Publications by authors named "Jin-Fang Chai"

25 Publications

  • Page 1 of 1

APOC3 genetic variation, serum triglycerides, and risk of coronary artery disease in Asian Indians, Europeans, and other ethnic groups.

Lipids Health Dis 2021 Sep 21;20(1):113. Epub 2021 Sep 21.

Duke-NUS Medical School, Singapore, 169857, Singapore.

Background: Hypertriglyceridemia has emerged as a critical coronary artery disease (CAD) risk factor. Rare loss-of-function (LoF) variants in apolipoprotein C-III have been reported to reduce triglycerides (TG) and are cardioprotective in American Indians and Europeans. However, there is a lack of data in other Europeans and non-Europeans. Also, whether genetically increased plasma TG due to ApoC-III is causally associated with increased CAD risk is still unclear and inconsistent. The objectives of this study were to verify the cardioprotective role of earlier reported six LoF variants of APOC3 in South Asians and other multi-ethnic cohorts and to evaluate the causal association of TG raising common variants for increasing CAD risk.

Methods: We performed gene-centric and Mendelian randomization analyses and evaluated the role of genetic variation encompassing APOC3 for affecting circulating TG and the risk for developing CAD.

Results: One rare LoF variant (rs138326449) with a 37% reduction in TG was associated with lowered risk for CAD in Europeans (p = 0.007), but we could not confirm this association in Asian Indians (p = 0.641). Our data could not validate the cardioprotective role of other five LoF variants analysed. A common variant rs5128 in the APOC3 was strongly associated with elevated TG levels showing a p-value 2.8 × 10. Measures of plasma ApoC-III in a small subset of Sikhs revealed a 37% increase in ApoC-III concentrations among homozygous mutant carriers than the wild-type carriers of rs5128. A genetically instrumented per 1SD increment of plasma TG level of 15 mg/dL would cause a mild increase (3%) in the risk for CAD (p = 0.042).

Conclusions: Our results highlight the challenges of inclusion of rare variant information in clinical risk assessment and the generalizability of implementation of ApoC-III inhibition for treating atherosclerotic disease. More studies would be needed to confirm whether genetically raised TG and ApoC-III concentrations would increase CAD risk.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12944-021-01531-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8456544PMC
September 2021

Analyses of biomarker traits in diverse UK biobank participants identify associations missed by European-centric analysis strategies.

J Hum Genet 2021 Aug 11. Epub 2021 Aug 11.

Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.

Despite the dramatic underrepresentation of non-European populations in human genetics studies, researchers continue to exclude participants of non-European ancestry, as well as variants rare in European populations, even when these data are available. This practice perpetuates existing research disparities and can lead to important and large effect size associations being missed. Here, we conducted genome-wide association studies (GWAS) of 31 serum and urine biomarker quantitative traits in African (n = 9354), East Asian (n = 2559), and South Asian (n = 9823) ancestry UK Biobank (UKBB) participants. We adjusted for all known GWAS catalog variants for each trait, as well as novel signals identified in a recent European ancestry-focused analysis of UKBB participants. We identify 7 novel signals in African ancestry and 2 novel signals in South Asian ancestry participants (p < 1.61E-10). Many of these signals are highly plausible, including a cis pQTL for the gene encoding gamma-glutamyl transferase and PIEZO1 and G6PD variants with impacts on HbA1c through likely erythrocytic mechanisms. This work illustrates the importance of using the genetic data we already have in diverse populations, with novel discoveries possible in even modest sample sizes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s10038-021-00968-0DOI Listing
August 2021

The trans-ancestral genomic architecture of glycemic traits.

Nat Genet 2021 06 31;53(6):840-860. Epub 2021 May 31.

Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.

Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 × 10), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-021-00852-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610958PMC
June 2021

Meta-analysis uncovers genome-wide significant variants for rapid kidney function decline.

Kidney Int 2021 04 31;99(4):926-939. Epub 2020 Oct 31.

Division of Nephrology, University of Washington, Seattle, Washington, USA; Kidney Research Institute, University of Washington, Seattle, Washington, USA.

