M.G.), Los Angeles, California; Wellstar Neuroscience Institute (R.G.), Marietta, Georgia; Department of Neurology (A.E.H.), University of Texas Rio Grande Valley-Valley Baptist Medical Center, Texas; Department of Neurology (J.H., B.V.), Lahey Hospital & Medical Center, Beth Israel Lahey Health, Burlington, Massachusetts; Department of Neurology (A.M.K.), Wayne State, Detroit, Michigan; HSHS St. John's Hospital (N.N.K.), Southern Illinois University School of Medicine, Springfield; Virginia Hospital Center (B.S.K.), Arlington; Department of Neurology, University of Michigan, Ann Arbor; Weill-Cornell Medical College (D.O.K.), New York-Presbyterian Queens; Department of Neurology (V.H.L.), Ohio State University, Columbus; Department of Neurology (L.Y.L.), Tufts Medical Center, Boston, Massachusetts; Vascular and Neurointerventional Services (G.L.), St. Louis University, Missouri; Miami Cardiac & Vascular Institute (I.L., A.K.S.), Florida; Department of Neurology (H.L.L.), Oregon Health & Science University, Portland; Department of Emergency Medicine (L.M., M.S.), Steward Holy Family Hospital, Methuen, MA; Vidant Medical Center (S.M.), Greenville, North Carolina; Department of Neurology (A.M.M., D.R.Y.) and Neurosurgery (D.R.Y.), University of Miami Miller School of Medicine, Florida; Department of Neurology (H.M.), SUNY Upstate New York, Syracuse; Memorial Neuroscience Institute (B.P.M.), Pembroke Pines, Florida; Neurosciences (J.M., J.P.T.), Spectrum Health, Michigan State University College of Medicine, Grand Rapids, Michigan; Sutter Health (M.M.), Sacramento, California; Department of Neurology (J.G.M.), Maine Medical Center, Portland; Department of Neurology (S.S.M.), Bayhealth, Dover, Delaware; Department of Neurology and Pediatrics (F.N.), Emory University, Atlanta, Georgia; Department of Neurology (K.N.), University of Arkansas for Medical Sciences, Little Rock; Department of Radiology and Neurology (R.N.-W.), UT Southwestern Medical Center, Dallas, Texas; Ascension St. John Medical Center (R.H.R.), Tulsa, Oklahoma; Riverside Regional Medical Center (P.R.), Newport, Virginia; Department of Neurology (J.R.R., T.N.N.), Boston University School of Medicine, MA; Department of Neurology (A.R.), Hospital of the University of Pennsylvania, Philadelphia; Department of Neurology (M.S.), University of Washington School Medicine, Seattle; Department of Neurology (B.S.), University of Massachusetts Medical Center, Worcester; Department of Neurology (A.S.), CHI-Immanuel Neurological Institute, Creighton University, Omaha, Nebraska; Holy Cross Hospital (S.L.S.), Fort Lauderdale, Florida; Department of Neurology (V.S.), Interventional Neuroradiology, University of California in Los Angeles; Banner Desert Medical Center (M.T.), Mesa, Arizona; Hospital de Agudos Dr. Ignacio Privano (O.B., A.L.), Argentina; Institute for Neurological Research, FLENI (V.A.P.L.), Buenos Aires, Argentina; Hospital das Clinicas/São Paulo University (M.S.A., A.C.); Sumare State Hospital (F.B.C., L.V.), São Paulo; Hospital Vera Cruz (L.D.D.S.), Deus Campinas; Irmanandade Santa Casa de Porto Alegre (L.V.G.); Stroke Unit (F.O.L., F. Mont'alverne), Hospital Geral de Fortaleza; Stroke Unit (A.L.L., P.S.C.M.), Hospital Sao Jose, Joinville, Santa Catarina; Stroke Unit (R.T.M.), Neurology, Nossa Senhora da Conceição Hospital, Porto Alegre; Department of Neurology (D.L.M.C.), Hospital Moinhos de Vento, Porto Alegre; Department of Neurology (L.C.R.), Hospital de Base do Distrito Federal; Hospital Ana (V.F.C.), Hospital Juliane, Federal University of Parana, Curitiba, Brazil; Vascular Neurology Unit (P.M.L., V.V.O.), Neurology Service, Department of Neurology and Psychiatry, Clínica Alemana, Universidad del Desarrollo, Santiago; Hospital Padre Hurtado (V.N., J.M.A.T.) Santiago, Chile; Fundación Valle del Lili (P.F.R.A.), Cali; Stroke Center (H.B.), Fundación Santa Fe de Bogotá; Department of Neurology (A.B.C.-Q.), Hospital Departamental Universitario del Quindio San Juan de Dios, Armenia; Clinica Universitaria Colombia (C.E.R.O.), Bogotá; University Hospital of San Vicente Foundation (D.K.M.B.), Medellin; Barranquilla, Colombia (O.L.); Hospital Infantil Universitario de San Jose (M.R.P.), Bogota; Stroke Unit (L.F.D.-E.), Hospital de Clínicas, Facultad de Ciencias Médicas, Universidad Nacional de Asunción; Neurology Service (D.E.D.M.F., A.C.V.), Hospital Central del Instituto de Prevision Social, Paraguay; Internal Medicine Service (A.J.Z.Z.), Hospital Central de Policia "Rigoberto Caballero", Paraguay; National Institute of Neurological Sciences of Lima Peru (D.M.B.I.); Hospital Edgardo Rebagliati Martins Lima-Peru (L.R.K.); Department of Neurology (B.C.), Royal Melbourne Hospital; Department of Neurology (G.J.H.), Sir Charles Gairdner Hospital and Medical School, Faculty of Health and Medical Sciences, The University of Western Australia, Perth; University of Melbourne (C.H., R.S.), Ballarat Health Service, Australia University of Melbourne; Department of Neurology (T.K.), Royal Adelaide Hospital; Department of Neurosurgery (A. Ma), Royal North Shore Hospital, Sydney; Department of Neurology (R.T.M.), Mater Hospital, Brisbane; Department of Neurology (R.S.), Austin Health, Victoria; Florey Institute of Neuroscience and Mental Health (R.S.), Parkville, Melbourne, Australia; Greymouth Base Hospital (D.S.), New Zealand; Department of Neurology (T.Y.-H.W.), Christchurch Hospital, New Zealand; Department of Neurology (D.L.), University of California in Los Angeles; and Department of Neurology (O.O.Z.), Mercy Health Neurosciences, Toledo, Ohio.

