Publications by authors named "Jianzhao Liao"

18 Publications

  • Page 1 of 1

Arsenic and antimony co-induced nephrotoxicity via autophagy and pyroptosis through ROS-mediated pathway in vivo and in vitro.

Ecotoxicol Environ Saf 2021 Sep 21;221:112442. Epub 2021 Jun 21.

College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China. Electronic address:

Arsenic (As) and antimony (Sb) are commonly accumulated environmental pollutants that often coexist in nature and cause serious widespread biological toxicity. To investigate the nephrotoxicity induced by As and Sb in detail, we explored the mechanism by which As and Sb cotreatment induced autophagy and pyroptosis in vivo and in vitro. In this study, mice were treated with 4 mg/kg arsenic trioxide (ATO) or/and 15 mg/kg antimony trichloride (SbCl) by intragastric intubation for 60 days. TCMK-1 cells were treated with ATO (12.5 μM), SbCl (25 μM) or a combination of As and Sb for 24 h. The results of the in vivo experiment demonstrated that As or/and Sb exposure could induce histopathological changes in the kidneys, and increase the levels of biochemical indicators of nephrotoxicity. In addition, As and Sb can co-induce oxidative stress, which further activate autophagy and pyroptosis. In an in vitro experiment, As and/or Sb coexposure increased ROS generation and decreased MMP. Moreover, the results of related molecular experiments further confirmed that As and Sb coactivated autophagy and pyroptosis. In conclusion, our results indicated that As and Sb co-exposure could cause autophagy and pyroptosis via the ROS pathway, and these two metals might have a synergistic effect on nephrotoxicity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2021.112442DOI Listing
September 2021

Long-term copper exposure promotes apoptosis and autophagy by inducing oxidative stress in pig testis.

Environ Sci Pollut Res Int 2021 Jun 15. Epub 2021 Jun 15.

College of Veterinary, South China Agricultural University, Guangzhou, 510642, China.

Copper (Cu) is a heavy metal which is being used widely in the industry and agriculture. However, the overuse of Cu makes it a common environmental pollutant. In order to investigate the testicular toxicity of Cu, the pigs were divided into three groups and were given Cu at 10 (control), 125, and 250 mg/kg body weight, respectively. The feeding period was 80 days. Serum hormone results showed that Cu exposure decreased the concentrations of follicular stimulating hormone (FSH) and luteinizing hormone (LH) and increased the concentration of thyroxine (T4). Meanwhile, Cu exposure upregulated the expression of Cu transporter mRNA (Slc31a1, ATP7A, and ATP7B) in the testis, leading to increase in testicular Cu and led to spermatogenesis disorder. The Cu exposure led to an increased expression of antioxidant-related mRNA (Gpx4, TRX, HO-1, SOD1, SOD2, SOD3, CAT), along with increase in the MDA concentration in the testis. In LG group, the ROS in the testis was significantly increased. Furthermore, the apoptotic-related mRNA (Caspase3, Caspase8, Caspase9, Bax, Cytc, Bak1, APAF1, p53) and protein (Active Caspase3) and the autophagy-related mRNA (Beclin1, ATG5, LC3, and LC3B) expression increased after Cu exposure. The mitochondrial membrane potential in the testicular tissue decreased, while the number of apoptotic cells increased, as a result of oxidative stress. Overall, our study indicated that the Cu exposure promotes testicular apoptosis and autophagy by mediating oxidative stress, which is considered as the key mechanism causing testicular degeneration as well as dysfunction.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-021-14853-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8203493PMC
June 2021

Copper induces mitochondria-mediated apoptosis via AMPK-mTOR pathway in hypothalamus of Pigs.

Ecotoxicol Environ Saf 2021 Sep 5;220:112395. Epub 2021 Jun 5.