Rapid decline of glomerular filtration rate estimated from creatinine (eGFRcrea) is associated with severe clinical endpoints. In contrast to cross-sectionally assessed eGFRcrea, the genetic basis for rapid eGFRcrea decline is largely unknown. To help define this, we meta-analyzed 42 genome-wide association studies from the Chronic Kidney Diseases Genetics Consortium and United Kingdom Biobank to identify genetic loci for rapid eGFRcrea decline. Two definitions of eGFRcrea decline were used: 3 mL/min/1.73m/year or more ("Rapid3"; encompassing 34,874 cases, 107,090 controls) and eGFRcrea decline 25% or more and eGFRcrea under 60 mL/min/1.73m at follow-up among those with eGFRcrea 60 mL/min/1.73m or more at baseline ("CKDi25"; encompassing 19,901 cases, 175,244 controls). Seven independent variants were identified across six loci for Rapid3 and/or CKDi25: consisting of five variants at four loci with genome-wide significance (near UMOD-PDILT (2), PRKAG2, WDR72, OR2S2) and two variants among 265 known eGFRcrea variants (near GATM, LARP4B). All these loci were novel for Rapid3 and/or CKDi25 and our bioinformatic follow-up prioritized variants and genes underneath these loci. The OR2S2 locus is novel for any eGFRcrea trait including interesting candidates. For the five genome-wide significant lead variants, we found supporting effects for annual change in blood urea nitrogen or cystatin-based eGFR, but not for GATM or LARP4B. Individuals at high compared to those at low genetic risk (8-14 vs. 0-5 adverse alleles) had a 1.20-fold increased risk of acute kidney injury (95% confidence interval 1.08-1.33). Thus, our identified loci for rapid kidney function decline may help prioritize therapeutic targets and identify mechanisms and individuals at risk for sustained deterioration of kidney function.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.kint.2020.09.030DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8010357PMC
April 2021

Genome-Wide Association for HbA1c in Malay Identified Deletion on SLC4A1 that Influences HbA1c Independent of Glycemia.

J Clin Endocrinol Metab 2020 12;105(12)

Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore.

Context: Glycated hemoglobin A1c (HbA1c) level is used to screen and diagnose diabetes. Genetic determinants of HbA1c can vary across populations and many of the genetic variants influencing HbA1c level were specific to populations.

Objective: To discover genetic variants associated with HbA1c level in nondiabetic Malay individuals.

Design And Participants: We conducted a genome-wide association study (GWAS) analysis for HbA1c using 2 Malay studies, the Singapore Malay Eye Study (SiMES, N = 1721 on GWAS array) and the Living Biobank study (N = 983 on GWAS array and whole-exome sequenced). We built a Malay-specific reference panel to impute ethnic-specific variants and validate the associations with HbA1c at ethnic-specific variants.

Results: Meta-analysis of the 1000 Genomes imputed array data identified 4 loci at genome-wide significance (P < 5 × 10-8). Of the 4 loci, 3 (ADAM15, LINC02226, JUP) were novel for HbA1c associations. At the previously reported HbA1c locus ATXN7L3-G6PC3, association analysis using the exome data fine-mapped the HbA1c associations to a 27-bp deletion (rs769664228) at SLC4A1 that reduced HbA1c by 0.38 ± 0.06% (P = 3.5 × 10-10). Further imputation of this variant in SiMES confirmed the association with HbA1c at SLC4A1. We also showed that these genetic variants influence HbA1c level independent of glucose level.

Conclusion: We identified a deletion at SLC4A1 associated with HbA1c in Malay. The nonglycemic lowering of HbA1c at rs769664228 might cause individuals carrying this variant to be underdiagnosed for diabetes or prediabetes when HbA1c is used as the only diagnostic test for diabetes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1210/clinem/dgaa658DOI Listing
December 2020

Exploring Factors Underlying Ethnic Difference in Age-related Macular Degeneration Prevalence.

Ophthalmic Epidemiol 2020 10 8;27(5):399-408. Epub 2020 Jun 8.

Centre for Vision Research, Department of Ophthalmology, Westmead Institute for Medical Research, University of Sydney , Westmead, NSW, Australia.

Aims: To assess contributions of dietary and genetic factors to ethnic differences in AMD prevalence.

Design: Population-based analytical study.

Methods: In the Blue Mountains Eye Study, Australia (European ancestry n = 2826) and Multi-Ethnic Cohort Study, Singapore (Asian ancestry, n = 1900), AMD was assessed from retinal photographs. Patterns of dietary composition and scores of the Alternative Healthy Eating Index were computed using food frequency questionnaire data. Genetic susceptibility to AMD was determined using either single nucleotide polymorphisms (SNPs) of the c and genes, or combined odds-weighted genetic risk scores of 24 AMD-associated SNPs. Associations of AMD with ethnicity, diet, and genetics were assessed using logistic regression. Six potential mediators covering genetic, diet and lifestyle factors were assessed for their contributions to AMD risk difference between the two samples using mediation analyses.

Results: Age-standardized prevalence of any (early or late) AMD was higher in the European (16%) compared to Asian samples (9%, < .01). Mean AMD-related genetic risk scores were also higher in European (33.3 ± 4.4) than Asian (Chinese) samples (31.7 ± 3.7, < .001). In a model simultaneously adjusting for age, ethnicity, genetic susceptibility and Alternative Healthy Eating Index scores, only age and genetic susceptibility were significantly associated with AMD. Genetic risk scores contributed 19% of AMD risk difference between the two samples while intake of polyunsaturated fatty acids contributed 7.2%.

Conclusion: Genetic susceptibility to AMD was higher in European compared to Chinese samples and explained more of the AMD risk difference between the two samples than the dietary factors investigated.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/09286586.2020.1762229DOI Listing
October 2020

Identification of type 2 diabetes loci in 433,540 East Asian individuals.

Nature 2020 06 6;582(7811):240-245. Epub 2020 May 6.