Objective: To measure the global impact of COVID-19 pandemic on volumes of IV thrombolysis (IVT), IVT transfers, and stroke hospitalizations over 4 months at the height of the pandemic (March 1 to June 30, 2020) compared with 2 control 4-month periods.

Methods: We conducted a cross-sectional, observational, retrospective study across 6 continents, 70 countries, and 457 stroke centers. Diagnoses were identified by their ICD-10 codes or classifications in stroke databases.

Results: There were 91,373 stroke admissions in the 4 months immediately before compared to 80,894 admissions during the pandemic months, representing an 11.5% (95% confidence interval [CI] -11.7 to -11.3, < 0.0001) decline. There were 13,334 IVT therapies in the 4 months preceding compared to 11,570 procedures during the pandemic, representing a 13.2% (95% CI -13.8 to -12.7, < 0.0001) drop. Interfacility IVT transfers decreased from 1,337 to 1,178, or an 11.9% decrease (95% CI -13.7 to -10.3, = 0.001). Recovery of stroke hospitalization volume (9.5%, 95% CI 9.2-9.8, < 0.0001) was noted over the 2 later (May, June) vs the 2 earlier (March, April) pandemic months. There was a 1.48% stroke rate across 119,967 COVID-19 hospitalizations. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection was noted in 3.3% (1,722/52,026) of all stroke admissions.

Conclusions: The COVID-19 pandemic was associated with a global decline in the volume of stroke hospitalizations, IVT, and interfacility IVT transfers. Primary stroke centers and centers with higher COVID-19 inpatient volumes experienced steeper declines. Recovery of stroke hospitalization was noted in the later pandemic months.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1212/WNL.0000000000011885DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8205458PMC
June 2021

Single nucleotide variations in ZBTB46 are associated with post-thrombolytic parenchymal haematoma.

Brain 2021 Sep;144(8):2416-2426

Department of Neurology, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona 08025, Spain.

