Publications by authors named "Jing-Ting Chiou"

13 Publications

  • Page 1 of 1

Inhibition of Sp1-mediated survivin and MCL1 expression cooperates with SLC35F2 and myeloperoxidase to modulate YM155 cytotoxicity to human leukemia cells.

Biochem Pharmacol 2021 Apr 5;188:114544. Epub 2021 Apr 5.

Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan. Electronic address:

Although YM155 is reported to suppress survivin (also known as BIRC5) expression in cancer cells, its cytotoxic mechanism in human acute myeloid leukemia (AML) cells has not been clearly resolved. In this study, we analyzed the mechanistic pathways that modulate the sensitivity of human AML U937 and HL-60 cells to YM155. YM155 induced apoptosis in AML cells, which was characterized by p38 MAPK phosphorylation and downregulation of survivin and MCL1 expression. Phosphorylated p38 MAPK causes autophagy-mediated Sp1 degradation, thereby inhibiting the transcription of survivin and MCL1. The reduction of survivin and MCL1 levels further facilitated Sp1 protein degradation through autophagy. The restoration of Sp1, survivin, or MCL1 expression protected U937 and HL-60 cells from YM155-mediated cytotoxicity. U937 and HL-60 cells were continuously exposed to hydroquinone (HQ) to generate U937/HQ and HL-60/HQ cells, which showed increased SLC35F2 expression. The increase in SLC35F2 expression led to an increase in the sensitivity of U937/HQ cells to YM155-mediated cytotoxicity, whereas no such effect was observed in HL-60/HQ cells. Of note, myeloperoxidase (MPO) activity in HL-60 and HL-60/HQ cells enhanced YM155 cytotoxicity in these cells, and the enforced expression of MPO also increased the sensitivity of U937 cells to YM155. Taken together, we conclude that p38 MAPK-modulated autophagy inhibits Sp1-mediated survivin and MCL1 expression, which, in turn, leads to the death of U937 and HL-60 cells following YM155 treatment. In addition, our data indicate that SLC35F2 increases the sensitivity of U937 cells to YM155-mediated cytotoxicity, whereas MPO enhances YM155 cytotoxicity in U937 and HL-60 cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bcp.2021.114544DOI Listing
April 2021

Modification of carboxyl groups converts α-lactalbumin into an active molten globule state with membrane-perturbing activity and cytotoxicity.

Int J Biol Macromol 2020 Nov 19;163:1697-1706. Epub 2020 Sep 19.

Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan. Electronic address:

We investigated whether the modification of the negatively charged carboxyl groups with semicarbazide could confer membrane-disrupting and cytotoxic properties to bovine α-lactalbumin (LA). MALDI-TOF analysis revealed that eighteen of the twenty-one carboxyl groups in LA were coupled with semicarbazide molecules. Measurement of circular dichroism spectra and Trp fluorescence quenching studies showed that semicarbazide-modified LA (SEM-LA) had a molten globule-like conformation that retained the α-helix secondary structure but lost the tertiary structure of LA. Compared to LA, SEM-LA had a higher structural flexibility in response to trifluoroethanol- and temperature-induced structural transitions. In sharp contrast to LA, SEM-LA exhibited membrane-damaging activity and cytotoxicity. Furthermore, SEM-LA-induced membrane permeability promoted the uptake of daunorubicin and thereby its cytotoxicity. The microenvironment surrounding the Trp residues of SEM-LA was enriched in positive charges, as revealed by iodide quenching studies. The binding of SEM-LA with lipid vesicles altered the positively charged cluster around Trp residues. Although LA and SEM-LA displayed similar lipid-binding affinities, the membrane interaction modes of SEM-LA and LA differed. Collectively, these results suggest that blocking of negatively charged residues enables the formation of a molten-globule conformation of LA with structural flexibility and increased positive charge, thereby generating functional LA with membrane-disrupting activity and cytotoxicity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2020.09.095DOI Listing
November 2020

Blocking of negative charged carboxyl groups converts Naja atra neurotoxin to cardiotoxin-like protein.