College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China. Electronic address:

Copper (Cu), one of the heavy metals, is far beyond the carrying capacity of the environment with Cu mining, industrial wastewater discharging and the use of Cu-containing pesticides. Intaking excess Cu can cause toxic effects on liver, kidney, heart, but few studies report Cu toxicity on brain tissue. It is noteworthy that most toxicity tests are based on rodent models, but large mammals chosen as animal models has no reported. To explore the relationship of the Cu toxicity and mitochondria-mediated apoptosis on hypothalamus in pigs, the content of Cu, histomorphology, mitochondrial related indicators, apoptosis, and AMPK-mTOR signaling pathway were detected. Results showed that Cu could accumulate in hypothalamus and lead to mitochondrial dysfunction, evidenced by the decrease of ATP production, activities of respiratory chain complex I-IV, and mitochondrial respiratory function in Cu-treated groups. Additionally, the genes and proteins expression of Bax, Caspase-3, Cytc in treatment group were higher than control group. Furthermore, the protein level of p-AMPK was enhanced significantly and p-mTOR was declined, which manifested that AMPK-mTOR signaling pathway was activated in Cu-treated groups. In conclusion, this study illuminated that the accumulation of Cu could cause mitochondrial dysfunction, induce mitochondria-mediated apoptosis and activate AMPK-mTOR pathway in hypothalamus.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2021.112395DOI Listing
September 2021

Metabolomics and transcriptomics indicated the molecular targets of copper to the pig kidney.

Ecotoxicol Environ Saf 2021 May 1;218:112284. Epub 2021 May 1.

College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China. Electronic address:

Copper poses huge environmental and public health concerns due to its widespread and persistent use in the past several decades. Although it is well established that at higher levels copper causes nephrotoxicity, the exact mechanisms of its toxicity is not fully understood. Therefore, this experimental study for the first time investigates the potential molecular mechanisms including transcriptomics, metabolomics, serum biochemical, histopathological, cell apoptosis and autophagy in copper-induced renal toxicity in pigs. A total of 14 piglets were randomly assigned to two group (7 piglets per group) and treated with a standard diet (11 mg CuSO per kg of feed) and a high copper diet (250 mg CuSO per kg of feed). The results of serum biochemical tests and renal histopathology suggested that 250 mg/kg CuSO in the diet significantly increased serum creatinine (CREA) and induced renal tubular epithelial cell swelling. Results on transcriptomics and metabolomics showed alteration in 804 genes and 53 metabolites in kidneys of treated pigs, respectively. Combined analysis of transcriptomics and metabolomics indicated that different genes and metabolism pathways in kidneys of treated pigs were involved in glycerophospholipids metabolism and glycosphingolipid metabolism. Furthermore, copper induced mitochondrial apoptosis characterized by increased bax, bak, caspase 3, caspase 8 and caspase 9 expressions while decreased bcl-xl and bcl2/bax expression. Exposure to copper decreased the autophagic flux in terms of increased number of autophagosomes, beclin1 and LC3b/LC3a expression and p62 accumulation. These results indicated that the imbalance of glycosphingolipid metabolism, the impairment of autophagy and increase mitochondrial apoptosis play an important role in copper induced renal damage and are useful mechanisms to understand the mechanisms of copper nephrotoxicity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2021.112284DOI Listing
May 2021

Metabolomics analysis reveals the effect of copper on autophagy in myocardia of pigs.

Ecotoxicol Environ Saf 2021 Apr 18;213:112040. Epub 2021 Feb 18.

College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China. Electronic address:

Among different synthetic compounds copper (Cu) is persistently and frequently used as growth promoter, antibacterial, antifungal and antiparasitic agent and has become common environmental pollutant. Therefore, this study explores the cardio-toxic effects of control group (10 mg/kg bw Cu) and treatment group (125 and 250 mg/kg bw Cu), and it association with process of autophagy and metabolomics in myocardium of pigs kept in three different experimental treatments for a period of 80 days. The results of serum biochemical parameters showed a significantly increase in creatinine kinase (CK), creatine kinase-MB (CK-MB), high density lipoprotein-cholesterol (HDL-C), low density lipoprotein-cholesterol (LDL-C) and aspartate aminotransferase (AST) in pigs exposed to 125 mg/kg bw and 250 mg/kg bw Cu. Meanwhile, the severe structural abnormalities in cardiomyocytes were found when exposed to 250 mg/kg Cu at day 80. In addition, the mRNA and proteins (Beclin1, ATG5 and LC3II) expression levels were significantly increased and p62 was significantly decreased in cardiomyocytes exposed to 250 mg/kg Cu at day 80 of the trial. Further, UPLC-QTOF/MS technique showed that 7 metabolites were up-regulated and 37 metabolites were down-regulated in cardiomyocytes after 250 mg/kg Cu treatment, with a principal impact on the metabolic pathways including glycerophospholipid metabolism, one carbon pool by folate, fatty acid elongation and fatty acid degradation, which were related to autophagy. Overall, our study identified the autophagy processes and metabolites in metabolic pathways in Cu-induced myocardium injury, which provided useful evidence of myocardium toxicity caused by Cu exposure via metabolomics and multiple bioanalytic methods.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2021.112040DOI Listing
April 2021

Chronic tribasic copper chloride exposure induces rat liver damage by disrupting the mitophagy and apoptosis pathways.