Haemorrhagic transformation is a complication of recombinant tissue-plasminogen activator treatment. The most severe form, parenchymal haematoma, can result in neurological deterioration, disability, and death. Our objective was to identify single nucleotide variations associated with a risk of parenchymal haematoma following thrombolytic therapy in patients with acute ischaemic stroke. A fixed-effect genome-wide meta-analysis was performed combining two-stage genome-wide association studies (n = 1904). The discovery stage (three cohorts) comprised 1324 ischaemic stroke individuals, 5.4% of whom had a parenchymal haematoma. Genetic variants yielding a P-value < 0.05 1 × 10-5 were analysed in the validation stage (six cohorts), formed by 580 ischaemic stroke patients with 12.1% haemorrhagic events. All participants received recombinant tissue-plasminogen activator; cases were parenchymal haematoma type 1 or 2 as defined by the European Cooperative Acute Stroke Study (ECASS) criteria. Genome-wide significant findings (P < 5 × 10-8) were characterized by in silico functional annotation, gene expression, and DNA regulatory elements. We analysed 7 989 272 single nucleotide polymorphisms and identified a genome-wide association locus on chromosome 20 in the discovery cohort; functional annotation indicated that the ZBTB46 gene was driving the association for chromosome 20. The top single nucleotide polymorphism was rs76484331 in the ZBTB46 gene [P = 2.49 × 10-8; odds ratio (OR): 11.21; 95% confidence interval (CI): 4.82-26.55]. In the replication cohort (n = 580), the rs76484331 polymorphism was associated with parenchymal haematoma (P = 0.01), and the overall association after meta-analysis increased (P = 1.61 × 10-8; OR: 5.84; 95% CI: 3.16-10.76). ZBTB46 codes the zinc finger and BTB domain-containing protein 46 that acts as a transcription factor. In silico studies indicated that ZBTB46 is expressed in brain tissue by neurons and endothelial cells. Moreover, rs76484331 interacts with the promoter sites located at 20q13. In conclusion, we identified single nucleotide variants in the ZBTB46 gene associated with a higher risk of parenchymal haematoma following recombinant tissue-plasminogen activator treatment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/brain/awab090DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8418348PMC
September 2021

Lipoprotein(a) is associated with large artery atherosclerosis stroke aetiology and stroke recurrence among patients below the age of 60 years: results from the BIOSIGNAL study.

Eur Heart J 2021 06;42(22):2186-2196

Department for Neurology, University Hospital Zurich, Zurich, Switzerland.

Aims: Lipoprotein(a) [Lp(a)] is a recognized causal risk factor for atherosclerotic cardiovascular disease but its role for acute ischaemic stroke (AIS) is controversial. In this study, we evaluated the association of Lp(a) with large artery atherosclerosis (LAA) stroke and risk of recurrent cerebrovascular events in AIS patients.

Methods And Results: For this analysis of the prospective, observational, multicentre BIOSIGNAL cohort study we measured Lp(a) levels in plasma samples of 1733 primarily Caucasian (98.6%) AIS patients, collected within 24 h after symptom onset. Primary outcomes were LAA stroke aetiology and recurrent cerebrovascular events (ischaemic stroke or transient ischaemic attack) within 1 year. We showed that Lp(a) levels are independently associated with LAA stroke aetiology [adjusted odds ratio 1.48, 95% confidence interval (CI) 1.14-1.90, per unit log10Lp(a) increase] and identified age as a potent effect modifier (Pinteraction =0.031) of this association. The adjusted odds ratio for LAA stroke in patients aged <60 years was 3.64 (95% CI 1.76-7.52) per unit log10Lp(a) increase and 4.04 (95% CI 1.73-9.43) using the established cut-off ≥100 nmol/l. For 152 recurrent cerebrovascular events, we did not find a significant association in the whole cohort. However, Lp(a) levels ≥100 nmol/l were associated with an increased risk for recurrent events among patients who were either <60 years [adjusted hazard ratio (HR) 2.40, 95% CI 1.05-5.47], had evident LAA stroke aetiology (adjusted HR 2.18, 95% CI 1.08-4.40), or had no known atrial fibrillation (adjusted HR 1.60, 95% CI 1.03-2.48).

Conclusion: Elevated Lp(a) was independently associated with LAA stroke aetiology and risk of recurrent cerebrovascular events among primarily Caucasian individuals aged <60 years or with evident arteriosclerotic disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/eurheartj/ehab081DOI Listing
June 2021

Blood Biomarkers to Differentiate Ischemic and Hemorrhagic Strokes.

Neurology 2021 04 5;96(15):e1928-e1939. Epub 2021 Mar 5.

