Publications by authors named "Jinmiao Song"

5 Publications

  • Page 1 of 1

Anti-cancer Peptide Recognition Based on Grouped Sequence and Spatial Dimension Integrated Networks.

Interdiscip Sci 2021 Oct 12. Epub 2021 Oct 12.

People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China.

The diversification of the characteristic sequences of anti-cancer peptides has imposed difficulties on research. To effectively predict new anti-cancer peptides, this paper proposes a more suitable feature grouping sequence and spatial dimension-integrated network algorithm for anti-cancer peptide sequence prediction called GRCI-Net. The main process is as follows: First, we implemented the fusion reduction of binary structure features and K-mer sparse matrix features through principal component analysis and generated a set of new features; second, we constructed a new bidirectional long- and short-term memory network. We used traditional convolution and dilated convolution to acquire features in the spatial dimension using the memory network's grouping sequence model, which is designed to better handle the diversification of anti-cancer peptide feature sequences and to fully learn the contextual information between features. Finally, we achieved the fusion of grouping sequence features and spatial dimensional integration features through two sets of dense network layers, achieved the prediction of anti-cancer peptides through the sigmoid function, and verified the approach with two public datasets, ACP740 (accuracy reached 0.8230) and ACP240 (accuracy reached 0.8750). The following is a link to the model code and datasets mentioned in this article: https://github.com/ YouHongfeng101/ACP-DL.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12539-021-00481-0DOI Listing
October 2021

DHNLDA: A novel deep hierarchical network based method for predicting lncRNA-disease associations.

IEEE/ACM Trans Comput Biol Bioinform 2021 Sep 20;PP. Epub 2021 Sep 20.

Recent studies have found that lncRNA (long non-coding RNA) in ncRNA (non-coding RNA) is not only involved in many biological processes, but also abnormally expressed in many complex diseases. Identification of lncRNA-disease associations accurately is of great significance for understanding the function of lncRNA and disease mechanism. In this paper, a deep learning framework consisting of stacked autoencoder(SAE), multi-scale ResNet and stacked ensemble module, named DHNLDA, was constructed to predict lncRNA-disease associations, which integrates multiple biological data sources and constructing feature matrices. Among them, the biological data including the similarity and the interaction of lncRNAs, diseases and miRNAs are integrated. The feature matrices are obtained by node2vec embedding and feature extraction respectively. Then, the SAE and the multi-scale ResNet are used to learn the complementary information between nodes, and the high-level features of node attributes are obtained. Finally, the fusion of high-level feature is input into the stacked ensemble module to obtain the prediction results of lncRNA-disease associations. The experimental results of five-fold cross-validation show that the AUC of DHNLDA reaches 0.975 better than the existing methods. Case studies of stomach cancer, breast cancer and lung cancer have shown the great ability of DHNLDA to discover the potential lncRNA-disease associations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1109/TCBB.2021.3113326DOI Listing
September 2021

Predicting RBP Binding Sites of RNA with High-order Encoding Features and CNN-BLSTM Hybrid Model.

IEEE/ACM Trans Comput Biol Bioinform 2021 May 26;PP. Epub 2021 May 26.

RNA binding protein (RBP) is extensively involved in various cellular regulatory processes through the interaction with RNAs. Capturing the RBP binding preferences is fundamental for revealing the pathogenesis of complex diseases. Many experimental detection techniques are still time-consuming and labor-intensive, therefore, it is indispensable to develop a computational method with convincing accuracy. In this study, we proposed a CNN-BLSTM hybrid deep learning framework, named DeepDW, for predicting the RBP binding sites on RNAs with high-order encoding features of RNA sequence and secondary structure. The high-order encoding strategy was used to characterize the dependencies among adjacency nucleotides. For CNN-BLSTM hybrid model, DeepDW firstly employed two 1-D convolutional neural networks (CNNs) for learning the local features from high-order encoded matrices of RNA sequence and structure separately, and then applied two bidirectional long short-term memory networks (BLSTMs) to capture the global information in a higher level. Moreover, a series of experiments were carried out on 31 public datasets to evaluate our proposed framework, and DeepDW achieved superior performance than the state-of-the-art methods. The results indicated that the combination of high-order encoding method and CNN-BLSTM hybrid model had advantages in identifying RBP-RNA binding sites.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1109/TCBB.2021.3083930DOI Listing
May 2021

MD-MLI: Prediction of miRNA-lncRNA Interaction by Using Multiple Features and Hierarchical Deep Learning.

IEEE/ACM Trans Comput Biol Bioinform 2020 Oct 30;PP. Epub 2020 Oct 30.

Long non-coding RNA(lncRNA) can interact with microRNA(miRNA) and play an important role in inhibiting or activating the expression of target genes and the occurrence and development of tumors. Accumulating studies focus on the prediction of miRNA-lncRNA interaction, and mostly are concerned with biological experiments and machine learning methods. These methods are found with long cycles, high costs, and requiring over much human intervention. In this paper, a data-driven hierarchical deep learning framework was proposed, which was composed of a capsule network, an independent recurrent neural network with attention mechanism and bi-directional long short-term memory network. This framework combines the advantages of different networks, uses multiple sequencederived features of the original sequence and features of secondary structure to mine the dependency between features, and devotes to obtain better results. In the experiment, five-fold cross-validation was used to evaluate the performance of the model, and the zea mays data set was compared with the different model to obtain better classification effect. In addition, sorghum, brachypodium distachyon and bryophyte data sets were used to test the model, and the accuracy reached 0.9850, 0.9859 and 0.9777, respectively, which verified the model's good generalization ability.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1109/TCBB.2020.3034922DOI Listing
October 2020

AC-Caps: Attention Based Capsule Network for Predicting RBP Binding Sites of LncRNA.

Interdiscip Sci 2020 Dec 22;12(4):414-423. Epub 2020 Jun 22.

Dalian Key Lab of Digital Technology for National Culture, Dalian Minzu University, Dalian, 116600, China.

Long non-coding RNA(lncRNA) is one of the non-coding RNAs longer than 200 nucleotides and it has no protein encoding function. LncRNA plays a key role in many biological processes. Studying the RNA-binding protein (RBP) binding sites on the lncRNA chain helps to reveal epigenetic and post-transcriptional mechanisms, to explore the physiological and pathological processes of cancer, and to discover new therapeutic breakthroughs. To improve the recognition rate of RBP binding sites and reduce the experimental time and cost, many calculation methods based on domain knowledge to predict RBP binding sites have emerged. However, these prediction methods are independent of nucleotides and do not take into account nucleotide statistics. In this paper, we use a high-order statistical-based encoding scheme, then the encoded lncRNA sequences are fed into a hybrid deep learning architecture named AC-Caps. It consists of a joint processing layer(composed of attention mechanism and convolutional neural network) and a capsule network. The AC-Caps model was evaluated using 31 independent experimental data sets from 12 lncRNA-binding proteins. In experiments, our method achieves excellent performance, with an average area under the curve (AUC) of 0.967 and an average accuracy (ACC) of 92.5%, which are 0.014, 2.3%, 0.261, 28.9%, 0.189, and 21.8% higher than HOCCNNLB, iDeepS, and DeepBind, respectively. The results show that the AC-Caps method can reliably process the large-scale RBP binding site data on the lncRNA chain, and the prediction performance is better than existing deep-learning models. The source code of AC-Caps and the datasets used in this paper are available at https://github.com/JinmiaoS/AC-Caps .
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12539-020-00379-3DOI Listing
December 2020
-->