Ecotoxicol Environ Saf 2021 Apr 4;212:111968. Epub 2021 Feb 4.

College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China. Electronic address:

Despite the fact that copper (Cu) is a vital micronutrient to maintain body function, high doses of Cu through environmental exposure damage various organs, especially the liver, which is the main metabolic organ. To investigate the influence of long-term Cu-induced toxicity on mitophagy and apoptosis in rat liver, 96 seven-month-old male Sprague-Dawley rats were fed TBCC for 24 weeks. The results revealed that exposure to high Cu concentrations could promote oxidative stress liver injury by increasing the hepatic function index (ALT, AST and ALP) and MDA content, while reducing the activity of antioxidant enzymes (T-SOD, GSH-Px and CAT) related to oxidative stress. Consistent with histopathological observations, proper dietary Cu (15-60 mg/kg) could improve antioxidant stress levels and induce a dose-dependent increase in the mRNA expression of mitophagy-related genes, whereas a high Cu concentration (120 mg/kg) could cause severe liver impairment and ultrastructural changes and a reduction in mitophagosomes, accompanied by downregulation of Atg5, Beclin1, Pink1, Parkin, NIX, P62 and LC3B. The expression of apoptosis-related genes (Bax, Bax/Bcl-2, Caspase3, Cytc and p53) and proteins (Caspase3 and p53) was upregulated with the addition of dietary Cu. The results demonstrated that an appropriate dose of TBCC could improve liver function by promoting mitophagy and Cu enzymes that play antioxidative roles, while the accumulation of excess Cu could induce liver lesions by enhancing apoptosis and inhibiting mitophagy pathways.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2021.111968DOI Listing
April 2021

The hepatotoxicity of altrazine exposure in mice involves the intestinal microbiota.

Chemosphere 2021 Jun 11;272:129572. Epub 2021 Jan 11.

College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China. Electronic address:

Atrazine (ATR), a bio accumulative herbicide is frequently used in agriculture to control unwanted weeds. Due to continuous application, atrazine persists in the environment and causes deleterious impacts including neurotoxicity, hepatotoxicity, and gut microbiota disorders. Therefore, this study for the first time reports the variation in the gut microbiota, induction of process of apoptosis and autophagy in mice induced by ATR. Results indicated that TUNEL-positive hepatocytes suggestive of apoptosis were increased in livers of different experimental mice. Results on metabolic analysis in liver tissues indicated an overall change in seventy-six metabolites particularly Uridine 5'-diphosphate, Propenoylcarnitine and Chinenoside V resulting in generation of energy-related metabolic disorders and imbalance of oxidation/autoxidation status. Results on gut microbiome inquisition showed that ATR changed the richness and diversity of gut microbiota of mice and number of Firmicutes. Moreover, results also revealed that ATR induced apoptosis via disruption of apoptotic (Bax, Bcl2, and Casp3) and autophagy (LC3/Map1lc3a, Beclin 1/Becn1 and P62/Sqstm1) genes. Results of our experimental study confirmed that changes in gut microbiota play a significant role in process of gut immune regulation and inflammation via different metabolites. In conclusion, the findings of our study provide a new idea for the involvement of mechanisms of detoxification in liver and inquisition of gut microbiota plays crucial role in regulation of physiological activities through liver-gut axis to mitigate toxic effects in animals.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2021.129572DOI Listing
June 2021

Exposure to copper induces mitochondria-mediated apoptosis by inhibiting mitophagy and the PINK1/parkin pathway in chicken (Gallus gallus) livers.

J Hazard Mater 2021 04 19;408:124888. Epub 2020 Dec 19.