Vanderbilt Genetics Institute, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.

Meta-analyses of genome-wide association studies (GWAS) have identified more than 240 loci that are associated with type 2 diabetes (T2D); however, most of these loci have been identified in analyses of individuals with European ancestry. Here, to examine T2D risk in East Asian individuals, we carried out a meta-analysis of GWAS data from 77,418 individuals with T2D and 356,122 healthy control individuals. In the main analysis, we identified 301 distinct association signals at 183 loci, and across T2D association models with and without consideration of body mass index and sex, we identified 61 loci that are newly implicated in predisposition to T2D. Common variants associated with T2D in both East Asian and European populations exhibited strongly correlated effect sizes. Previously undescribed associations include signals in or near GDAP1, PTF1A, SIX3, ALDH2, a microRNA cluster, and genes that affect the differentiation of muscle and adipose cells. At another locus, expression quantitative trait loci at two overlapping T2D signals affect two genes-NKX6-3 and ANK1-in different tissues. Association studies in diverse populations identify additional loci and elucidate disease-associated genes, biology, and pathways.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-020-2263-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7292783PMC
June 2020

Mendelian randomization analysis does not support causal associations of birth weight with hypertension risk and blood pressure in adulthood.

Eur J Epidemiol 2020 Jul 7;35(7):685-697. Epub 2020 May 7.

Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Skåne University Hospital Malmö, Lund University, 21741, Malmö, Sweden.

Epidemiology studies suggested that low birthweight was associated with a higher risk of hypertension in later life. However, little is known about the causality of such associations. In our study, we evaluated the causal association of low birthweight with adulthood hypertension following a standard analytic protocol using the study-level data of 183,433 participants from 60 studies (CHARGE-BIG consortium), as well as that with blood pressure using publicly available summary-level genome-wide association data from EGG consortium of 153,781 participants, ICBP consortium and UK Biobank cohort together of 757,601 participants. We used seven SNPs as the instrumental variable in the study-level analysis and 47 SNPs in the summary-level analysis. In the study-level analyses, decreased birthweight was associated with a higher risk of hypertension in adults (the odds ratio per 1 standard deviation (SD) lower birthweight, 1.22; 95% CI 1.16 to 1.28), while no association was found between genetically instrumented birthweight and hypertension risk (instrumental odds ratio for causal effect per 1 SD lower birthweight, 0.97; 95% CI 0.68 to 1.41). Such results were consistent with that from the summary-level analyses, where the genetically determined low birthweight was not associated with blood pressure measurements either. One SD lower genetically determined birthweight was not associated with systolic blood pressure (β = - 0.76, 95% CI - 2.45 to 1.08 mmHg), 0.06 mmHg lower diastolic blood pressure (β = - 0.06, 95% CI - 0.93 to 0.87 mmHg), or pulse pressure (β = - 0.65, 95% CI - 1.38 to 0.69 mmHg, all p > 0.05). Our findings suggest that the inverse association of birthweight with hypertension risk from observational studies was not supported by large Mendelian randomization analyses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10654-020-00638-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7867117PMC
July 2020

Gene-educational attainment interactions in a multi-ancestry genome-wide meta-analysis identify novel blood pressure loci.

Mol Psychiatry 2021 06 5;26(6):2111-2125. Epub 2020 May 5.

Health Disparities Research Section, Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA.

Educational attainment is widely used as a surrogate for socioeconomic status (SES). Low SES is a risk factor for hypertension and high blood pressure (BP). To identify novel BP loci, we performed multi-ancestry meta-analyses accounting for gene-educational attainment interactions using two variables, "Some College" (yes/no) and "Graduated College" (yes/no). Interactions were evaluated using both a 1 degree of freedom (DF) interaction term and a 2DF joint test of genetic and interaction effects. Analyses were performed for systolic BP, diastolic BP, mean arterial pressure, and pulse pressure. We pursued genome-wide interrogation in Stage 1 studies (N = 117 438) and follow-up on promising variants in Stage 2 studies (N = 293 787) in five ancestry groups. Through combined meta-analyses of Stages 1 and 2, we identified 84 known and 18 novel BP loci at genome-wide significance level (P < 5 × 10). Two novel loci were identified based on the 1DF test of interaction with educational attainment, while the remaining 16 loci were identified through the 2DF joint test of genetic and interaction effects. Ten novel loci were identified in individuals of African ancestry. Several novel loci show strong biological plausibility since they involve physiologic systems implicated in BP regulation. They include genes involved in the central nervous system-adrenal signaling axis (ZDHHC17, CADPS, PIK3C2G), vascular structure and function (GNB3, CDON), and renal function (HAS2 and HAS2-AS1, SLIT3). Collectively, these findings suggest a role of educational attainment or SES in further dissection of the genetic architecture of BP.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41380-020-0719-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7641978PMC
June 2021

Association of variants with hemoglobin A1c and impact on diabetes diagnosis in East Asian individuals.