Int J Biol Macromol 2020 Dec 23;164:2953-2963. Epub 2020 Aug 23.

Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan. Electronic address:

Naja atra cobrotoxin and cardiotoxin 3 (CTX3) exhibit neurotoxicity and cytotoxicity, respectively. In the present study, we aimed to investigate whether the carboxyl groups of cobrotoxin play a role in structural constraints, thereby preventing cobrotoxin from exhibiting cytotoxic activity. Six of the seven carboxyl groups in cobrotoxin were conjugated with semicarbazide. Measurement of circular dichroism spectra and Trp fluorescence quenching showed that the gross conformation of semicarbazide-modified cobrotoxin (SEM-cobrotoxin) and cobrotoxin differed. In sharp contrast to cobrotoxin, SEM-cobrotoxin demonstrated membrane-damaging activity and cytotoxicity, which are feature more characteristic of CTX3. Furthermore, both SEM-cobrotoxin and CTX3 induced cell death through AMPK activation. Analyses of the interaction between polydiacetylene/lipid vesicles and fluorescence-labeled lipids revealed that SEM-cobrotoxin and cobrotoxin adopted different membrane-bound states. The structural characteristics of SEM-cobrotoxin were similar to those of CTX3, including trifluoroethanol (TFE)-induced structural transformation and membrane binding-induced conformational change. Conversely, cobrotoxin was insensitive to the TFE-induced effect. Collectively, the data of this study indicate that blocking negatively charged residues confers cobrotoxin with membrane-damaging activity and cytotoxicity. The findings also suggest that the structural constraints imposed by carboxyl groups control the functional properties of snake venom α-neurotoxins during the divergent evolution of snake venom neurotoxins and cardiotoxins.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2020.08.163DOI Listing
December 2020

GSK3β suppression inhibits MCL1 protein synthesis in human acute myeloid leukemia cells.

J Cell Physiol 2021 Jan 22;236(1):570-586. Epub 2020 Jun 22.

Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.

Previous studies have shown that glycogen synthase kinase 3β (GSK3β) suppression is a potential strategy for human acute myeloid leukemia (AML) therapy. However, the cytotoxic mechanism associated with GSK3β suppression remains unresolved. Thus, the underlying mechanism of N-(4-methoxybenzyl)-N'-(5-nitro-1,3-thiazol-2-yl)urea (AR-A014418)-elicited GSK3β suppression in the induction of AML U937 and HL-60 cell death was investigated in this study. Our study revealed that AR-A014418-induced MCL1 downregulation remarkably elicited apoptosis of U937 cells. Furthermore, the AR-A014418 treatment increased p38 MAPK phosphorylation and decreased the phosphorylated Akt and ERK levels. Activation of p38 MAPK subsequently evoked autophagic degradation of 4EBP1, while Akt inactivation suppressed mTOR-mediated 4EBP1 phosphorylation. Furthermore, AR-A014418-elicited ERK inactivation inhibited Mnk1-mediated eIF4E phosphorylation, which inhibited MCL1 mRNA translation in U937 cells. In contrast to GSK3α, GSK3β downregulation recapitulated the effect of AR-A014418 in U937 cells. Transfection of constitutively active GSK3β or cotransfection of constitutively activated MEK1 and Akt suppressed AR-A014418-induced MCL1 downregulation. Moreover, AR-A014418 sensitized U937 cells to ABT-263 (BCL2/BCL2L1 inhibitor) cytotoxicity owing to MCL1 suppression. Collectively, these results indicate that AR-A014418-induced GSK3β suppression inhibits ERK-Mnk1-eIF4E axis-modulated de novo MCL1 protein synthesis and thereby results in U937 cell apoptosis. Our findings also indicate a similar pathway underlying AR-A014418-induced death in human AML HL-60 cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.29884DOI Listing
January 2021

Albendazole-Induced SIRT3 Upregulation Protects Human Leukemia K562 Cells from the Cytotoxicity of MCL1 Suppression.

Int J Mol Sci 2020 May 30;21(11). Epub 2020 May 30.

Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.

Previous studies have shown that MCL1 stabilization confers cancer cells resistance to microtubule targeting agents (MTAs) and functionally extends the lifespan of MTA-triggered mitotically arrested cells. Albendazole (ABZ), a benzimidazole anthelmintic, shows microtubule-destabilizing activity and has been repositioned for cancer therapies. To clarify the role of MCL1 in ABZ-induced apoptosis, we investigated the cytotoxicity of ABZ on human leukemia K562 cells. Treatment with ABZ for 24 h did not appreciably induce apoptosis or mitochondrial depolarization in K562 cells, though it caused the mitotic arrest of K562 cells. ABZ-evoked p38 MAPK activation concurrently suppressed Sp1-mediated MCL1 expression and increased SIRT3 mRNA stability and protein expression. ABZ and A-1210477 (an MCL1 inhibitor) enhanced the cytotoxicity of ABT-263 (a BCL2/BCL2L1 inhibitor) to their effect on MCL1 suppression. Unlike ABZ, A-1210477 did not affect SIRT3 expression and reduced the survival of K562 cells. Overexpression of SIRT3 attenuated the A-1210477 cytotoxicity on K562 cells. ABZ treatment elicited marked apoptosis and ΔΨm loss in ABT-263-resistant K562 (K562/R) cells, but did not alter SIRT3 expression. Ectopic expression of SIRT3 alleviated the cytotoxicity of ABZ on K562/R cells. Collectively, our data demonstrate that ABZ-induced SIRT3 upregulation delays the apoptosis-inducing effect of MCL1 suppression on apoptosis induction in K562 cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms21113907DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7312678PMC
May 2020

Inhibition of EGFR pathway promotes the cytotoxicity of ABT-263 in human leukemia K562 cells by blocking MCL1 upregulation.

Biochem Pharmacol 2020 08 22;178:114047. Epub 2020 May 22.

Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan. Electronic address:

ABT-263 induces MCL1 upregulation in cancer cells, which confers resistance to the drug. An increased understanding of the mechanism underlying ABT-263-induced MCL1 expression may provide a strategy to improve its tumor-suppression activity. The present study revealed that ABT-263 reduced the turnover of MCL1 mRNA, thereby upregulating MCL1 expression in human K562 leukemia cells. Furthermore, ABT-263-induced EGFR activation promoted AGO2 phosphorylation at Y393 and reduced miR-125b maturation. Treatment with EGFR inhibitors mitigated MCL1 upregulation induced by ABT-263. Additionally, lithium chloride (LiCl) alleviated ABT-263-induced MCL1 upregulation through EGFR-AGO2 axis-modulated miR-125b suppression. Ectopic expression of dominant negative AGO2(Y393F) or transfection with miR-125b abolished ABT-263-induced upregulation of MCL1 mRNA and protein levels. Co-treatment with either EGFR inhibitors or LiCl collaboratively enhanced ABT-263 cytotoxicity, while MCL1 overexpression eliminated this synergistic effect. Collectively, our data reveal that ABT-263 increases EGFR-mediated AGO2 phosphorylation, which in turn suppresses miR-125b-mediated MCL1 mRNA degradation in K562 cells. The suppression of this signaling pathway results in the synergistic cytotoxic effect of EGFR inhibitors or LiCl and ABT-263.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bcp.2020.114047DOI Listing
August 2020

Status of Asp29 and Asp40 in the Interaction of Cardiotoxins with Lipid Bilayers.

Toxins (Basel) 2020 04 18;12(4). Epub 2020 Apr 18.

Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.