College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China. Electronic address:

Copper (Cu), a transition metal with essential cellular functions, exerts toxic effects when present in excess by inducing oxidative stress. However, the Cu-induced crosstalk between mitophagy and apoptosis and the underlying mechanisms are unknown. Here, the mechanism of Cu-induced hepatotoxicity mediated by mitophagy and apoptosis was explored in vivo and in vitro. In in vivo experiments, chickens were fed a diet with various levels of Cu (11, 110, 220, and 330 mg/kg) for 7 weeks, which led to ultrastructural damage, mitophagy, and apoptosis in liver tissue. In vitro experiments on primary chicken hepatocytes showed that Cu treatment for 24 h increased the numbers of mitophagosomes and upregulated PINK1, parkin, and p62 mRNA levels and parkin and p62 protein levels, inducing mitophagy. Moreover, treatment with 3- methyladenine (3-MA) aggravated Cu-induced S-phase arrest in cell cycle; increased the apoptotic rate; increased p53, Bak1, Bax, Cyt C, and Caspase3/cleaved-caspase3 mRNA and protein levels; and decreased Bcl2 mRNA and protein levels. However, rapamycin (Rapa) had the opposite effects on the above factors. In general, the results reveal that Cu exposure can cause mitophagy through the PINK1/Parkin pathway in chicken livers, and that mitophagy might attenuate Cu-induced mitochondrial apoptosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2020.124888DOI Listing
April 2021

Copper induces energy metabolic dysfunction and AMPK-mTOR pathway-mediated autophagy in kidney of broiler chickens.

Ecotoxicol Environ Saf 2020 Dec 30;206:111366. Epub 2020 Sep 30.

College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China. Electronic address:

To explore the effects of copper (Cu) on energy metabolism and AMPK-mTOR pathway-mediated autophagy in kidney, a total of 240 one-day-old broiler chickens were randomized into four equal groups and fed on the diets with different levels of Cu (11, 110, 220, and 330 mg/kg) for 49 d. Results showed that excess Cu could induce vacuolar degeneration and increase the number of autophagosomes in kidney, and the adenosine triphosphate (ATP) level and mRNA levels of energy metabolism-related genes were decreased with the increasing dietary Cu level. Moreover, immunohistochemistry and immunofluorescence showed that the positive expressions of Beclin1 and LC3-II were mainly located in cytoplasm of renal tubular epithelial cells and increased significantly with the increasing levels of Cu. The mRNA levels of Beclin1, Atg5, LC3-I, LC3-II, Dynein and the protein levels of Beclin1, Atg5, LC3-II/LC3-I and p-AMPKα1/AMPKα1 were markedly elevated in treated groups compared with control group (11 mg/kg Cu). However, the mRNA and protein levels of p62 and p-mTOR/mTOR were significantly decreased with the increasing levels of Cu. These results suggest that impaired energy metabolism induced by Cu may lead to autophagy via AMPK-mTOR pathway in kidney of broiler chickens.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2020.111366DOI Listing
December 2020

Copper induces oxidative stress with triggered NF-κB pathway leading to inflammatory responses in immune organs of chicken.

Ecotoxicol Environ Saf 2020 Sep 22;200:110715. Epub 2020 May 22.

College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China. Electronic address:

Copper (Cu) is a necessary trace mineral due to its biological activity. Excessive Cu can induce inflammatory response in humans and animals, but the underlying mechanism is still unknown. Here, 240 broilers were used to study the effects of excessive Cu on oxidative stress and NF-κB-mediated inflammatory responses in immune organs. Chickens were fed with diet containing different concentrations of Cu (11, 110, 220, and 330 mg of Cu/kg dry matter). The experiment lasted for 49 days. Spleen, thymus, and bursa of Fabricius (BF) on day 49 were collected for histopathological observation and assessment of oxidative stress status. Additionally, the mRNA and protein levels of NF-κB and inflammatory cytokines were also analyzed. The results indicated that excess Cu could increase the number and area of splenic corpuscle as well as the ratio of cortex and medulla in thymus and BF. Furthermore, excessive Cu intake could decrease activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px); but increase contents of malondialdehyde (MDA), TNF-α, IL-1, IL-1β; up-regulate mRNA levels of TNF-α, IFN-γ, IL-1, IL-1β, IL-2, iNOS, COX-2, NF-κB and protein levels of TNF-α, IFN-γ, NF-κB, p-NF-κB in immune organs. In conclusion, excessive Cu could cause pathologic changes and induce oxidative stress with triggered NF-κB pathway, and might further regulate the inflammatory response in immune organs of chicken.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2020.110715DOI Listing
September 2020

Escherichia coli isolated in pigs, Guangdong, China: Emergence of extreme drug resistance (XDR) bacteria.

