Publications by authors named "Jiaxin Qu"

33 Publications

Targeted RNAseq assay incorporating unique molecular identifiers for improved quantification of gene expression signatures and transcribed mutation fraction in fixed tumor samples.

BMC Cancer 2021 Feb 4;21(1):114. Epub 2021 Feb 4.

Departments of Pathology and Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

Background: Our objective was to assess whether modifications to a customized targeted RNA sequencing (RNAseq) assay to include unique molecular identifiers (UMIs) that collapse read counts to their source mRNA counts would improve quantification of transcripts from formalin-fixed paraffin-embedded (FFPE) tumor tissue samples. The assay (SET4) includes signatures that measure hormone receptor and PI3-kinase related transcriptional activity (SET and PI3Kges), and measures expression of selected activating point mutations and key breast cancer genes.

Methods: Modifications included steps to introduce eight nucleotides-long UMIs during reverse transcription (RT) in bulk solution, followed by polymerase chain reaction (PCR) of labeled cDNA in droplets, with optimization of the polymerase enzyme and reaction conditions. We used Lin's concordance correlation coefficient (CCC) to measure concordance, including precision (Rho) and accuracy (Bias), and nonparametric tests (Wilcoxon, Levene's) to compare the modified (NEW) SET4 assay to the original (OLD) SET4 assay and to whole transcriptome RNAseq using RNA from matched fresh frozen (FF) and FFPE samples from 12 primary breast cancers.

Results: The modified (NEW) SET4 assay measured single transcripts (p< 0.001) and SET (p=0.002) more reproducibly in technical replicates from FFPE samples. The modified SET4 assay was more precise for measuring single transcripts (Rho 0.966 vs 0.888, p< 0.01) but not multigene expression signatures SET (Rho 0.985 vs 0.968) or PI3Kges (Rho 0.985 vs 0.946) in FFPE, compared to FF samples. It was also more precise than wtRNAseq of FFPE for measuring transcripts (Rho 0.986 vs 0.934, p< 0.001) and SET (Rho 0.993 vs 0.915, p=0.004), but not PI3Kges (Rho 0.988 vs 0.945, p=0.051). Accuracy (Bias) was comparable between protocols. Two samples carried a PIK3CA mutation, and measurements of transcribed mutant allele fraction was similar in FF and FFPE samples and appeared more precise with the modified SET4 assay. Amplification efficiency (reads per UMI) was consistent in FF and FFPE samples, and close to the theoretically expected value, when the library size exceeded 400,000 aligned reads.

Conclusions: Modifications to the targeted RNAseq protocol for SET4 assay significantly increased the precision of UMI-based and reads-based measurements of individual transcripts, multi-gene signatures, and mutant transcript fraction, particularly with FFPE samples.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12885-021-07814-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7860187PMC
February 2021

Genome-enabled insights into the biology of thrips as crop pests.

BMC Biol 2020 10 19;18(1):142. Epub 2020 Oct 19.

Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, 4072, Australia.

Background: The western flower thrips, Frankliniella occidentalis (Pergande), is a globally invasive pest and plant virus vector on a wide array of food, fiber, and ornamental crops. The underlying genetic mechanisms of the processes governing thrips pest and vector biology, feeding behaviors, ecology, and insecticide resistance are largely unknown. To address this gap, we present the F. occidentalis draft genome assembly and official gene set.

Results: We report on the first genome sequence for any member of the insect order Thysanoptera. Benchmarking Universal Single-Copy Ortholog (BUSCO) assessments of the genome assembly (size = 415.8 Mb, scaffold N50 = 948.9 kb) revealed a relatively complete and well-annotated assembly in comparison to other insect genomes. The genome is unusually GC-rich (50%) compared to other insect genomes to date. The official gene set (OGS v1.0) contains 16,859 genes, of which ~ 10% were manually verified and corrected by our consortium. We focused on manual annotation, phylogenetic, and expression evidence analyses for gene sets centered on primary themes in the life histories and activities of plant-colonizing insects. Highlights include the following: (1) divergent clades and large expansions in genes associated with environmental sensing (chemosensory receptors) and detoxification (CYP4, CYP6, and CCE enzymes) of substances encountered in agricultural environments; (2) a comprehensive set of salivary gland genes supported by enriched expression; (3) apparent absence of members of the IMD innate immune defense pathway; and (4) developmental- and sex-specific expression analyses of genes associated with progression from larvae to adulthood through neometaboly, a distinct form of maturation differing from either incomplete or complete metamorphosis in the Insecta.

Conclusions: Analysis of the F. occidentalis genome offers insights into the polyphagous behavior of this insect pest that finds, colonizes, and survives on a widely diverse array of plants. The genomic resources presented here enable a more complete analysis of insect evolution and biology, providing a missing taxon for contemporary insect genomics-based analyses. Our study also offers a genomic benchmark for molecular and evolutionary investigations of other Thysanoptera species.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12915-020-00862-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7570057PMC
October 2020

Sawfly Genomes Reveal Evolutionary Acquisitions That Fostered the Mega-Radiation of Parasitoid and Eusocial Hymenoptera.

Genome Biol Evol 2020 07;12(7):1099-1188

Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas.