From the Neurovascular Research Laboratory (A.B., A.P., V.L., A.S., E.P., O.V., J.M.), Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona; Department of Neurology (A.B., M.R.), Hospital Universitari Vall d'Hebrón, Barcelona, Spain; Inserm (C.O., D.V.), Université Caen-Normandie, Inserm UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, GIP Cyceron, Caen, France; Department of Specialities of Internal Medicine (L.A., J.C.S.), Faculty of Medicine, University of Geneva, Switzerland; and Department of Clinical Research (D.V.), Caen Normandie Hospital (CHU Caen), France.

Objective: To validate a panel of blood biomarkers to differentiate between ischemic stroke (IS) and intracerebral hemorrhage (ICH) in patients with suspected stroke.

Methods: Patients with suspected stroke admitted within 4.5 hours after onset were enrolled. Blood samples were collected at hospital admission. Glial fibrillary acid protein (GFAP), retinol binding protein 4 (RBP-4), N-terminal proB-type natriuretic peptide (NT-proBNP), and endostatin were measured by immunoassays. Cutoff points were obtained for 100% specificity for IS. A high-sensitivity assay to measure GFAP and rapid point-of-care tests (POCTs) to measure RBP-4 and NT-proBNP were used in subsets of patients. Biomarker panels were evaluated in another cohort of 62 stroke mimics.

Results: A total of 189 patients (154 IS and 35 ICH) were enrolled. Patients with IS had higher RBP-4, NT-proBNP, and endostatin and lower GFAP levels than patients with ICH. The best biomarker combination for the identification of IS was RBP-4+NT-proBNP, which was able to identify 29.7% of patients with IS with 100% specificity. In the subset of patients for whom GFAP was measured with the high-sensitivity assay, RBP-4, NT-proBNP, and GFAP identified 51.5% of patients with IS with 100% specificity. When stroke mimics were included, specificities were reduced to 98.4 and 96.8%, respectively. POCTs of RBP-4 and NT-proBNP showed results similar results to those of conventional ELISAs.

Conclusions: A biomarker panel including RBP-4, NT-proBNP, and GFAP provided moderate but potentially useful sensitivity rates at 100% specificity for IS diagnosis. If confirmed in future studies, this strategy might allow prehospital treatment in selected patients.

Classification Of Evidence: This study provides Class I evidence that a biomarker panel including RBP-4, NT-proBNP, and GFAP distinguishes IS from ICH with moderate accuracy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1212/WNL.0000000000011742DOI Listing
April 2021

Blood Biomarker Panels for the Early Prediction of Stroke-Associated Complications.

J Am Heart Assoc 2021 02 26;10(5):e018946. Epub 2021 Feb 26.

Neurovascular Research Laboratory Vall d'Hebron Institute of Research (VHIR)Universitat Autònoma de Barcelona Barcelona Spain.

Background Acute decompensated heart failure (ADHF) and respiratory tract infections (RTIs) are potentially life-threatening complications in patients experiencing stroke during hospitalization. We aimed to test whether blood biomarker panels might predict these complications early after admission. Methods and Results Nine hundred thirty-eight patients experiencing ischemic stroke were prospectively recruited in the Stroke-Chip study. Post-stroke complications during hospitalization were retrospectively evaluated. Blood samples were drawn within 6 hours after stroke onset, and 14 biomarkers were analyzed by immunoassays. Biomarker values were normalized using log-transformation and score. PanelomiX algorithm was used to select panels with the best accuracy for predicting ADHF and RTI. Logistic regression models were constructed with the clinical variables and the biomarker panels. The additional predictive value of the panels compared with the clinical model alone was evaluated by receiver operating characteristic curves. An internal validation through a 10-fold cross-validation with 3 repeats was performed. ADHF and RTI occurred in 19 (2%) and 86 (9.1%) cases, respectively. Three-biomarker panels were developed as predictors: vascular adhesion protein-1 >5.67, NT-proBNP (N-terminal pro-B-type natriuretic peptide) >4.98 and d-dimer >5.38 (sensitivity, 89.5%; specificity, 71.7%) for ADHF; and interleukin-6 >3.97, von Willebrand factor >3.67, and d-dimer >4.58 (sensitivity, 82.6%; specificity, 59.8%) for RTI. Both panels independently predicted stroke complications (panel for ADHF: odds ratio [OR] [95% CI], 10.1 [3-52.2]; panel for RTI: OR, 3.73 [1.95-7.14]) after adjustment by clinical confounders. The addition of the panel to clinical predictors significantly improved areas under the curve of the receiver operating characteristic curves in both cases. Conclusions Blood biomarkers could be useful for the early prediction of ADHF and RTI. Future studies should assess the usefulness of these panels in front of patients experiencing stroke with respiratory symptoms such as dyspnea.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/JAHA.120.018946DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8174272PMC
February 2021

Cold stress protein RBM3 responds to hypothermia and is associated with good stroke outcome.