J Infect 2020 08 14;81(2):318-356. Epub 2020 May 14.

College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China. Electronic address:

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jinf.2020.05.003DOI Listing
August 2020

Copper Induces Apoptosis Through Endoplasmic Reticulum Stress in Skeletal Muscle of Broilers.

Biol Trace Elem Res 2020 Dec 20;198(2):636-643. Epub 2020 Feb 20.

College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.

The purpose of this research was to investigate whether copper (Cu) exposure could induce apoptosis via endoplasmic reticulum stress (ERS) in skeletal muscle of broilers. A total of 240 one-day-old chickens were randomly divided into four groups by free access; the diets are as follows: control diet (Cu 11 mg/kg, control group) and high level of Cu diets (Cu 110 mg/kg, group I; Cu 220 mg/kg, group II; Cu 330 mg/kg, group III). The skeletal muscle tissues were collected on day 49 for further examination. The content of Cu, histopathology, and the expression levels of the genes and proteins related to ERS and apoptosis were detected. Results showed that the Cu levels in skeletal muscle were increased in a dose-dependent manner. Meanwhile, the spaces between the muscle fibers were wider with the increase of Cu content, and the myolysis was observed in group III. Besides, the mRNA expression levels of GRP78, GRP94, eIF2α, ATF6, XBP1, CHOP, Caspase-12, and Caspase3 were markedly increased in treated groups compared with control group, and the protein expression levels of GRP78, Caspase3, Active-Caspase3 and JNK were significantly elevated with the increase of dietary Cu. In summary, these findings suggested that Cu could induce apoptosis through ERS in skeletal muscle of broilers.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12011-020-02076-0DOI Listing
December 2020

Long-term exposure to copper induces autophagy and apoptosis through oxidative stress in rat kidneys.

Ecotoxicol Environ Saf 2020 Mar 6;190:110158. Epub 2020 Jan 6.

College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China. Electronic address:

Copper (Cu) is an essential trace element for most organisms. However, excessive Cu can be highly toxic. The purpose of this study was to elucidate the mechanism underlying Cu toxicity in the kidneys of rats after treatment with CuCl (15 [control], 30, 60, or 120 mg/kg in the diet) for 180 days. Histological and ultrastructural changes, antioxidant enzyme activity, and the mRNA and protein levels of apoptosis and autophagy-related genes were measured. The results showed that Cu exposure led to significant accumulation of copper in kidneys and disorganized kidney morphology. The activities of total anti-oxidation capacity (T-AOC) and superoxide dismutase (SOD) in the kidneys decreased significantly, while the malondialdehyde (MDA) content increased. Furthermore, excessive Cu markedly upregulated the expression of autophagy and apoptosis-related genes (LC3A, LC3B, ATG-5, Beclin-1, Caspase3, CytC, P53, Bax), but downregulated the expression of P62, mTOR and BCL-2. Moreover, the LC3B/LC3A, ATG-5, Beclin-1, P53, Caspase3 proteins were up-regulated while P62 was down-regulated in the kidney tissues of the treatment groups. Overall, these findings provide strong evidence that excess Cu can trigger autophagy and apoptosis via the mitochondrial pathway by inducing oxidative stress in rat kidneys.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2019.110158DOI Listing
March 2020

Toxic effects of arsenic trioxide on spermatogonia are associated with oxidative stress, mitochondrial dysfunction, autophagy and metabolomic alterations.

Ecotoxicol Environ Saf 2020 Mar 14;190:110063. Epub 2019 Dec 14.

College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China. Electronic address:

Arsenic is a toxic metalloid that can cause male reproductive malfunctions and is widely distributed in the environment. The aim of this study was to investigate the cytotoxicity of arsenic trioxide (ATO) induced GC-1 spermatogonial (spg) cells. Our results found that ATO increased the levels of catalase (CAT) and malonaldehyde (MDA) and reactive oxygen species (ROS), while decreasing glutathione (GSH) and the total antioxidant capacity (T-AOC). Therefore, ATO triggered oxidative stress in GC-1 spg cells. In addition, ATO also caused severe mitochondrial dysfunction that included an increase in residual oxygen consumption (ROX), and decreased the routine respiration, maximal and ATP-linked respiration (ATP-L-R), as well as spare respiratory capacity (SRC), and respiratory control rate (RCR); ATO also damaged the mitochondrial structure, including mitochondrial cristae disordered and dissolved, mitochondrial vacuolar degeneration. Moreover, degradation of p62, LC3 conversion, increasing the number of acidic vesicle organelles (AVOs) and autophagosomes and autolysosomes are demonstrated that the cytotoxicity of ATO may be associated with autophagy. Meanwhile, the metabolomics analysis results showed that 20 metabolites (10 increased and 10 decreased) were significantly altered with the ATO exposure, suggesting that maybe there are the perturbations in amino acid metabolism, lipid metabolism, glycan biosynthesis and metabolism, metabolism of cofactors and vitamins. We concluded that ATO was toxic to GC-1 spg cells via inducing oxidative stress, mitochondrial dysfunction and autophagy as well as the disruption of normal metabolism. This study will aid our understanding of the mechanisms behind ATO-induced spermatogenic toxicity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2019.110063DOI Listing
March 2020

Effects of copper on oxidative stress and autophagy in hypothalamus of broilers.

Ecotoxicol Environ Saf 2019 Dec 26;185:109710. Epub 2019 Sep 26.

College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China. Electronic address:

The purpose of this research was to discuss the effects of copper (Cu)-induced toxicity on oxidative stress and autophagy in hypothalamus of broilers. In this study, 240 one-day-old broilers were randomly divided into 4 groups and the contents of dietary Cu in 4 groups were 11 mg/kg (control group), 110 mg/kg (group I), 220 mg/kg (group II), and 330 mg/kg (group III). The experiment lasted for 49 days and the hypothalamus tissues were collected for histological observation and detection of Cu content. Additionally, the indicators related to oxidative stress in hypothalamus were determined. Moreover, the mRNA expression levels of autophagy-related genes and the protein expression levels of Beclin1, LC3-II/LC3-I, and p62 in hypothalamus were measured. Results showed that the treated groups were observed vacuolar degeneration in hypothalamus compared to control group, and the Cu content in hypothalamus was increased with the increase of dietary Cu. Furthermore, the activities of SOD, CAT, T-AOC were increased in group I and group II and then decreased in group III, and the content of MDA and the mRNA levels of Nrf2, HO-1, SOD-1, CAT, GCLC, GCLM, and GST in treated groups were elevated compared to control group. Moreover, the mRNA expression levels of Beclin1, Atg5, LC3-I, LC3-II and the protein expression levels of Beclin1 and LC3-II/LC3-I up-regulated significantly with the increasing levels of Cu. However, the mRNA expression levels of p62 and mTOR and the protein expression level of p62 down-regulated remarkably. Taken together, our present study evidenced that excessive intake of Cu could induce oxidative stress and autophagy in hypothalamus of broilers.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2019.109710DOI Listing
December 2019

Inhibition of Caspase-1-dependent pyroptosis attenuates copper-induced apoptosis in chicken hepatocytes.

Ecotoxicol Environ Saf 2019 Jun 26;174:110-119. Epub 2019 Feb 26.

College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China.

The purpose of this study was to investigate the effects of copper (Cu) on hepatocyte pyroptosis and the relationship between pyroptosis and apoptosis in the mechanisms of Cu toxicity. Primary chicken hepatocytes were cultured in different concentrations of Cu sulfate (CuSO) (0, 10, 50, and 100 μM), N-acetylcysteine (NAC) (1 mM), and Z-YVAD-fluoromethylketone (Z-YVAD-FMK) (10 μM) for 24 h, and the combination of Cu and NAC or Z-YVAD-FMK for 24 h. Cellular morphology and function, cell viability, mitochondria membrane potential (MMP), apoptosis rate, mRNA expression of pyroptosis-related and apoptosis-related genes, and Caspase-1, Caspase-3 proteins expression were determined. These results indicated that Cu markedly induced the mRNA expression of pyroptosis-related genes (Caspase-1, IL-1β, IL-18, and NLRP3) and Caspase-1 protein expression. Furthermore, contents of Caspase-1, IL-1β, and IL-18 in the supernatant fluid of culture hepatocytes were significantly increased in hepatocytes. NAC relieved excess Cu-caused the changes of above genes and proteins. Additionally, Z-YVAD-FMK, caspase-1 inhibitor, which attenuated Cu-induced the increased lactic dehydrogenase (LDH), aspartate amino transferase (AST), alanine aminotransferase (ALT) activities. Furthermore, treatment with Cu and Z-YVAD-FMK could down-regulate the mRNA levels of Caspase-3, Bak1, Bax, and CytC and Caspase-3 protein expression, up-regulate the mRNA expression of Bcl2, increase the MMP and reduce cell apoptosis compared to treatment with Cu in hepatocytes. Collectively, these finding evidenced that excess Cu induced pyroptosis by generating ROS in hepatocytes, and the inhibition of Caspase-1-dependent pyroptosis might attenuate Cu-induced apoptosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2019.02.069DOI Listing
June 2019