The tremendous diversity of Hymenoptera is commonly attributed to the evolution of parasitoidism in the last common ancestor of parasitoid sawflies (Orussidae) and wasp-waisted Hymenoptera (Apocrita). However, Apocrita and Orussidae differ dramatically in their species richness, indicating that the diversification of Apocrita was promoted by additional traits. These traits have remained elusive due to a paucity of sawfly genome sequences, in particular those of parasitoid sawflies. Here, we present comparative analyses of draft genomes of the primarily phytophagous sawfly Athalia rosae and the parasitoid sawfly Orussus abietinus. Our analyses revealed that the ancestral hymenopteran genome exhibited traits that were previously considered unique to eusocial Apocrita (e.g., low transposable element content and activity) and a wider gene repertoire than previously thought (e.g., genes for CO2 detection). Moreover, we discovered that Apocrita evolved a significantly larger array of odorant receptors than sawflies, which could be relevant to the remarkable diversification of Apocrita by enabling efficient detection and reliable identification of hosts.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/gbe/evaa106DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7455281PMC
July 2020

Brown marmorated stink bug, Halyomorpha halys (Stål), genome: putative underpinnings of polyphagy, insecticide resistance potential and biology of a top worldwide pest.

BMC Genomics 2020 Mar 14;21(1):227. Epub 2020 Mar 14.

URGI, INRA, Université Paris-Saclay, 78026, Versailles, France.

Background: Halyomorpha halys (Stål), the brown marmorated stink bug, is a highly invasive insect species due in part to its exceptionally high levels of polyphagy. This species is also a nuisance due to overwintering in human-made structures. It has caused significant agricultural losses in recent years along the Atlantic seaboard of North America and in continental Europe. Genomic resources will assist with determining the molecular basis for this species' feeding and habitat traits, defining potential targets for pest management strategies.

Results: Analysis of the 1.15-Gb draft genome assembly has identified a wide variety of genetic elements underpinning the biological characteristics of this formidable pest species, encompassing the roles of sensory functions, digestion, immunity, detoxification and development, all of which likely support H. halys' capacity for invasiveness. Many of the genes identified herein have potential for biomolecular pesticide applications.

Conclusions: Availability of the H. halys genome sequence will be useful for the development of environmentally friendly biomolecular pesticides to be applied in concert with more traditional, synthetic chemical-based controls.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12864-020-6510-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7071726PMC
March 2020

Gene content evolution in the arthropods.

Genome Biol 2020 01 23;21(1):15. Epub 2020 Jan 23.

Department of Genetic Medicine and Development and Swiss Institute of Bioinformatics, University of Geneva, 1211, Geneva, Switzerland.

Background: Arthropods comprise the largest and most diverse phylum on Earth and play vital roles in nearly every ecosystem. Their diversity stems in part from variations on a conserved body plan, resulting from and recorded in adaptive changes in the genome. Dissection of the genomic record of sequence change enables broad questions regarding genome evolution to be addressed, even across hyper-diverse taxa within arthropods.

Results: Using 76 whole genome sequences representing 21 orders spanning more than 500 million years of arthropod evolution, we document changes in gene and protein domain content and provide temporal and phylogenetic context for interpreting these innovations. We identify many novel gene families that arose early in the evolution of arthropods and during the diversification of insects into modern orders. We reveal unexpected variation in patterns of DNA methylation across arthropods and examples of gene family and protein domain evolution coincident with the appearance of notable phenotypic and physiological adaptations such as flight, metamorphosis, sociality, and chemoperception.

Conclusions: These analyses demonstrate how large-scale comparative genomics can provide broad new insights into the genotype to phenotype map and generate testable hypotheses about the evolution of animal diversity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13059-019-1925-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6977273PMC
January 2020

Molecular evolutionary trends and feeding ecology diversification in the Hemiptera, anchored by the milkweed bug genome.

Genome Biol 2019 04 2;20(1):64. Epub 2019 Apr 2.

Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA.

Background: The Hemiptera (aphids, cicadas, and true bugs) are a key insect order, with high diversity for feeding ecology and excellent experimental tractability for molecular genetics. Building upon recent sequencing of hemipteran pests such as phloem-feeding aphids and blood-feeding bed bugs, we present the genome sequence and comparative analyses centered on the milkweed bug Oncopeltus fasciatus, a seed feeder of the family Lygaeidae.

Results: The 926-Mb Oncopeltus genome is well represented by the current assembly and official gene set. We use our genomic and RNA-seq data not only to characterize the protein-coding gene repertoire and perform isoform-specific RNAi, but also to elucidate patterns of molecular evolution and physiology. We find ongoing, lineage-specific expansion and diversification of repressive C2H2 zinc finger proteins. The discovery of intron gain and turnover specific to the Hemiptera also prompted the evaluation of lineage and genome size as predictors of gene structure evolution. Furthermore, we identify enzymatic gains and losses that correlate with feeding biology, particularly for reductions associated with derived, fluid nutrition feeding.

Conclusions: With the milkweed bug, we now have a critical mass of sequenced species for a hemimetabolous insect order and close outgroup to the Holometabola, substantially improving the diversity of insect genomics. We thereby define commonalities among the Hemiptera and delve into how hemipteran genomes reflect distinct feeding ecologies. Given Oncopeltus's strength as an experimental model, these new sequence resources bolster the foundation for molecular research and highlight technical considerations for the analysis of medium-sized invertebrate genomes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13059-019-1660-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6444547PMC
April 2019

The genome of the water strider Gerris buenoi reveals expansions of gene repertoires associated with adaptations to life on the water.

BMC Genomics 2018 Nov 21;19(1):832. Epub 2018 Nov 21.

Department of Biological Sciences, McMicken College of Arts and Sciences, University of Cincinnati, 318 College Drive, Cincinnati, OH, 45221-0006, USA.