BMJ Open Diabetes Res Care 2020 03;8(1)

Saw Swee Hock School of Public Health, National University of Singapore, Singapore

Objective: Hemoglobin A1c (HbA1c) accuracy is important for diabetes diagnosis and estimation of overall glycemia. The Asahi variant which causes glucose-6-phosphate dehydrogenase (G6PD) deficiency has been shown to lower HbA1c independently of glycemia in African ancestry populations. As different variants occur in Asian ancestry, we sought to identify Asian-specific variants associated with HbA1c.

Research Design And Methods: In eight Asian population-based cohorts, we performed imputation on the X chromosome using the 1000 Genomes reference panel and tested for association with HbA1c (10 005 East Asians and 2051 South Asians). Results were meta-analyzed across studies. We compared the proportion of individuals classified as having diabetes/pre-diabetes by fasting glucose ≥100 mg/dL or HbA1c ≥5.7% units among carriers and non-carriers of HbA1c-associated variants.

Results: The strongest association was a missense variant (-Canton, rs72554665, minor allele frequency=2.2%, effect in men=-0.76% unit, 95% CI -0.88 to -0.64, p=1.25×10, n=2844). Conditional analyses identified a secondary distinct signal, missense variant (-Kaiping, rs72554664, minor allele frequency=1.6%, effect in men=-1.12 % unit, 95% CI -1.32 to -0.92, p=3.12×10, p=7.57×10). Adjusting for glucose did not attenuate their effects. The proportion of individuals with fasting glucose ≥100 mg/dL did not differ by carrier status of -Canton (p=0.21). Whereas the proportion of individuals with HbA1c ≥5.7% units was lower in carriers (5%) compared with non-carriers of -Canton (30%, p=0.03).

Conclusions: We identified two variants in East Asian men associated with non-glycemic lowering of HbA1c. Carriers of these variants are more likely to be underdiagnosed for diabetes or pre-diabetes than non-carriers if screened by HbA1c without confirmation by direct glucose measurements.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1136/bmjdrc-2019-001091DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7103857PMC
March 2020

Associations of autozygosity with a broad range of human phenotypes.

Nat Commun 2019 10 31;10(1):4957. Epub 2019 Oct 31.

Department of Neurology, Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht University, Utrecht, 3584 CX, The Netherlands.

In many species, the offspring of related parents suffer reduced reproductive success, a phenomenon known as inbreeding depression. In humans, the importance of this effect has remained unclear, partly because reproduction between close relatives is both rare and frequently associated with confounding social factors. Here, using genomic inbreeding coefficients (F) for >1.4 million individuals, we show that F is significantly associated (p < 0.0005) with apparently deleterious changes in 32 out of 100 traits analysed. These changes are associated with runs of homozygosity (ROH), but not with common variant homozygosity, suggesting that genetic variants associated with inbreeding depression are predominantly rare. The effect on fertility is striking: F equivalent to the offspring of first cousins is associated with a 55% decrease [95% CI 44-66%] in the odds of having children. Finally, the effects of F are confirmed within full-sibling pairs, where the variation in F is independent of all environmental confounding.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-019-12283-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6823371PMC
October 2019

Associations with metabolites in Chinese suggest new metabolic roles in Alzheimer's and Parkinson's diseases.

Hum Mol Genet 2020 01;29(2):189-201

Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore.

Metabolites are small intermediate products of cellular metabolism perturbed in a variety of complex disorders. Identifying genetic markers associated with metabolite concentrations could delineate disease-related metabolic pathways in humans. We tested genetic variants for associations with 136 metabolites in 1954 Chinese from Singapore. At a conservative genome-wide threshold (3.7 × 10-10), we detected 1899 variant-metabolite associations at 16 genetic loci. Three loci (ABCA7, A4GALT, GSTM2) represented novel associations with metabolites, with the strongest association observed between ABCA7 and d18:1/24:1 dihexosylceramide. Among 13 replicated loci, we identified six new variants independent of previously reported metabolite or lipid signals. We observed variant-metabolite associations at two loci (ABCA7, CHCHD2) that have been linked to neurodegenerative diseases. At SGPP1 and SPTLC3 loci, genetic variants showed preferential selectivity for sphingolipids with d16 (rather than d18) sphingosine backbone, including sphingosine-1-phosphate (S1P). Our results provide new genetic associations for metabolites and highlight the role of metabolites as intermediate modulators in disease metabolic pathways.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddz246DOI Listing
January 2020

Association of Birth Weight With Type 2 Diabetes and Glycemic Traits: A Mendelian Randomization Study.

JAMA Netw Open 2019 09 4;2(9):e1910915. Epub 2019 Sep 4.

Division of Obstetrics and Gynaecology, School of Medicine, University of Western Australia, Crawley, Western Australia, Australia.

Importance: Observational studies have shown associations of birth weight with type 2 diabetes (T2D) and glycemic traits, but it remains unclear whether these associations represent causal associations.

Objective: To test the association of birth weight with T2D and glycemic traits using a mendelian randomization analysis.