Brain Commun 2020 4;2(2):fcaa078. Epub 2020 Jun 4.

Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario, Santiago de Compostela 15706, Spain.

RNA-binding motif protein 3 is a molecular marker of hypothermia that has proved neuroprotective in neurodegenerative disease models. However, its relationship to the well-recognized therapeutic effect of hypothermia in ischaemic stroke had not been studied. In this work, the expression of RNA-binding motif protein 3 was investigated in ischaemic animal models subjected to systemic and focal brain hypothermia, specifically the effects of RNA-binding motif protein 3 silencing and overexpression on ischaemic lesions. Moreover, the association of RNA-binding motif protein 3 levels with body temperature and clinical outcome was evaluated in two independent cohorts of acute ischaemic stroke patients ( = 215); these levels were also determined in a third cohort of 31 patients derived from the phase III EuroHYP-1 trial of therapeutic cooling in ischaemic stroke. The preclinical data confirmed the increase of brain RNA-binding motif protein 3 levels in ischaemic animals subjected to systemic and focal hypothermia; this increase was selectively higher in the cooled hemisphere of animals undergoing focal brain hypothermia, thus confirming the direct effect of hypothermia on RNA-binding motif protein 3 expression, while RNA-binding motif protein 3 up-regulation in ischaemic brain regions led to functional recovery. Clinically, patients with body temperature <37.5°C in the first two cohorts had higher RNA-binding motif protein 3 values at 24 h and good outcome at 3 months post-ischaemic stroke, while RNA-binding motif protein 3 levels in the cooled third cohort tended to exceed those in placebo-treated patients. These results make RNA-binding motif protein 3 a molecular marker associated with the effect of hypothermia in ischaemic stroke and suggest its potential application as a promising protective target.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/braincomms/fcaa078DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7869850PMC
June 2020

Blood Biomarkers to Predict Long-Term Mortality after Ischemic Stroke.

Life (Basel) 2021 Feb 10;11(2). Epub 2021 Feb 10.

Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain.

Stroke is a major cause of disability and death globally, and prediction of mortality represents a crucial challenge. We aimed to identify blood biomarkers measured during acute ischemic stroke that could predict long-term mortality. Nine hundred and forty-one ischemic stroke patients were prospectively recruited in the Stroke-Chip study. Post-stroke mortality was evaluated during a median 4.8-year follow-up. A 14-biomarker panel was analyzed by immunoassays in blood samples obtained at hospital admission. Biomarkers were normalized and standardized using -scores. Multiple Cox regression models were used to identify clinical variables and biomarkers independently associated with long-term mortality and mortality due to stroke. In the multivariate analysis, the independent predictors of long-term mortality were age, female sex, hypertension, glycemia, and baseline National Institutes of Health Stroke Scale (NIHSS) score. Independent blood biomarkers predictive of long-term mortality were endostatin > quartile 2, tumor necrosis factor receptor-1 (TNF-R1) > quartile 2, and interleukin (IL)-6 > quartile 2. The risk of mortality when these three biomarkers were combined increased up to 69%. The addition of the biomarkers to clinical predictors improved the discrimination (integrative discriminative improvement (IDI) 0.022 (0.007-0.048), < 0.001). Moreover, endostatin > quartile 3 was an independent predictor of mortality due to stroke. Altogether, endostatin, TNF-R1, and IL-6 circulating levels may aid in long-term mortality prediction after stroke.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/life11020135DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7916549PMC
February 2021

D-Dimer as Predictor of Large Vessel Occlusion in Acute Ischemic Stroke.

Stroke 2021 Mar 10;52(3):852-858. Epub 2021 Feb 10.

Neuroscience Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain (A.R.-P., A.B., N.P.d.l.O., M.M., M.H.-P., A.D.).

Background And Purpose: Improving prehospital triage of large vessel occlusion (LVO) would reduce time to reperfusion therapies. We aimed to study early predictors of LVO in acute ischemic stroke to identify candidates for endovascular treatment.