Background: Having conquered water surfaces worldwide, the semi-aquatic bugs occupy ponds, streams, lakes, mangroves, and even open oceans. The diversity of this group has inspired a range of scientific studies from ecology and evolution to developmental genetics and hydrodynamics of fluid locomotion. However, the lack of a representative water strider genome hinders our ability to more thoroughly investigate the molecular mechanisms underlying the processes of adaptation and diversification within this group.

Results: Here we report the sequencing and manual annotation of the Gerris buenoi (G. buenoi) genome; the first water strider genome to be sequenced thus far. The size of the G. buenoi genome is approximately 1,000 Mb, and this sequencing effort has recovered 20,949 predicted protein-coding genes. Manual annotation uncovered a number of local (tandem and proximal) gene duplications and expansions of gene families known for their importance in a variety of processes associated with morphological and physiological adaptations to a water surface lifestyle. These expansions may affect key processes associated with growth, vision, desiccation resistance, detoxification, olfaction and epigenetic regulation. Strikingly, the G. buenoi genome contains three insulin receptors, suggesting key changes in the rewiring and function of the insulin pathway. Other genomic changes affecting with opsin genes may be associated with wavelength sensitivity shifts in opsins, which is likely to be key in facilitating specific adaptations in vision for diverse water habitats.

Conclusions: Our findings suggest that local gene duplications might have played an important role during the evolution of water striders. Along with these findings, the sequencing of the G. buenoi genome now provides us the opportunity to pursue exciting research opportunities to further understand the genomic underpinnings of traits associated with the extreme body plan and life history of water striders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12864-018-5163-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6249893PMC
November 2018

Comparative genomics of the miniature wasp and pest control agent Trichogramma pretiosum.

BMC Biol 2018 05 18;16(1):54. Epub 2018 May 18.

Department of Biology, University of Rochester, Rochester, New York, 14627, USA.

Background: Trichogrammatids are minute parasitoid wasps that develop within other insect eggs. They are less than half a millimeter long, smaller than some protozoans. The Trichogrammatidae are one of the earliest branching families of Chalcidoidea: a diverse superfamily of approximately half a million species of parasitoid wasps, proposed to have evolved from a miniaturized ancestor. Trichogramma are frequently used in agriculture, released as biological control agents against major moth and butterfly pests. Additionally, Trichogramma are well known for their symbiotic bacteria that induce asexual reproduction in infected females. Knowledge of the genome sequence of Trichogramma is a major step towards further understanding its biology and potential applications in pest control.

Results: We report the 195-Mb genome sequence of Trichogramma pretiosum and uncover signatures of miniaturization and adaptation in Trichogramma and related parasitoids. Comparative analyses reveal relatively rapid evolution of proteins involved in ribosome biogenesis and function, transcriptional regulation, and ploidy regulation. Chalcids also show loss or especially rapid evolution of 285 gene clusters conserved in other Hymenoptera, including many that are involved in signal transduction and embryonic development. Comparisons between sexual and asexual lineages of Trichogramma pretiosum reveal that there is no strong evidence for genome degradation (e.g., gene loss) in the asexual lineage, although it does contain a lower repeat content than the sexual lineage. Trichogramma shows particularly rapid genome evolution compared to other hymenopterans. We speculate these changes reflect adaptations to miniaturization, and to life as a specialized egg parasitoid.

Conclusions: The genomes of Trichogramma and related parasitoids are a valuable resource for future studies of these diverse and economically important insects, including explorations of parasitoid biology, symbiosis, asexuality, biological control, and the evolution of miniaturization. Understanding the molecular determinants of parasitism can also inform mass rearing of Trichogramma and other parasitoids for biological control.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12915-018-0520-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5960102PMC
May 2018

The Toxicogenome of Hyalella azteca: A Model for Sediment Ecotoxicology and Evolutionary Toxicology.

Environ Sci Technol 2018 05 24;52(10):6009-6022. Epub 2018 Apr 24.

School for the Environment , University of Massachusetts Boston , Boston , Massachusetts 02125 United States.

Hyalella azteca is a cryptic species complex of epibenthic amphipods of interest to ecotoxicology and evolutionary biology. It is the primary crustacean used in North America for sediment toxicity testing and an emerging model for molecular ecotoxicology. To provide molecular resources for sediment quality assessments and evolutionary studies, we sequenced, assembled, and annotated the genome of the H. azteca U.S. Lab Strain. The genome quality and completeness is comparable with other ecotoxicological model species. Through targeted investigation and use of gene expression data sets of H. azteca exposed to pesticides, metals, and other emerging contaminants, we annotated and characterized the major gene families involved in sequestration, detoxification, oxidative stress, and toxicant response. Our results revealed gene loss related to light sensing, but a large expansion in chemoreceptors, likely underlying sensory shifts necessary in their low light habitats. Gene family expansions were also noted for cytochrome P450 genes, cuticle proteins, ion transporters, and include recent gene duplications in the metal sequestration protein, metallothionein. Mapping of differentially expressed transcripts to the genome significantly increased the ability to functionally annotate toxicant responsive genes. The H. azteca genome will greatly facilitate development of genomic tools for environmental assessments and promote an understanding of how evolution shapes toxicological pathways with implications for environmental and human health.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.8b00837DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6091588PMC
May 2018

Synchronous delivery of oxygen and photosensitizer for alleviation of hypoxia tumor microenvironment and dramatically enhanced photodynamic therapy.

Drug Deliv 2018 Nov;25(1):585-599

a College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , Zhejiang , P. R. China.