It is widely accepted that snake venom cardiotoxins (CTXs) target the plasma membranes of cells. In the present study, we investigated the role of Asp residues in the interaction of cardiotoxin 1 (CTX1) and cardiotoxin 3 (CTX3) with phospholipid bilayers using chemical modification. CTX1 contains three Asp residues at positions 29, 40, and 57; CTX3 contains two Asp residues at positions 40 and 57. Compared to Asp29 and Asp40, Asp57 was sparingly modified with semi-carbazide, as revealed by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass and mass/mass analyses. Thus, semi-carbazide-modified CTX1 (SEM-CTX1) mainly contained modified Asp29 and Asp40, while SEM-CTX3 contained modified Asp40. Compared to that of native toxins, trifluoroethanol easily induced structural transition of SEM-CTX1 and SEM-CTX3, suggesting that the structural flexibility of CTXs was constrained by Asp40. Modification of Asp29 and Asp40 markedly promoted the ability of CTX1 to induce permeability of cell membranes and lipid vesicles; CTX3 and SEM-CTX3 showed similar membrane-damaging activity. Modification of Asp residues did not affect the membrane-binding capability of CTXs. Circular dichroism spectra of SEM-CTX3 and CTX3 were similar, while the gross conformation of SEM-CTX1 was distinct from that of CTX1. The interaction of CTX1 with membrane was distinctly changed by Asp modification. Collectively, our data suggest that Asp29 of CTX1 suppresses the optimization of membrane-bound conformation to a fully active state and that the function of Asp40 in the structural constraints of CTX1 and CTX3 is not important for the manifestation of membrane-perturbing activity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/toxins12040262DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7232319PMC
April 2020

Arsenic trioxide-induced p38 MAPK and Akt mediated MCL1 downregulation causes apoptosis of BCR-ABL1-positive leukemia cells.

Toxicol Appl Pharmacol 2020 Apr 17;397:115013. Epub 2020 Apr 17.

Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan. Electronic address:

In this study, we investigated the mechanisms underlying arsenic trioxide (ATO)-induced death of human BCR-ABL1-positive K562 and MEG-01 cells. ATO-induced apoptotic death in K562 cells was characterized by ROS-mediated mitochondrial depolarization, MCL1 downregulation, p38 MAPK activation, and Akt inactivation. ATO-induced BCR-ABL1 downregulation caused Akt inactivation but not p38 MAPK activation. Akt inactivation increased GSK3β-mediated MCL1 degradation, while p38 MAPK-mediated NFκB activation coordinated with HDAC1 suppressed MCL1 transcription. Inhibition of p38 MAPK activation or overexpression of constitutively active Akt increased MCL1 expression and promoted the survival of ATO-treated cells. Overexpression of MCL1 alleviated mitochondrial depolarization and cell death induced by ATO. The same pathway was found to be involved in ATO-induced death in MEG-01 cells. Remarkably, YM155 synergistically enhanced the cytotoxicity of ATO on K562 and MEG-01 cells through suppression of MCL1 and survivin. Collectively, our data indicate that ATO-induced p38 MAPK- and Akt-mediated MCL1 downregulation triggers apoptosis in K562 and MEG-01 cells, and that p38 MAPK activation is independent of ATO-induced BCR-ABL1 suppression.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.taap.2020.115013DOI Listing
April 2020

SIRT3, PP2A and TTP protein stability in the presence of TNF-α on vincristine-induced apoptosis of leukaemia cells.

J Cell Mol Med 2020 02 13;24(4):2552-2565. Epub 2020 Jan 13.

Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.

The contribution of vincristine (VCR)-induced microtubule destabilization to evoke apoptosis in cancer cells remains to be resolved. Thus, we investigated the cytotoxic mechanism of VCR on U937 and HL-60 human leukaemia cell lines. We discovered that VCR treatment resulted in the up-regulation of TNF-α expression and activation of the death receptor pathway, which evoked apoptosis of U937 cells. Moreover, VCR induced microtubule destabilization and mitotic arrest. VCR treatment down-regulated SIRT3, and such down-regulation caused mitochondrial ROS to initiate phosphorylation of p38 MAPK. p38 MAPK suppressed MID1-modulated degradation of the protein phosphatase 2A (PP2A) catalytic subunit. The SIRT3-ROS-p38 MAPK-PP2A axis inhibited tristetraprolin (TTP)-controlled TNF-α mRNA degradation, consequently, up-regulating TNF-α expression. Restoration of SIRT3 and TTP expression, or inhibition of the ROS-p38 MAPK axis increased the survival of VCR-treated cells and repressed TNF-α up-regulation. In contrast to suppression of the ROS-p38 MAPK axis, overexpression of SIRT3 modestly inhibited the effect of VCR on microtubule destabilization and mitotic arrest in U937 cells. Apoptosis of HL-60 cells, similarly, went through the same pathway. Collectively, our data indicate that the SIRT3-ROS-p38 MAPK-PP2A-TTP axis modulates TNF-α expression, which triggers apoptosis of VCR-treated U937 and HL-60 cells. We also demonstrate that the apoptotic signalling is not affected by VCR-elicited microtubule destabilization.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/jcmm.14949DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7028858PMC
February 2020