Methods: The Stroke-Chip was a prospective observational study conducted at 6 Stroke Centers in Catalonia. Blood samples were obtained in the first 6 hours from symptom onset of consecutive patients. Stroke severity was evaluated with National Institutes of Health Stroke Scale (NIHSS) and LVO was assessed. Independent association of multiple blood biomarkers with LVO was evaluated using logistic regression models adjusted by covariates. Sensitivity, specificity, and predictive values were assessed for NIHSS and the combination of NIHSS and selected serum biomarkers levels.

Results: One thousand three hundred eight suspected strokes were enrolled for a 17-month period. LVO was not assessed in 131 patients. One thousand one hundred seventy-seven patients were selected for analysis (mean age 69.3 years, 56% men, median baseline NIHSS of 6, and median time to blood collection 2.5 hours). LVO was detected in 262 patients. LVO patients were older, had higher baseline NIHSS, history of atrial fibrillation, and lower time from stroke onset to admission. After logistic regression analysis, D-dimer remained an independent predictor of LVO (odds ratio, 1.59 [1.31-1.92]). Specificity and positive predictive value to exclude or detect LVO were higher when using combined D-dimer levels and NIHSS score assessment rather than NIHSS alone.

Conclusions: Early D-dimer levels are an independent predictor of LVO and may be useful to better optimize prehospital patient transport to the appropriate stroke center.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/STROKEAHA.120.031657DOI Listing
March 2021

Comparison of Plasma Lipoprotein Composition and Function in Cerebral Amyloid Angiopathy and Alzheimer's Disease.

Biomedicines 2021 Jan 12;9(1). Epub 2021 Jan 12.

Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain.

Cerebral amyloid angiopathy (CAA) refers to beta-amyloid (Aβ) deposition in brain vessels and is clinically the main cause of lobar intracerebral hemorrhage (ICH). Aβ can also accumulate in brain parenchyma forming neuritic plaques in Alzheimer's disease (AD). Our study aimed to determine whether the peripheral lipid profile and lipoprotein composition are associated with cerebral beta-amyloidosis pathology and may reflect biological differences in AD and CAA. For this purpose, lipid and apolipoproteins levels were analyzed in plasma from 51 ICH-CAA patients (collected during the chronic phase of the disease), 60 AD patients, and 60 control subjects. Lipoproteins (VLDL, LDL, and HDL) were isolated and their composition and pro/antioxidant ability were determined. We observed that alterations in the lipid profile and lipoprotein composition were remarkable in the ICH-CAA group compared to control subjects, whereas the AD group presented no specific alterations compared with controls. ICH-CAA patients presented an atheroprotective profile, which consisted of lower total and LDL cholesterol levels. Plasma from chronic ICH-CAA patients also showed a redistribution of ApoC-III from HDL to VLDL and a higher ApoE/ApoC-III ratio in HDL. Whether these alterations reflect a protective response or have a causative effect on the pathology requires further investigation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/biomedicines9010072DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7828227PMC
January 2021

Role of Blood-Based Biomarkers in Ischemic Stroke Prognosis: A Systematic Review.

Stroke 2021 Jan 12;52(2):543-551. Epub 2021 Jan 12.

Institute of Clinical Epidemiology and Biometry (F.A.M., K.U., P.U.H.), University of Würzburg, Germany.

Background And Purpose: Outcome prognostication in ischemic stroke patients remains challenging due to limited predictive properties of existing models. Blood-based biomarkers might provide additional information to established prognostic factors. We intended to identify the most promising prognostic biomarkers in ischemic stroke, their incremental prognostic value, and whether their predictive value differs among etiologies.

Methods: We searched MEDLINE (Ovid) and Institute for Scientific Information Web of Knowledge for articles reporting the predictive performance of blood-based biomarkers measured up to 7 days after ischemic stroke and reporting functional outcome or death at least 7 days after stroke. This work updates a previous systematic review (up to January 2007), follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement and was registered (International Prospective Register of Systematic Reviews PROSPERO 2018; https://www.crd.york.ac.uk/PROSPERO/; Unique identifier: CRD42018094671).

Results: Two hundred ninety-one articles published between January 2007 and August 2018 comprising 257 different biomarkers met inclusion criteria. Median sample size was 232 (interquartile range, 110-455); 260 (89%) articles reported regression analyses with 78% adjusting for stroke severity, 82% for age, 67% for both, and 9% for none of them; 37% investigated discrimination, 5% calibration, and 11% reclassification. Including publications from a previous systematic review (1960-January 2007), natriuretic peptides, copeptin, procalcitonin, mannose-binding lectin, adipocyte fatty acid-binding protein, and cortisol were the biomarkers most consistently associated with poor outcome in higher-quality studies showing an incremental value over established prognostic factors. Other biomarkers were less consistently associated with poor outcome or were reported in lower quality studies. High heterogeneity among studies precluded the performance of a meta-analysis.