Design, Setting, And Participants: This mendelian randomization study used a genetic risk score for birth weight that was constructed with 7 genome-wide significant single-nucleotide polymorphisms. The associations of this score with birth weight and T2D were tested in a mendelian randomization analysis using study-level data. The association of birth weight with T2D was tested using both study-level data (7 single-nucleotide polymorphisms were used as an instrumental variable) and summary-level data from the consortia (43 single-nucleotide polymorphisms were used as an instrumental variable). Data from 180 056 participants from 49 studies were included.

Main Outcomes And Measures: Type 2 diabetes and glycemic traits.

Results: This mendelian randomization analysis included 49 studies with 41 155 patients with T2D and 80 008 control participants from study-level data and 34 840 patients with T2D and 114 981 control participants from summary-level data. Study-level data showed that a 1-SD decrease in birth weight due to the genetic risk score was associated with higher risk of T2D among all participants (odds ratio [OR], 2.10; 95% CI, 1.69-2.61; P = 4.03 × 10-5), among European participants (OR, 1.96; 95% CI, 1.42-2.71; P = .04), and among East Asian participants (OR, 1.39; 95% CI, 1.18-1.62; P = .04). Similar results were observed from summary-level analyses. In addition, each 1-SD lower birth weight was associated with 0.189 SD higher fasting glucose concentration (β = 0.189; SE = 0.060; P = .002), but not with fasting insulin, 2-hour glucose, or hemoglobin A1c concentration.

Conclusions And Relevance: In this study, a genetic predisposition to lower birth weight was associated with increased risk of T2D and higher fasting glucose concentration, suggesting genetic effects on retarded fetal growth and increased diabetes risk that either are independent of each other or operate through alterations of integrated biological mechanisms.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1001/jamanetworkopen.2019.10915DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6755534PMC
September 2019

Genome-wide association meta-analyses and fine-mapping elucidate pathways influencing albuminuria.

Nat Commun 2019 09 11;10(1):4130. Epub 2019 Sep 11.

Department of Medicine, Division of Nephrology and Hypertension, University of Utah, Salt Lake City, UT, USA.

Increased levels of the urinary albumin-to-creatinine ratio (UACR) are associated with higher risk of kidney disease progression and cardiovascular events, but underlying mechanisms are incompletely understood. Here, we conduct trans-ethnic (n = 564,257) and European-ancestry specific meta-analyses of genome-wide association studies of UACR, including ancestry- and diabetes-specific analyses, and identify 68 UACR-associated loci. Genetic correlation analyses and risk score associations in an independent electronic medical records database (n = 192,868) reveal connections with proteinuria, hyperlipidemia, gout, and hypertension. Fine-mapping and trans-Omics analyses with gene expression in 47 tissues and plasma protein levels implicate genes potentially operating through differential expression in kidney (including TGFB1, MUC1, PRKCI, and OAF), and allow coupling of UACR associations to altered plasma OAF concentrations. Knockdown of OAF and PRKCI orthologs in Drosophila nephrocytes reduces albumin endocytosis. Silencing fly PRKCI further impairs slit diaphragm formation. These results generate a priority list of genes and pathways for translational research to reduce albuminuria.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-019-11576-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6739370PMC
September 2019

Fish and marine fatty acids intakes, the genotypes and long-term weight gain: a prospective cohort study.

BMJ Open 2019 07 31;9(7):e022877. Epub 2019 Jul 31.

Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA.

Objective: We tested whether genetic variants near fatty acid desaturases gene () cluster, which were recently identified to be signatures of adaptation to fish-rich and n-3 polyunsaturated fatty acids (PUFAs)-rich diet, interacted with these dietary factors on change in body mass index (BMI).

Design: Three variants were examined for gene-diet interactions on long-term (~10 years) changes in BMI and body weight in four prospective cohort studies.

Setting: Population based study.

Participants: 11 323 women from the Nurses' Health Study (NHS), 6833 men from the Health Professionals Follow-up Study (HPFS) and replicated in 6254 women from the Women's Health Initiative (WHI) and 5 264 Chinese from the Singapore Chinese Health Study (SCHS).

Main Outcomes: Long-term (~10 years) changes in BMI and body weight.

Results: In the NHS and HPFS cohorts, food-sourced n-3 PUFAs intake showed interactions with the rs174570 on changes of BMI (P for interaction=0.02 in NHS, 0.05 in HPFS and 0.007 in combined). Such interactions were replicated in two independent cohorts WHI and SCHS (P for interaction=0.04 in WHI, 0.02 in SCHS and 0.001 in combined). The genetic associations of the rs174570 with changes in BMI increased across the tertiles of n-3 PUFAs in all the cohorts. Fish intake also accentuated the genetic associations of the rs174570 with long-term changes in BMI (pooled P for interaction=0.006). Viewed differently, long chain n-3 PUFAs intake showed stronger association with long-term changes in BMI among the rs174570 T carriers (beta=0.79 kg/m per g, p=3×10) than the rs174570 non-T carriers (beta=0.16 kg/m per g, p=0.08). Similar results were observed for fish intake.