Compound C induces autophagy and apoptosis in parental and hydroquinone-selected malignant leukemia cells through the ROS/p38 MAPK/AMPK/TET2/FOXP3 axis.

Cell Biol Toxicol 2020 08 3;36(4):315-331. Epub 2020 Jan 3.

Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan.

Hydroquinone (HQ), a major metabolic product of benzene, causes acute myeloid leukemia (AML) elicited by benzene exposure. Past studies found that continuous exposure of human AML U937 cells to HQ selectively produces malignant U937/HQ cells in which FOXP3 upregulation modulates malignant progression. Other studies revealed that AMPK promotes TET2 activity on DNA demethylation and that TET2 activity is crucial for upregulating FOXP3 expression. This study was conducted to elucidate whether compound C, an AMPK inhibitor, blocked the AMPK-TET2-FOXP3 axis in AML and in HQ-selected malignant cells. We found higher levels of AMPKα, TET2, and FOXP3 expression in U937/HQ cells compared to U937 cells. Treatment of parental Original Article and HQ-selected malignant U937 cells with compound C induced ROS-mediated p38 MAPK activation, leading to a suppression of AMPKα, TET2, and FOXP3 expression. Moreover, compound C induced apoptosis and mTOR-independent autophagy. The suppression of the autophagic flux inhibited the apoptosis of compound C-treated U937 and U937/HQ cells, whereas co-treatment with rapamycin, a mTOR inhibitor, sensitized the two cell lines to compound C cytotoxicity. Overexpression of AMPKα1 or pretreatment with autophagic inhibitors abrogated compound C-induced autophagy and suppression of TET2 and FOXP3 expression. Restoration of AMPKα1 or FOXP3 expression increased cell survival after treatment with compound C. In conclusion, our results show that compound C suppresses AMPK/TET2 axis-mediated FOXP3 expression and induces autophagy-dependent apoptosis in parental and HQ-selected malignant U937 cells, suggesting that the AMPK/TET2/FOXP3 axis is a promising target for improving AML therapy and attenuating benzene exposure-induced AML progression.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10565-019-09495-3DOI Listing
August 2020

Autophagic HuR mRNA degradation induces survivin and MCL1 downregulation in YM155-treated human leukemia cells.

Toxicol Appl Pharmacol 2020 01 16;387:114857. Epub 2019 Dec 16.

Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan. Electronic address:

The aim of this study was to investigate the mechanism of YM155 cytotoxicity in human chronic myeloid leukemia (CML) cells. YM155-induced apoptosis of human CML K562 cells was characterized by ROS-mediated p38 MAPK activation, mitochondrial depolarization, and survivin and MCL1 downregulation. Moreover, YM155-induced autophagy caused degradation of HuR mRNA and downregulation of HuR protein expression, which resulted in destabilized survivin and MCL1 mRNA. Interestingly, survivin and MCL1 suppression contributed to autophagy-mediated HuR mRNA destabilization in YM155-treated cells. Pretreatment with inhibitors of p38 MAPK or autophagy alleviated YM155-induced autophagy and apoptosis in K562 cells, as well as YM155-induced downregulation of HuR, survivin, and MCL1. Ectopic overexpression of HuR, survivin, or MCL1 attenuated the cytotoxic effect of YM155 on K562 cells. Conversely, YM155 sensitized K562 cells to ABT-199 (a BCL2 inhibitor), and circumvented K562 cell resistance to ABT-199 because of its inhibitory effect on survivin and MCL1 expression. Overall, our data indicate that YM155-induced apoptosis is mediated by inducing autophagic HuR mRNA degradation, and reveal the pathway responsible for YM155-induced downregulation of survivin and MCL1 in K562 cells. Our findings also indicate a similar pathway underlying YM155-induced death in human CML MEG-01 cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.taap.2019.114857DOI Listing
January 2020