Conclusions: The number of reports on prognostic blood-based biomarkers in ischemic stroke increased 3.5-fold in the period January 2007 to August 2018. Although sample size increased, methodological flaws are still common. Natriuretic peptides and markers of inflammation, atherogenesis, and stress response are the most promising prognostic biomarkers among identified studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/STROKEAHA.120.029232DOI Listing
January 2021

Peripheral inflammation preceeding ischemia impairs neuronal survival through mechanisms involving miR-127 in aged animals.

Aging Cell 2021 01 28;20(1):e13287. Epub 2020 Dec 28.

A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.

Ischemic stroke, the third leading cause of death in the Western world, affects mainly the elderly and is strongly associated with comorbid conditions such as atherosclerosis or diabetes, which are pathologically characterized by increased inflammation and are known to influence the outcome of stroke. Stroke incidence peaks during influenza seasons, and patients suffering from infections such as pneumonia prior to stroke exhibit a worse stroke outcome. Earlier studies have shown that comorbidities aggravate the outcome of stroke, yet the mediators of this phenomenon remain obscure. Here, we show that acute peripheral inflammation aggravates stroke-induced neuronal damage and motor deficits specifically in aged mice. This is associated with increased levels of plasma proinflammatory cytokines, rather than with an increase of inflammatory mediators in the affected brain parenchyma. Nascent transcriptomics data with mature microRNA sequencing were used to identify the neuron-specific miRNome, in order to decipher dysregulated miRNAs in the brains of aged animals with stroke and co-existing inflammation. We pinpoint a previously uninvestigated miRNA in the brain, miR-127, that is highly neuronal, to be associated with increased cell death in the aged, LPS-injected ischemic mice. Target prediction tools indicate that miR-127 interacts with several basally expressed neuronal genes, and of these we verify miR-127 binding to Psmd3. Finally, we report reduced expression of miR-127 in human stroke brains. Our results underline the impact of peripheral inflammation on the outcome of stroke in aged subjects and pinpoint molecular targets for restoring endogenous neuronal capacity to combat ischemic stroke.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/acel.13287DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7811844PMC
January 2021

Early Neurological Change After Ischemic Stroke Is Associated With 90-Day Outcome.

Stroke 2021 01 15;52(1):132-141. Epub 2020 Dec 15.

Department of Neurology, Son Espases University Hospital, IdISBa, Palma de Mallorca, Spain (C.V.-B., R.D.-N., S.T., C.J.).

Background And Purpose: Large-scale observational studies of acute ischemic stroke (AIS) promise to reveal mechanisms underlying cerebral ischemia. However, meaningful quantitative phenotypes attainable in large patient populations are needed. We characterize a dynamic metric of AIS instability, defined by change in National Institutes of Health Stroke Scale score (NIHSS) from baseline to 24 hours baseline to 24 hours (NIHSS - NIHSS = ΔNIHSS), to examine its relevance to AIS mechanisms and long-term outcomes.

Methods: Patients with NIHSS prospectively recorded within 6 hours after onset and then 24 hours later were enrolled in the GENISIS study (Genetics of Early Neurological Instability After Ischemic Stroke). Stepwise linear regression determined variables that independently influenced ΔNIHSS. In a subcohort of tPA (alteplase)-treated patients with large vessel occlusion, the influence of early sustained recanalization and hemorrhagic transformation on ΔNIHSS was examined. Finally, the association of ΔNIHSS with 90-day favorable outcomes (modified Rankin Scale score 0-2) was assessed. Independent analysis was performed using data from the 2 NINDS-tPA stroke trials (National Institute of Neurological Disorders and Stroke rt-PA).

Results: For 2555 patients with AIS, median baseline NIHSS was 9 (interquartile range, 4-16), and median ΔNIHSS was 2 (interquartile range, 0-5). In a multivariable model, baseline NIHSS, tPA-treatment, age, glucose, site, and systolic blood pressure independently predicted ΔNIHSS (R=0.15). In the large vessel occlusion subcohort, early sustained recanalization and hemorrhagic transformation increased the explained variance (R=0.27), but much of the variance remained unexplained. ΔNIHSS had a significant and independent association with 90-day favorable outcome. For the subjects in the 2 NINDS-tPA trials, ΔNIHSS was similarly associated with 90-day outcomes.