Photosensitizer, proper laser irradiation, and oxygen are essential components for effective photodynamic therapy (PDT) in clinical cancer therapy. However, native hypoxic tumoral microenvironment is a major barrier hindering photodynamic reactions in vivo. Thus, we have prepared biocompatible liposomes by loading complexes of oxygen-carrier (hemoglobin, Hb) and photosensitizer (indocyanine green, ICG) for enhanced PDT against hypoxic tumor. Ideal oxygen donor Hb, which is an oxygen-carried protein in red blood cells, makes such liposome which provide stable oxygen supply. ICG, as a photosensitizer, could transfer energy from lasers to oxygen to generate cytotoxic reactive oxygen species (ROS) for treatment. The liposomes loading ICG and Hb (LIH) exhibited efficient tumor homing upon intravenous injection. As revealed by T-weighted magnetic resonance imaging and immunohistochemical analysis, the intratumoral hypoxia was greatly alleviated, and the level of hypoxia inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) in tumor was obviously down-regulated. A weak PDT efficiency was found in cells incubated in simulated hypoxia condition in vitro, while PDT effect was dramatically enhanced in LIH treated hypoxia cells under near-infrared (NIR) laser, which was mainly attributed to massive generation of ROS with sufficient oxygen supply. ROS trigger oxidative damage of tumors and induce complete suppression of tumor growth and 100% survival rate of mice, which were also in good health condition. Our work highlights a liposome-based nanomedicine that could effectively deliver oxygen to tumor and alleviate tumor hypoxia state, inducing greatly improved efficacy compared to conventional cancer PDT and demonstrates the promise of modulating unfavorable tumor microenvironment with nanotechnology to overcome limitations of cancer therapies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/10717544.2018.1435751DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6058564PMC
November 2018

Hemimetabolous genomes reveal molecular basis of termite eusociality.

Nat Ecol Evol 2018 03 5;2(3):557-566. Epub 2018 Feb 5.

Evolutionary Biology & Ecology, University of Freiburg, Freiburg, Germany.

Around 150 million years ago, eusocial termites evolved from within the cockroaches, 50 million years before eusocial Hymenoptera, such as bees and ants, appeared. Here, we report the 2-Gb genome of the German cockroach, Blattella germanica, and the 1.3-Gb genome of the drywood termite Cryptotermes secundus. We show evolutionary signatures of termite eusociality by comparing the genomes and transcriptomes of three termites and the cockroach against the background of 16 other eusocial and non-eusocial insects. Dramatic adaptive changes in genes underlying the production and perception of pheromones confirm the importance of chemical communication in the termites. These are accompanied by major changes in gene regulation and the molecular evolution of caste determination. Many of these results parallel molecular mechanisms of eusocial evolution in Hymenoptera. However, the specific solutions are remarkably different, thus revealing a striking case of convergence in one of the major evolutionary transitions in biological complexity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41559-017-0459-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6482461PMC
March 2018

Preparation of artificial red cell and its application on alleviation of tumor hypoxia.

Colloids Surf B Biointerfaces 2017 Dec 20;160:446-454. Epub 2017 Sep 20.

College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China. Electronic address:

Hemoglobin-based oxygen carriers were developed as an alternative for blood transfusion. However, the research progress for their further clinic applications was slow in recent several years. Hypoxia is found in most solid tumors, which is responsible for the tumor formation, increased metastasis, drug resistance during therapeutic process as well as poor patient survival. In this work, novel hemoglobin (Hb) loaded nanoliposomes, as artificial red cells for oxygen delivery, were optimized by screening various types of phospholipids and analyzing different mole ratio of phospholipid to cholesterol. The nanoliposomes presented a high encapsulating efficiency to hemoglobin and also significantly enhanced its stability. The obtained hemoglobin loaded nanoliposome (HLL) could be lyophilized for long term storage. HLL did not cause significant cell death in the concentration range of 0-100μg equivalent Hb/mL under normoxia and hypoxia incubation conditions, suggesting the low cytotoxicity and high biocompatibility of HLL. Importantly, HLL could efficiently accumulate into subcutaneous and deep orthotopic tumors, inducing a significant decrease of hypoxia-inducible factors 1α subunits (HIF-1α) in the tumors and remarkably reduced expression of vascular endothelial growth factor (VEGF). The study of acute and chronic toxicity indicated that HLL did not induce obvious damage to main organs of mice after intravenous injections with total Hb dose of 120mg/kg. We presented a promising method for relieving the hypoxia degree in solid tumors and down-regulating HIF-1α protein by directly delivering oxygen into tumors, which will be very helpful for subsequent cancer therapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2017.09.039DOI Listing
December 2017

The house spider genome reveals an ancient whole-genome duplication during arachnid evolution.

BMC Biol 2017 07 31;15(1):62. Epub 2017 Jul 31.

Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.

Background: The duplication of genes can occur through various mechanisms and is thought to make a major contribution to the evolutionary diversification of organisms. There is increasing evidence for a large-scale duplication of genes in some chelicerate lineages including two rounds of whole genome duplication (WGD) in horseshoe crabs. To investigate this further, we sequenced and analyzed the genome of the common house spider Parasteatoda tepidariorum.

