Publications by authors named "Jingni Yu"

4 Publications

  • Page 1 of 1

Clinical characteristics, rates of blindness, and geographic features of PACD in China.

Can J Ophthalmol 2021 Jan 21. Epub 2021 Jan 21.

The Eye Hospital of Wenzhou Medical University, Wenzhou, China.

Objective: To analyze the rates of blindness with the demographics and clinical characteristics of patients with primary angle-closure disease (PACD) to provide a comprehensive epidemiologic reference in China.

Methods: A retrospective analysis was conducted in the Chinese Glaucoma Study Consortium database, which is a national multicenter glaucoma research alliance of 111 hospitals participating between December 21, 2015 and September 9, 2018. The diagnosis of PACD was made by qualified physicians through examination. Comparison of sex, age, family history, subtypes of PACD, and blindness were analyzed.

Results: A total of 5762 glaucoma patients were included, of which 4588 (79.6%) had PACD. Of PACD patients, 72.1% were female with the sex ratio (F/M) of 2.6, and the average age of patients was 63.8±9.3 years with the majority between 60 and 70 years. Additionally, 30% of these patients had low vision in one eye, 8.8% had low vision in both eyes, 1.7% had blindness in one eye, and 0.3% had blindness in both eyes. There were statistical differences with regards to age between male and female patients with PACD, with male patients being older on average. Primary angle-closure glaucoma was more commonly diagnosed in males (60%) compared to females (35.9%), whereas acute primary angle closure (APAC) was more commonly diagnosed in females (54.3%) compared to males (37.7%). The visual acuity in APAC patients was lower and the rate of low vision and blindness was higher than other subtypes.

Conclusion: PACD was the major type of glaucoma in Chinese hospitals. There were more female patients with PACD, mostly between 60 and 70 years old, with higher rates of APAC in women. APAC resulted in the worst visual outcomes of all PACD subtypes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcjo.2020.12.010DOI Listing
January 2021

Upregulation of heme oxygenase-1 by Brahma-related gene 1 through Nrf2 signaling confers protective effect against high glucose-induced oxidative damage of retinal ganglion cells.

Eur J Pharmacol 2020 May 24;875:173038. Epub 2020 Feb 24.

Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China. Electronic address:

High glucose (HG)-induced oxidative damage of retinal ganglion cells (RGCs) contributes to the pathogenesis of diabetic retinopathy, a severe complication of diabetes mellitus. Brahma-related gene 1 (Brg1) has currently emerged as a cytoprotective protein that alleviates oxidative damage induced by various stress. However, whether Brg1 is involved in the regulation of HG-induced oxidative damage of RGCs remains unknown. In this study, we aimed to investigate the potential role and underlying mechanism of Brg1 in regulating HG-induced damage of RGCs. We found that Brg1 expression was significantly downregulated in RGCs in response to HG treatment. Functional experiments showed that Brg1 knockdown enhanced HG-induced apoptosis and production of reactive oxygen species, while Brg1 overexpression suppressed HG-induced apoptosis and reactive oxygen species production, showing a protective effect. Moreover, Brg1 overexpression resulted in an increase in nuclear expression of nuclear factor-erythroid-2-related factor-2 (Nrf2) and the expression of heme oxygenase-1 (HO-1) in RGCs. Notably, inhibition of Nrf2 or HO-1 significantly blocked Brg1-mediated protection against HG-induced damage. Overall, these findings demonstrate that Brg1 protects RGCs from HG-induced oxidative damage through promotion of Nrf2/HO-1 signaling, indicating a potential role of Brg1 in the pathogenesis of diabetic retinopathy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2020.173038DOI Listing
May 2020

SIRT6 protects retinal ganglion cells against hydrogen peroxide-induced apoptosis and oxidative stress by promoting Nrf2/ARE signaling via inhibition of Bach1.

Chem Biol Interact 2019 Feb 17;300:151-158. Epub 2019 Jan 17.

Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China. Electronic address:

Oxidative stress-induced damage of retinal ganglion cells (RGCs) is a major contributor to retinal degenerative diseases, such as glaucoma. Sirtuin 6 (SIRT6) has emerged as a cytoprotective protein against various insults. However, whether SIRT6 exerts a protective effect against oxidative stress-damaged RGCs remains unknown. In this study, we aimed to investigate the potential role and regulatory mechanism of SIRT6 in hydrogen peroxide (HO)-induced oxidative damage of RGCs in vitro. We found that SIRT6 expression was significantly downregulated in RGCs with HO treatment. Functional experiments showed that overexpression of SIRT6 improved survival and reduced apoptosis and the production of reactive oxygen species (ROS) in HO-treated RGCs. In contrast, SIRT6 knockdown had the opposite effect. Moreover, we found that SIRT6 overexpression promoted the nuclear accumulation of nuclear factor erythroid 2-related factor 2 (Nrf2) and increased the activity of antioxidant response element (ARE). In addition, we found that the promotional effect of SIRT6 on Nrf2/ARE signaling was associated with inhibition of BTB and CNC homology 1 (Bach1), an inhibitor of Nrf2. However, overexpression of Bach1 or inhibition of Nrf2/ARE signaling partially reversed the SIRT6-mediated protective effect. Taken together, these results demonstrate that SIRT6 protects RGCs from oxidative stress-induced damage by promoting the activation of Nrf2/ARE signaling via inhibition of Bach1, suggesting a potential role of SIRT6 in retinal degenerative diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbi.2019.01.018DOI Listing
February 2019

Eriodictyol inhibits high glucose-induced oxidative stress and inflammation in retinal ganglial cells.

J Cell Biochem 2019 04 14;120(4):5644-5651. Epub 2018 Oct 14.

Bioinspired Engineering and Biomechanics Center (BEBC), MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.

Diabetic retinopathy (DR) is one of the most common microvascular complications of diabetes mellitus and is considered as a leading cause of blindness. Oxidative stress and inflammation are significant drivers for the development of DR. Eriodictyol, a flavonoid compound, was proved to possess anti-inflammatory, antioxidative, and antidiabetic activities. However, the role of eriodictyol in DR has not been unveiled. In the current study, we explored the protective effects of eriodictyol on high glucose (HG)-induced rat retinal ganglial cells (RGCs). The results suggested that eriodictyol improved cell viability of HG-induced rat RGC-5 cells in a dose-dependent manner. Eriodictyol reduced the reactive oxygen species production and increased the activities of superoxide dismutase, glutathione peroxidase and catalase in rat RGC-5 cells in response to HG stimulation. The production of proinflammatory cytokines including tumor necrosis factor alpha and interleukin-8 was diminished after eriodictyol treatment. Eriodictyol also suppressed cell apoptosis induced HG in rat RGC-5 cells. Furthermore, eriodictyol enhanced the nuclear translocation of nuclear factor erythroid-2 (E2)-related factor 2 (Nrf2) and elevated the expression of antioxidant enzyme heme-oxygenase-1 (HO-1). These findings suggested that eriodictyol protects the RGC-5 cells from HG-induced oxidative stress, inflammation, and cell apoptosis through regulating the activation of Nrf2/HO-1 pathway.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcb.27848DOI Listing
April 2019
-->