Conclusions: Our hypothesis-driven analyses provide replicable evidence that long chain n-3 PUFAs and fish intakes may interact with the variant on long-term weight gain. Further investigation is needed to confirm our findings in other cohorts.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1136/bmjopen-2018-022877DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6678013PMC
July 2019

A catalog of genetic loci associated with kidney function from analyses of a million individuals.

Nat Genet 2019 06 31;51(6):957-972. Epub 2019 May 31.

Diabetes and Cardiovascular Disease-Genetic Epidemiology, Department of Clincial Sciences in Malmö, Lund University, Malmö, Sweden.

Chronic kidney disease (CKD) is responsible for a public health burden with multi-systemic complications. Through trans-ancestry meta-analysis of genome-wide association studies of estimated glomerular filtration rate (eGFR) and independent replication (n = 1,046,070), we identified 264 associated loci (166 new). Of these, 147 were likely to be relevant for kidney function on the basis of associations with the alternative kidney function marker blood urea nitrogen (n = 416,178). Pathway and enrichment analyses, including mouse models with renal phenotypes, support the kidney as the main target organ. A genetic risk score for lower eGFR was associated with clinically diagnosed CKD in 452,264 independent individuals. Colocalization analyses of associations with eGFR among 783,978 European-ancestry individuals and gene expression across 46 human tissues, including tubulo-interstitial and glomerular kidney compartments, identified 17 genes differentially expressed in kidney. Fine-mapping highlighted missense driver variants in 11 genes and kidney-specific regulatory variants. These results provide a comprehensive priority list of molecular targets for translational research.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-019-0407-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6698888PMC
June 2019

A multi-ancestry genome-wide study incorporating gene-smoking interactions identifies multiple new loci for pulse pressure and mean arterial pressure.

Hum Mol Genet 2019 08;28(15):2615-2633

Icelandic Heart Association, Kopavogur, Iceland.

Elevated blood pressure (BP), a leading cause of global morbidity and mortality, is influenced by both genetic and lifestyle factors. Cigarette smoking is one such lifestyle factor. Across five ancestries, we performed a genome-wide gene-smoking interaction study of mean arterial pressure (MAP) and pulse pressure (PP) in 129 913 individuals in stage 1 and follow-up analysis in 480 178 additional individuals in stage 2. We report here 136 loci significantly associated with MAP and/or PP. Of these, 61 were previously published through main-effect analysis of BP traits, 37 were recently reported by us for systolic BP and/or diastolic BP through gene-smoking interaction analysis and 38 were newly identified (P < 5 × 10-8, false discovery rate < 0.05). We also identified nine new signals near known loci. Of the 136 loci, 8 showed significant interaction with smoking status. They include CSMD1 previously reported for insulin resistance and BP in the spontaneously hypertensive rats. Many of the 38 new loci show biologic plausibility for a role in BP regulation. SLC26A7 encodes a chloride/bicarbonate exchanger expressed in the renal outer medullary collecting duct. AVPR1A is widely expressed, including in vascular smooth muscle cells, kidney, myocardium and brain. FHAD1 is a long non-coding RNA overexpressed in heart failure. TMEM51 was associated with contractile function in cardiomyocytes. CASP9 plays a central role in cardiomyocyte apoptosis. Identified only in African ancestry were 30 novel loci. Our findings highlight the value of multi-ancestry investigations, particularly in studies of interaction with lifestyle factors, where genomic and lifestyle differences may contribute to novel findings.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddz070DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6644157PMC
August 2019

Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors.

Nat Genet 2019 05 1;51(5):804-814. Epub 2019 May 1.

Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK.

Birth weight variation is influenced by fetal and maternal genetic and non-genetic factors, and has been reproducibly associated with future cardio-metabolic health outcomes. In expanded genome-wide association analyses of own birth weight (n = 321,223) and offspring birth weight (n = 230,069 mothers), we identified 190 independent association signals (129 of which are novel). We used structural equation modeling to decompose the contributions of direct fetal and indirect maternal genetic effects, then applied Mendelian randomization to illuminate causal pathways. For example, both indirect maternal and direct fetal genetic effects drive the observational relationship between lower birth weight and higher later blood pressure: maternal blood pressure-raising alleles reduce offspring birth weight, but only direct fetal effects of these alleles, once inherited, increase later offspring blood pressure. Using maternal birth weight-lowering genotypes to proxy for an adverse intrauterine environment provided no evidence that it causally raises offspring blood pressure, indicating that the inverse birth weight-blood pressure association is attributable to genetic effects, and not to intrauterine programming.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-019-0403-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6522365PMC
May 2019

Multi-ancestry genome-wide gene-smoking interaction study of 387,272 individuals identifies new loci associated with serum lipids.

Nat Genet 2019 04 29;51(4):636-648. Epub 2019 Mar 29.

Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA.