Results: We found pervasive duplication of both coding and non-coding genes in this spider, including two clusters of Hox genes. Analysis of synteny conservation across the P. tepidariorum genome suggests that there has been an ancient WGD in spiders. Comparison with the genomes of other chelicerates, including that of the newly sequenced bark scorpion Centruroides sculpturatus, suggests that this event occurred in the common ancestor of spiders and scorpions, and is probably independent of the WGDs in horseshoe crabs. Furthermore, characterization of the sequence and expression of the Hox paralogs in P. tepidariorum suggests that many have been subject to neo-functionalization and/or sub-functionalization since their duplication.

Conclusions: Our results reveal that spiders and scorpions are likely the descendants of a polyploid ancestor that lived more than 450 MYA. Given the extensive morphological diversity and ecological adaptations found among these animals, rivaling those of vertebrates, our study of the ancient WGD event in Arachnopulmonata provides a new comparative platform to explore common and divergent evolutionary outcomes of polyploidization events across eukaryotes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12915-017-0399-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5535294PMC
July 2017

Evolutionary History of Chemosensory-Related Gene Families across the Arthropoda.

Mol Biol Evol 2017 08;34(8):1838-1862

Center of Rapid Evolution (CORE) and Department of Integrative Biology, University of Wisconsin, Madison, WI.

Chemosensory-related gene (CRG) families have been studied extensively in insects, but their evolutionary history across the Arthropoda had remained relatively unexplored. Here, we address current hypotheses and prior conclusions on CRG family evolution using a more comprehensive data set. In particular, odorant receptors were hypothesized to have proliferated during terrestrial colonization by insects (hexapods), but their association with other pancrustacean clades and with independent terrestrial colonizations in other arthropod subphyla have been unclear. We also examine hypotheses on which arthropod CRG family is most ancient. Thus, we reconstructed phylogenies of CRGs, including those from new arthropod genomes and transcriptomes, and mapped CRG gains and losses across arthropod lineages. Our analysis was strengthened by including crustaceans, especially copepods, which reside outside the hexapod/branchiopod clade within the subphylum Pancrustacea. We generated the first high-resolution genome sequence of the copepod Eurytemora affinis and annotated its CRGs. We found odorant receptors and odorant binding proteins present only in hexapods (insects) and absent from all other arthropod lineages, indicating that they are not universal adaptations to land. Gustatory receptors likely represent the oldest chemosensory receptors among CRGs, dating back to the Placozoa. We also clarified and confirmed the evolutionary history of antennal ionotropic receptors across the Arthropoda. All antennal ionotropic receptors in E. affinis were expressed more highly in males than in females, suggestive of an association with male mate-recognition behavior. This study is the most comprehensive comparative analysis to date of CRG family evolution across the largest and most speciose metazoan phylum Arthropoda.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/molbev/msx147DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5850775PMC
August 2017

Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle-plant interface.

Genome Biol 2016 11 11;17(1):227. Epub 2016 Nov 11.

School of Biology, Georgia Institute of Technology, Atlanta, GA, 30332, USA.

Background: Relatively little is known about the genomic basis and evolution of wood-feeding in beetles. We undertook genome sequencing and annotation, gene expression assays, studies of plant cell wall degrading enzymes, and other functional and comparative studies of the Asian longhorned beetle, Anoplophora glabripennis, a globally significant invasive species capable of inflicting severe feeding damage on many important tree species. Complementary studies of genes encoding enzymes involved in digestion of woody plant tissues or detoxification of plant allelochemicals were undertaken with the genomes of 14 additional insects, including the newly sequenced emerald ash borer and bull-headed dung beetle.

Results: The Asian longhorned beetle genome encodes a uniquely diverse arsenal of enzymes that can degrade the main polysaccharide networks in plant cell walls, detoxify plant allelochemicals, and otherwise facilitate feeding on woody plants. It has the metabolic plasticity needed to feed on diverse plant species, contributing to its highly invasive nature. Large expansions of chemosensory genes involved in the reception of pheromones and plant kairomones are consistent with the complexity of chemical cues it uses to find host plants and mates.

Conclusions: Amplification and functional divergence of genes associated with specialized feeding on plants, including genes originally obtained via horizontal gene transfer from fungi and bacteria, contributed to the addition, expansion, and enhancement of the metabolic repertoire of the Asian longhorned beetle, certain other phytophagous beetles, and to a lesser degree, other phytophagous insects. Our results thus begin to establish a genomic basis for the evolutionary success of beetles on plants.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13059-016-1088-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5105290PMC
November 2016

The whole genome sequence of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), reveals insights into the biology and adaptive evolution of a highly invasive pest species.

Genome Biol 2016 09 22;17(1):192. Epub 2016 Sep 22.

DIANA-Lab, Department of Electrical & Computer Engineering, University of Thessaly, 382 21 Volos, Greece and Hellenic Pasteur Institute, 11521, Athens, Greece.

Background: The Mediterranean fruit fly (medfly), Ceratitis capitata, is a major destructive insect pest due to its broad host range, which includes hundreds of fruits and vegetables. It exhibits a unique ability to invade and adapt to ecological niches throughout tropical and subtropical regions of the world, though medfly infestations have been prevented and controlled by the sterile insect technique (SIT) as part of integrated pest management programs (IPMs). The genetic analysis and manipulation of medfly has been subject to intensive study in an effort to improve SIT efficacy and other aspects of IPM control.

Results: The 479 Mb medfly genome is sequenced from adult flies from lines inbred for 20 generations. A high-quality assembly is achieved having a contig N50 of 45.7 kb and scaffold N50 of 4.06 Mb. In-depth curation of more than 1800 messenger RNAs shows specific gene expansions that can be related to invasiveness and host adaptation, including gene families for chemoreception, toxin and insecticide metabolism, cuticle proteins, opsins, and aquaporins. We identify genes relevant to IPM control, including those required to improve SIT.