Conclusions: The dynamic phenotype, ΔNIHSS, captures both explained and unexplained mechanisms involved in AIS and is significantly and independently associated with long-term outcomes. Thus, ΔNIHSS promises to be an easily obtainable and meaningful quantitative phenotype for large-scale genomic studies of AIS.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/STROKEAHA.119.028687DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7769959PMC
January 2021

External Validation of Five Scores to Predict Stroke-Associated Pneumonia and the Role of Selected Blood Biomarkers.

Stroke 2021 01 7;52(1):325-330. Epub 2020 Dec 7.

Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Center for Stroke Research Berlin, NeuroCure Clinical Research Center and Department of Neurology, Charité University Hospital Berlin, Germany (B.H., S.H., L.U., A.M.).

Background And Purpose: Several clinical scoring systems as well as biomarkers have been proposed to predict stroke-associated pneumonia (SAP). We aimed to externally and competitively validate SAP scores and hypothesized that 5 selected biomarkers would improve performance of these scores.

Methods: We pooled the clinical data of 2 acute stroke studies with identical data assessment: STRAWINSKI and PREDICT. Biomarkers (ultrasensitive procalcitonin; mid-regional proadrenomedullin; mid-regional proatrionatriuretic peptide; ultrasensitive copeptin; C-terminal proendothelin) were measured from hospital admission serum samples. A literature search was performed to identify SAP prediction scores. We then calculated multivariate regression models with the individual scores and the biomarkers. Areas under receiver operating characteristic curves were used to compare discrimination of these scores and models.

Results: The combined cohort consisted of 683 cases, of which 573 had available backup samples to perform the biomarker analysis. Literature search identified 9 SAP prediction scores. Our data set enabled us to calculate 5 of these scores. The scores had area under receiver operating characteristic curve of 0.543 to 0.651 for physician determined SAP, 0.574 to 0.685 for probable and 0.689 to 0.811 for definite SAP according to Pneumonia in Stroke Consensus group criteria. Multivariate models of the scores with biomarkers improved virtually all predictions, but mostly in the range of an area under receiver operating characteristic curve delta of 0.05.

Conclusions: All SAP prediction scores identified patients who would develop SAP with fair to strong capabilities, with better discrimination when stricter criteria for SAP diagnosis were applied. The selected biomarkers provided only limited added predictive value, currently not warranting addition of these markers to prediction models. Registration: URL: https://www.clinicaltrials.gov. Unique identifier: NCT01264549 and NCT01079728.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/STROKEAHA.120.031884DOI Listing
January 2021

Plasmin Generation Potential and Recanalization in Acute Ischaemic Stroke; an Observational Cohort Study of Stroke Biobank Samples.

Front Neurol 2020 3;11:589628. Epub 2020 Nov 3.

Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia.

More than half of patients who receive thrombolysis for acute ischaemic stroke fail to recanalize. Elucidating biological factors which predict recanalization could identify therapeutic targets for increasing thrombolysis success. We hypothesize that individual patient plasmin potential, as measured by response to recombinant tissue-type plasminogen activator (rt-PA), is a biomarker of rt-PA response, and that patients with greater plasmin response are more likely to recanalize early. This study will use historical samples from the Barcelona Stroke Thrombolysis Biobank, comprised of 350 pre-thrombolysis plasma samples from ischaemic stroke patients who received serial transcranial-Doppler (TCD) measurements before and after thrombolysis. The plasmin potential of each patient will be measured using the level of plasmin-antiplasmin complex (PAP) generated after addition of rt-PA. Levels of antiplasmin, plasminogen, t-PA activity, and PAI-1 activity will also be determined. Association between plasmin potential variables and time to recanalization [assessed on serial TCD using the thrombolysis in brain ischemia (TIBI) score] will be assessed using Cox proportional hazards models, adjusted for potential confounders. The primary outcome will be time to recanalization detected by TCD (defined as TIBI ≥4). Secondary outcomes will be recanalization within 6-h and recanalization and/or haemorrhagic transformation at 24-h. This analysis will utilize an expanded cohort including ~120 patients from the Targeting Optimal Thrombolysis Outcomes (TOTO) study. If association between proteolytic response to rt-PA and recanalization is confirmed, future clinical treatment may customize thrombolytic therapy to maximize outcomes and minimize adverse effects for individual patients.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fneur.2020.589628DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7669985PMC
November 2020
-->