The concentrations of high- and low-density-lipoprotein cholesterol and triglycerides are influenced by smoking, but it is unknown whether genetic associations with lipids may be modified by smoking. We conducted a multi-ancestry genome-wide gene-smoking interaction study in 133,805 individuals with follow-up in an additional 253,467 individuals. Combined meta-analyses identified 13 new loci associated with lipids, some of which were detected only because association differed by smoking status. Additionally, we demonstrate the importance of including diverse populations, particularly in studies of interactions with lifestyle factors, where genomic and lifestyle differences by ancestry may contribute to novel findings.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-019-0378-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6467258PMC
April 2019

Multiancestry Genome-Wide Association Study of Lipid Levels Incorporating Gene-Alcohol Interactions.

Am J Epidemiol 2019 06;188(6):1033-1054

Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom.

A person's lipid profile is influenced by genetic variants and alcohol consumption, but the contribution of interactions between these exposures has not been studied. We therefore incorporated gene-alcohol interactions into a multiancestry genome-wide association study of levels of high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and triglycerides. We included 45 studies in stage 1 (genome-wide discovery) and 66 studies in stage 2 (focused follow-up), for a total of 394,584 individuals from 5 ancestry groups. Analyses covered the period July 2014-November 2017. Genetic main effects and interaction effects were jointly assessed by means of a 2-degrees-of-freedom (df) test, and a 1-df test was used to assess the interaction effects alone. Variants at 495 loci were at least suggestively associated (P < 1 × 10-6) with lipid levels in stage 1 and were evaluated in stage 2, followed by combined analyses of stage 1 and stage 2. In the combined analysis of stages 1 and 2, a total of 147 independent loci were associated with lipid levels at P < 5 × 10-8 using 2-df tests, of which 18 were novel. No genome-wide-significant associations were found testing the interaction effect alone. The novel loci included several genes (proprotein convertase subtilisin/kexin type 5 (PCSK5), vascular endothelial growth factor B (VEGFB), and apolipoprotein B mRNA editing enzyme, catalytic polypeptide 1 (APOBEC1) complementation factor (A1CF)) that have a putative role in lipid metabolism on the basis of existing evidence from cellular and experimental models.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/aje/kwz005DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6545280PMC
June 2019

Multi-ancestry study of blood lipid levels identifies four loci interacting with physical activity.

Nat Commun 2019 01 22;10(1):376. Epub 2019 Jan 22.

Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, 01246903, SP, Brazil.

Many genetic loci affect circulating lipid levels, but it remains unknown whether lifestyle factors, such as physical activity, modify these genetic effects. To identify lipid loci interacting with physical activity, we performed genome-wide analyses of circulating HDL cholesterol, LDL cholesterol, and triglyceride levels in up to 120,979 individuals of European, African, Asian, Hispanic, and Brazilian ancestry, with follow-up of suggestive associations in an additional 131,012 individuals. We find four loci, in/near CLASP1, LHX1, SNTA1, and CNTNAP2, that are associated with circulating lipid levels through interaction with physical activity; higher levels of physical activity enhance the HDL cholesterol-increasing effects of the CLASP1, LHX1, and SNTA1 loci and attenuate the LDL cholesterol-increasing effect of the CNTNAP2 locus. The CLASP1, LHX1, and SNTA1 regions harbor genes linked to muscle function and lipid metabolism. Our results elucidate the role of physical activity interactions in the genetic contribution to blood lipid levels.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-018-08008-wDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6342931PMC
January 2019

Interethnic analyses of blood pressure loci in populations of East Asian and European descent.

Nat Commun 2018 11 28;9(1):5052. Epub 2018 Nov 28.

Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan.

Blood pressure (BP) is a major risk factor for cardiovascular disease and more than 200 genetic loci associated with BP are known. Here, we perform a multi-stage genome-wide association study for BP (max N = 289,038) principally in East Asians and meta-analysis in East Asians and Europeans. We report 19 new genetic loci and ancestry-specific BP variants, conforming to a common ancestry-specific variant association model. At 10 unique loci, distinct non-rare ancestry-specific variants colocalize within the same linkage disequilibrium block despite the significantly discordant effects for the proxy shared variants between the ethnic groups. The genome-wide transethnic correlation of causal-variant effect-sizes is 0.898 and 0.851 for systolic and diastolic BP, respectively. Some of the ancestry-specific association signals are also influenced by a selective sweep. Our results provide new evidence for the role of common ancestry-specific variants and natural selection in ethnic differences in complex traits such as BP.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-018-07345-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6261994PMC
November 2018

Ethnicity-Specific Skeletal Muscle Transcriptional Signatures and Their Relevance to Insulin Resistance in Singapore.

J Clin Endocrinol Metab 2019 02;104(2):465-486

Duke-National University of Singapore Medical School, Singapore.

Context: Insulin resistance (IR) and obesity differ among ethnic groups in Singapore, with the Malays more obese yet less IR than Asian-Indians. However, the molecular basis underlying these differences is not clear.