Conclusions: The medfly genome sequence provides critical insights into the biology of one of the most serious and widespread agricultural pests. This knowledge should significantly advance the means of controlling the size and invasive potential of medfly populations. Its close relationship to Drosophila, and other insect species important to agriculture and human health, will further comparative functional and structural studies of insect genomes that should broaden our understanding of gene family evolution.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13059-016-1049-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5034548PMC
September 2016

Multifaceted biological insights from a draft genome sequence of the tobacco hornworm moth, Manduca sexta.

Insect Biochem Mol Biol 2016 09 12;76:118-147. Epub 2016 Aug 12.

Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, Athens, Greece.

Manduca sexta, known as the tobacco hornworm or Carolina sphinx moth, is a lepidopteran insect that is used extensively as a model system for research in insect biochemistry, physiology, neurobiology, development, and immunity. One important benefit of this species as an experimental model is its extremely large size, reaching more than 10 g in the larval stage. M. sexta larvae feed on solanaceous plants and thus must tolerate a substantial challenge from plant allelochemicals, including nicotine. We report the sequence and annotation of the M. sexta genome, and a survey of gene expression in various tissues and developmental stages. The Msex_1.0 genome assembly resulted in a total genome size of 419.4 Mbp. Repetitive sequences accounted for 25.8% of the assembled genome. The official gene set is comprised of 15,451 protein-coding genes, of which 2498 were manually curated. Extensive RNA-seq data from many tissues and developmental stages were used to improve gene models and for insights into gene expression patterns. Genome wide synteny analysis indicated a high level of macrosynteny in the Lepidoptera. Annotation and analyses were carried out for gene families involved in a wide spectrum of biological processes, including apoptosis, vacuole sorting, growth and development, structures of exoskeleton, egg shells, and muscle, vision, chemosensation, ion channels, signal transduction, neuropeptide signaling, neurotransmitter synthesis and transport, nicotine tolerance, lipid metabolism, and immunity. This genome sequence, annotation, and analysis provide an important new resource from a well-studied model insect species and will facilitate further biochemical and mechanistic experimental studies of many biological systems in insects.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ibmb.2016.07.005DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5010457PMC
September 2016

Comparative Genomics of Two Closely Related Wolbachia with Different Reproductive Effects on Hosts.

Genome Biol Evol 2016 06 3;8(5):1526-42. Epub 2016 Jun 3.

Department of Biology, University of Rochester.

Wolbachia pipientis are obligate intracellular bacteria commonly found in many arthropods. They can induce various reproductive alterations in hosts, including cytoplasmic incompatibility, male-killing, feminization, and parthenogenetic development, and can provide host protection against some viruses and other pathogens. Wolbachia differ from many other primary endosymbionts in arthropods because they undergo frequent horizontal transmission between hosts and are well known for an abundance of mobile elements and relatively high recombination rates. Here, we compare the genomes of two closely related Wolbachia (with 0.57% genome-wide synonymous divergence) that differ in their reproductive effects on hosts. wVitA induces a sperm-egg incompatibility (also known as cytoplasmic incompatibility) in the parasitoid insect Nasonia vitripennis, whereas wUni causes parthenogenetic development in a different parasitoid, Muscidifurax uniraptor Although these bacteria are closely related, the genomic comparison reveals rampant rearrangements, protein truncations (particularly in proteins predicted to be secreted), and elevated substitution rates. These changes occur predominantly in the wUni lineage, and may be due in part to adaptations by wUni to a new host environment, or its phenotypic shift to parthenogenesis induction. However, we conclude that the approximately 8-fold elevated synonymous substitution rate in wUni is due to a either an elevated mutation rate or a greater number of generations per year in wUni, which occurs in semitropical host species. We identify a set of genes whose loss or pseudogenization in the wUni lineage implicates them in the phenotypic shift from cytoplasmic incompatibility to parthenogenesis induction. Finally, comparison of these closely related strains allows us to determine the fine-scale mutation patterns in Wolbachia Although Wolbachia are AT rich, mutation probabilities estimated from 4-fold degenerate sites are not AT biased, and predict an equilibrium AT content much less biased than observed (57-50% AT predicted vs. 76% current content at degenerate sites genome wide). The contrast suggests selection for increased AT content within Wolbachia genomes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/gbe/evw096DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4898810PMC
June 2016

Unique features of a global human ectoparasite identified through sequencing of the bed bug genome.

Nat Commun 2016 Feb 2;7:10165. Epub 2016 Feb 2.

Pest Control Biology and Research Technologies, Bayer CropScience AG, Monheim 40789, Germany.

The bed bug, Cimex lectularius, has re-established itself as a ubiquitous human ectoparasite throughout much of the world during the past two decades. This global resurgence is likely linked to increased international travel and commerce in addition to widespread insecticide resistance. Analyses of the C. lectularius sequenced genome (650 Mb) and 14,220 predicted protein-coding genes provide a comprehensive representation of genes that are linked to traumatic insemination, a reduced chemosensory repertoire of genes related to obligate hematophagy, host-symbiont interactions, and several mechanisms of insecticide resistance. In addition, we document the presence of multiple putative lateral gene transfer events. Genome sequencing and annotation establish a solid foundation for future research on mechanisms of insecticide resistance, human-bed bug and symbiont-bed bug associations, and unique features of bed bug biology that contribute to the unprecedented success of C. lectularius as a human ectoparasite.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ncomms10165DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4740739PMC
February 2016

Hemichordate genomes and deuterostome origins.