Cardiotoxin 3 Elicits Autophagy and Apoptosis in U937 Human Leukemia Cells through the Ca/PP2A/AMPK Axis.

Toxins (Basel) 2019 09 12;11(9). Epub 2019 Sep 12.

Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.

Cardiotoxins (CTXs) are suggested to exert their cytotoxicity through cell membrane damage. Other studies show that penetration of CTXs into cells elicits mitochondrial fragmentation or lysosome disruption, leading to cell death. Considering the role of AMPK-activated protein kinase (AMPK) in mitochondrial biogenesis and lysosomal biogenesis, we aimed to investigate whether the AMPK-mediated pathway modulated (Taiwan cobra) CTX3 cytotoxicity in U937 human leukemia cells. Our results showed that CTX3 induced autophagy and apoptosis in U937 cells, whereas autophagic inhibitors suppressed CTX3-induced apoptosis. CTX3 treatment elicited Ca-dependent degradation of the protein phosphatase 2A (PP2A) catalytic subunit (PP2Acα) and phosphorylation of AMPKα. Overexpression of PP2Acα mitigated the CTX3-induced AMPKα phosphorylation. CTX3-induced autophagy was via AMPK-mediated suppression of the Akt/mTOR pathway. Removal of Ca or suppression of AMPKα phosphorylation inhibited the CTX3-induced cell death. CTX3 was unable to induce autophagy and apoptosis in U937 cells expressing constitutively active Akt. Met-modified CTX3 retained its membrane-perturbing activity, however, it did not induce AMPK activation and death of U937 cells. These results conclusively indicate that CTX3 induces autophagy and apoptosis in U937 cells via the Ca/PP2A/AMPK axis, and suggest that the membrane-perturbing activity of CTX3 is not crucial for the cell death signaling pathway induction.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/toxins11090527DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6784133PMC
September 2019

Naja atra cardiotoxins enhance the protease activity of chymotrypsin.

Int J Biol Macromol 2019 Sep 12;136:512-520. Epub 2019 Jun 12.

Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan. Electronic address:

Snake venom cardiotoxins (CTXs) present diverse pharmacological functions. Previous studies have reported that CTXs affect the activity of some serine proteases, namely, chymotrypsin, subtilisin, trypsin, and acetylcholinesterase. To elucidate the mode of action of CTXs, the interaction of CTXs with chymotrypsin was thus investigated. It was found that Naja atra CTX isotoxins concentration-dependently enhanced chymotrypsin activity. The capability of CTX1 and CTX5 in increasing chymotrypsin activity was higher than that of CTX2, CTX3, and CTX4. Removal of the molecular beacon-bound CTXs by chymotrypsin, circular dichroism measurement, and acrylamide quenching of Trp fluorescence indicated that CTXs bound to chymotrypsin. Chemical modification of Lys, Arg, or Met residues of CTX1 attenuated its capability to enhance chymotrypsin activity without impairing their bond with chymotrypsin. Catalytically inactive chymotrypsin retained the binding affinity for native and modified CTX1. CTX1 and chemically modified CTX1 differently altered the global conformation of chymotrypsin and inactivated chymotrypsin. Moreover, CTX1 did not reduce the interaction of 2-(p-toluidino)-naphthalene-6-sulfonate (TNS) with chymotrypsin and inactivated chymotrypsin. Together with previous results revealing that TNS can bind at the hydrophobic region of active site in chymotrypsin, our data suggest that CTXs can enhance chymotrypsin activity by binding to the region outside the enzyme's active site.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2019.06.066DOI Listing
September 2019