Objective: As the skeletal muscle (SM) is metabolically relevant to IR, we investigated molecular pathways in SM that are associated with ethnic differences in IR, obesity, and related traits.

Design, Setting, And Main Outcome Measures: We integrated transcriptomic, genomic, and phenotypic analyses in 156 healthy subjects representing three major ethnicities in the Singapore Adult Metabolism Study.

Patients: This study contains Chinese (n = 63), Malay (n = 51), and Asian-Indian (n = 42) men, aged 21 to 40 years, without systemic diseases.

Results: We found remarkable diversity in the SM transcriptome among the three ethnicities, with >8000 differentially expressed genes (40% of all genes expressed in SM). Comparison with blood transcriptome from a separate Singaporean cohort showed that >95% of SM expression differences among ethnicities were unique to SM. We identified a network of 46 genes that were specifically downregulated in Malays, suggesting dysregulation of components of cellular respiration in SM of Malay individuals. We also report 28 differentially expressed gene clusters, four of which were also enriched for genes that were found in genome-wide association studies of metabolic traits and disease and correlated with variation in IR, obesity, and related traits.

Conclusion: We identified extensive gene-expression changes in SM among the three Singaporean ethnicities and report specific genes and molecular pathways that might underpin and explain the differences in IR among these ethnic groups.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1210/jc.2018-00309DOI Listing
February 2019

Novel genetic associations for blood pressure identified via gene-alcohol interaction in up to 570K individuals across multiple ancestries.

PLoS One 2018 18;13(6):e0198166. Epub 2018 Jun 18.

Icelandic Heart Association, Kopavogur, Iceland.

Heavy alcohol consumption is an established risk factor for hypertension; the mechanism by which alcohol consumption impact blood pressure (BP) regulation remains unknown. We hypothesized that a genome-wide association study accounting for gene-alcohol consumption interaction for BP might identify additional BP loci and contribute to the understanding of alcohol-related BP regulation. We conducted a large two-stage investigation incorporating joint testing of main genetic effects and single nucleotide variant (SNV)-alcohol consumption interactions. In Stage 1, genome-wide discovery meta-analyses in ≈131K individuals across several ancestry groups yielded 3,514 SNVs (245 loci) with suggestive evidence of association (P < 1.0 x 10-5). In Stage 2, these SNVs were tested for independent external replication in ≈440K individuals across multiple ancestries. We identified and replicated (at Bonferroni correction threshold) five novel BP loci (380 SNVs in 21 genes) and 49 previously reported BP loci (2,159 SNVs in 109 genes) in European ancestry, and in multi-ancestry meta-analyses (P < 5.0 x 10-8). For African ancestry samples, we detected 18 potentially novel BP loci (P < 5.0 x 10-8) in Stage 1 that warrant further replication. Additionally, correlated meta-analysis identified eight novel BP loci (11 genes). Several genes in these loci (e.g., PINX1, GATA4, BLK, FTO and GABBR2) have been previously reported to be associated with alcohol consumption. These findings provide insights into the role of alcohol consumption in the genetic architecture of hypertension.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0198166PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6005576PMC
January 2019

A Large-Scale Multi-ancestry Genome-wide Study Accounting for Smoking Behavior Identifies Multiple Significant Loci for Blood Pressure.

Am J Hum Genet 2018 03 15;102(3):375-400. Epub 2018 Feb 15.

Health Disparities Research Section, Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIH, Baltimore, MD 21224, USA.

Genome-wide association analysis advanced understanding of blood pressure (BP), a major risk factor for vascular conditions such as coronary heart disease and stroke. Accounting for smoking behavior may help identify BP loci and extend our knowledge of its genetic architecture. We performed genome-wide association meta-analyses of systolic and diastolic BP incorporating gene-smoking interactions in 610,091 individuals. Stage 1 analysis examined ∼18.8 million SNPs and small insertion/deletion variants in 129,913 individuals from four ancestries (European, African, Asian, and Hispanic) with follow-up analysis of promising variants in 480,178 additional individuals from five ancestries. We identified 15 loci that were genome-wide significant (p < 5 × 10) in stage 1 and formally replicated in stage 2. A combined stage 1 and 2 meta-analysis identified 66 additional genome-wide significant loci (13, 35, and 18 loci in European, African, and trans-ancestry, respectively). A total of 56 known BP loci were also identified by our results (p < 5 × 10). Of the newly identified loci, ten showed significant interaction with smoking status, but none of them were replicated in stage 2. Several loci were identified in African ancestry, highlighting the importance of genetic studies in diverse populations. The identified loci show strong evidence for regulatory features and support shared pathophysiology with cardiometabolic and addiction traits. They also highlight a role in BP regulation for biological candidates such as modulators of vascular structure and function (CDKN1B, BCAR1-CFDP1, PXDN, EEA1), ciliopathies (SDCCAG8, RPGRIP1L), telomere maintenance (TNKS, PINX1, AKTIP), and central dopaminergic signaling (MSRA, EBF2).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2018.01.015DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985266PMC
March 2018
-->