Nature 2015 Nov 18;527(7579):459-65. Epub 2015 Nov 18.

Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA.

Acorn worms, also known as enteropneust (literally, 'gut-breathing') hemichordates, are marine invertebrates that share features with echinoderms and chordates. Together, these three phyla comprise the deuterostomes. Here we report the draft genome sequences of two acorn worms, Saccoglossus kowalevskii and Ptychodera flava. By comparing them with diverse bilaterian genomes, we identify shared traits that were probably inherited from the last common deuterostome ancestor, and then explore evolutionary trajectories leading from this ancestor to hemichordates, echinoderms and chordates. The hemichordate genomes exhibit extensive conserved synteny with amphioxus and other bilaterians, and deeply conserved non-coding sequences that are candidates for conserved gene-regulatory elements. Notably, hemichordates possess a deuterostome-specific genomic cluster of four ordered transcription factor genes, the expression of which is associated with the development of pharyngeal 'gill' slits, the foremost morphological innovation of early deuterostomes, and is probably central to their filter-feeding lifestyle. Comparative analysis reveals numerous deuterostome-specific gene novelties, including genes found in deuterostomes and marine microbes, but not other animals. The putative functions of these genes can be linked to physiological, metabolic and developmental specializations of the filter-feeding ancestor.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature16150DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4729200PMC
November 2015

Lucilia cuprina genome unlocks parasitic fly biology to underpin future interventions.

Nat Commun 2015 Jun 25;6:7344. Epub 2015 Jun 25.

Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.

Lucilia cuprina is a parasitic fly of major economic importance worldwide. Larvae of this fly invade their animal host, feed on tissues and excretions and progressively cause severe skin disease (myiasis). Here we report the sequence and annotation of the 458-megabase draft genome of Lucilia cuprina. Analyses of this genome and the 14,544 predicted protein-encoding genes provide unique insights into the fly's molecular biology, interactions with the host animal and insecticide resistance. These insights have broad implications for designing new methods for the prevention and control of myiasis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ncomms8344DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4491171PMC
June 2015

Genomic signatures of cooperation and conflict in the social amoeba.

Curr Biol 2015 Jun 4;25(12):1661-5. Epub 2015 Jun 4.

Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA.

Cooperative systems are susceptible to invasion by selfish individuals that profit from receiving the social benefits but fail to contribute. These so-called "cheaters" can have a fitness advantage in the laboratory, but it is unclear whether cheating provides an important selective advantage in nature. We used a population genomic approach to examine the history of genes involved in cheating behaviors in the social amoeba Dictyostelium discoideum, testing whether these genes experience rapid evolutionary change as a result of conflict over spore-stalk fate. Candidate genes and surrounding regions showed elevated polymorphism, unusual patterns of linkage disequilibrium, and lower levels of population differentiation, but they did not show greater between-species divergence. The signatures were most consistent with frequency-dependent selection acting to maintain multiple alleles, suggesting that conflict may lead to stalemate rather than an escalating arms race. Our results reveal the evolutionary dynamics of cooperation and cheating and underscore how sequence-based approaches can be used to elucidate the history of conflicts that are difficult to observe directly.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cub.2015.04.059DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4591038PMC
June 2015

The genomes of two key bumblebee species with primitive eusocial organization.

Genome Biol 2015 Apr 24;16:76. Epub 2015 Apr 24.

Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, Brazil.

Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats.

Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits.

Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13059-015-0623-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4414376PMC
April 2015

A massive expansion of effector genes underlies gall-formation in the wheat pest Mayetiola destructor.

Curr Biol 2015 Mar 5;25(5):613-20. Epub 2015 Feb 5.

Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.

Gall-forming arthropods are highly specialized herbivores that, in combination with their hosts, produce extended phenotypes with unique morphologies [1]. Many are economically important, and others have improved our understanding of ecology and adaptive radiation [2]. However, the mechanisms that these arthropods use to induce plant galls are poorly understood. We sequenced the genome of the Hessian fly (Mayetiola destructor; Diptera: Cecidomyiidae), a plant parasitic gall midge and a pest of wheat (Triticum spp.), with the aim of identifying genic modifications that contribute to its plant-parasitic lifestyle. Among several adaptive modifications, we discovered an expansive reservoir of potential effector proteins. Nearly 5% of the 20,163 predicted gene models matched putative effector gene transcripts present in the M. destructor larval salivary gland. Another 466 putative effectors were discovered among the genes that have no sequence similarities in other organisms. The largest known arthropod gene family (family SSGP-71) was also discovered within the effector reservoir. SSGP-71 proteins lack sequence homologies to other proteins, but their structures resemble both ubiquitin E3 ligases in plants and E3-ligase-mimicking effectors in plant pathogenic bacteria. SSGP-71 proteins and wheat Skp proteins interact in vivo. Mutations in different SSGP-71 genes avoid the effector-triggered immunity that is directed by the wheat resistance genes H6 and H9. Results point to effectors as the agents responsible for arthropod-induced plant gall formation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cub.2014.12.057DOI Listing
March 2015

Convergent evolution of the genomes of marine mammals.

Nat Genet 2015 Mar 26;47(3):272-5. Epub 2015 Jan 26.

Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA.

Marine mammals from different mammalian orders share several phenotypic traits adapted to the aquatic environment and therefore represent a classic example of convergent evolution. To investigate convergent evolution at the genomic level, we sequenced and performed de novo assembly of the genomes of three species of marine mammals (the killer whale, walrus and manatee) from three mammalian orders that share independently evolved phenotypic adaptations to a marine existence. Our comparative genomic analyses found that convergent amino acid substitutions were widespread throughout the genome and that a subset of these substitutions were in genes evolving under positive selection and putatively associated with a marine phenotype. However, we found higher levels of convergent amino acid substitutions in a control set of terrestrial sister taxa to the marine mammals. Our results suggest that, whereas convergent molecular evolution is relatively common, adaptive molecular convergence linked to phenotypic convergence is comparatively rare.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ng.3198DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4644735PMC
March 2015

The first myriapod genome sequence reveals conservative arthropod gene content and genome organisation in the centipede Strigamia maritima.

PLoS Biol 2014 Nov 25;12(11):e1002005. Epub 2014 Nov 25.

Department of Biochemistry and Cell Biology, Center for Developmental Genetics, Stony Brook University, Stony Brook, New York, United States of America.

Myriapods (e.g., centipedes and millipedes) display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We present an analysis of the genome of the centipede Strigamia maritima. It retains a compact genome that has undergone less gene loss and shuffling than previously sequenced arthropods, and many orthologues of genes conserved from the bilaterian ancestor that have been lost in insects. Our analysis locates many genes in conserved macro-synteny contexts, and many small-scale examples of gene clustering. We describe several examples where S. maritima shows different solutions from insects to similar problems. The insect olfactory receptor gene family is absent from S. maritima, and olfaction in air is likely effected by expansion of other receptor gene families. For some genes S. maritima has evolved paralogues to generate coding sequence diversity, where insects use alternate splicing. This is most striking for the Dscam gene, which in Drosophila generates more than 100,000 alternate splice forms, but in S. maritima is encoded by over 100 paralogues. We see an intriguing linkage between the absence of any known photosensory proteins in a blind organism and the additional absence of canonical circadian clock genes. The phylogenetic position of myriapods allows us to identify where in arthropod phylogeny several particular molecular mechanisms and traits emerged. For example, we conclude that juvenile hormone signalling evolved with the emergence of the exoskeleton in the arthropods and that RR-1 containing cuticle proteins evolved in the lineage leading to Mandibulata. We also identify when various gene expansions and losses occurred. The genome of S. maritima offers us a unique glimpse into the ancestral arthropod genome, while also displaying many adaptations to its specific life history.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.pbio.1002005DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4244043PMC
November 2014

Comparative validation of the D. melanogaster modENCODE transcriptome annotation.

Genome Res 2014 Jul;24(7):1209-23

Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA;

Accurate gene model annotation of reference genomes is critical for making them useful. The modENCODE project has improved the D. melanogaster genome annotation by using deep and diverse high-throughput data. Since transcriptional activity that has been evolutionarily conserved is likely to have an advantageous function, we have performed large-scale interspecific comparisons to increase confidence in predicted annotations. To support comparative genomics, we filled in divergence gaps in the Drosophila phylogeny by generating draft genomes for eight new species. For comparative transcriptome analysis, we generated mRNA expression profiles on 81 samples from multiple tissues and developmental stages of 15 Drosophila species, and we performed cap analysis of gene expression in D. melanogaster and D. pseudoobscura. We also describe conservation of four distinct core promoter structures composed of combinations of elements at three positions. Overall, each type of genomic feature shows a characteristic divergence rate relative to neutral models, highlighting the value of multispecies alignment in annotating a target genome that should prove useful in the annotation of other high priority genomes, especially human and other mammalian genomes that are rich in noncoding sequences. We report that the vast majority of elements in the annotation are evolutionarily conserved, indicating that the annotation will be an important springboard for functional genetic testing by the Drosophila community.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/gr.159384.113DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4079975PMC
July 2014

Parallel histories of horizontal gene transfer facilitated extreme reduction of endosymbiont genomes in sap-feeding insects.

Mol Biol Evol 2014 Apr 6;31(4):857-71. Epub 2014 Jan 6.

Department of Biology, Colorado State University.

Bacteria confined to intracellular environments experience extensive genome reduction. In extreme cases, insect endosymbionts have evolved genomes that are so gene-poor that they blur the distinction between bacteria and endosymbiotically derived organelles such as mitochondria and plastids. To understand the host's role in this extreme gene loss, we analyzed gene content and expression in the nuclear genome of the psyllid Pachypsylla venusta, a sap-feeding insect that harbors an ancient endosymbiont (Carsonella) with one of the most reduced bacterial genomes ever identified. Carsonella retains many genes required for synthesis of essential amino acids that are scarce in plant sap, but most of these biosynthetic pathways have been disrupted by gene loss. Host genes that are upregulated in psyllid cells housing Carsonella appear to compensate for endosymbiont gene losses, resulting in highly integrated metabolic pathways that mirror those observed in other sap-feeding insects. The host contribution to these pathways is mediated by a combination of native eukaryotic genes and bacterial genes that were horizontally transferred from multiple donor lineages early in the evolution of psyllids, including one gene that appears to have been directly acquired from Carsonella. By comparing the psyllid genome to a recent analysis of mealybugs, we found that a remarkably similar set of functional pathways have been shaped by independent transfers of bacterial genes to the two hosts. These results show that horizontal gene transfer is an important and recurring mechanism driving coevolution between insects and their bacterial endosymbionts and highlight interesting similarities and contrasts with the evolutionary history of mitochondria and plastids.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/molbev/msu004DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3969561PMC
April 2014