Copper induces oxidative stress and apoptosis through mitochondria-mediated pathway in chicken hepatocytes.

Toxicol In Vitro 2019 Feb 30;54:310-316. Epub 2018 Oct 30.

College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China. Electronic address:

The aim of this study was to investigate the effects of excessive copper (Cu)-induced cytotoxicity on oxidative stress and mitochondrial apoptosis in chicken hepatocytes. Chicken hepatocytes were cultured in medium in the absence and presence of copper sulfate (CuSO) (10, 50, 100 μM), in N-acetyl-L-cysteine (NAC) (1 mM), and the combination of CuSO and NAC for 24 h. Morphologic observation and function, reactive oxygen species (ROS) level, antioxidant indices, nitric oxide (NO) content, mitochondrial membrane potential (MMP), and apoptosis-related mRNA and protein levels were determined. These results indicated that excessive Cu could induce release of intracellular lactate dehydrogenase (LDH), aspartate aminotransferase (AST), and alanine aminotransferase (ALT); increase levels of ROS, superoxide dismutase (SOD), malondialdehyde (MDA), catalase (CAT), lipid peroxidation (LPO), and NO; decrease glutathione (GSH) content and MMP; upregulated Bak1, Bax, CytC, and Caspase3 mRNA and protein expression, inhibited Bcl2 mRNA and protein expression, and induced cell apoptosis in a dose effect. The Cu-caused changes of all above factors were alleviated by treatment with NAC. These results suggested that excessive Cu could induce oxidative stress and apoptosis via mitochondrial pathway in chicken hepatocytes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tiv.2018.10.017DOI Listing
February 2019

Autophagy attenuates copper-induced mitochondrial dysfunction by regulating oxidative stress in chicken hepatocytes.

Chemosphere 2018 Aug 29;204:36-43. Epub 2018 Mar 29.

College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China. Electronic address:

Copper (Cu) is an essential trace element that is required for the catalysis of several cellular enzymes. Excessive Cu could induce hepatotoxicity in humans and multiple animals. The purpose of this study was to investigate the effects of autophagy machinery on Cu-induced hepatotoxicity. Chicken hepatocytes were cultured in medium in the absence and presence of Cu sulfate (CuSO) (0, 10, 50, and 100 μM) for 0, 6, 12, and 24 h, and in the combination of CuSO and N-acetyl-l-cysteine (NAC) (1 mM), rapamycin (10 nM), and 3-methyladenine (3-MA) (5 mM) for 24 h. Results showed that Cu could markedly increase the number of autophagosomes and LC3 puncta, induce autophagy-related genes (Beclin1, ATG5, LC3Ⅰ, LC3Ⅱ, mTOR, and Dynein) mRNA expression and proteins (BECN1, LC3Ⅱ/LC3Ⅰ) expression. NAC could relieve Cu-induced the changes of above genes and proteins. Additionally, rapamycin attenuated Cu-induced the increased lactic dehydrogenase (LDH), aspartate amino transferase (AST), and alanine aminotransferase (ALT) activities, and SOD-1 mRNA expression as well as the decreased cell viability, reactive oxygen species (ROS), hydrogen peroxide, total superoxide dismutase (T-SOD), malonaldehyde (MDA), catalase (CAT), HO-1 mRNA expression, adenosine triphosphate (ATP) levels, mitochondrial mass, and mitochondria membrane potential (MMP). But 3-MA had the opposite effects on above factors. Collectively, these findings provide strong evidence that Cu could induce autophagy by generating excessive ROS in hepatocytes, and autophagy might attenuate Cu-induced mitochondrial dysfunction by regulating oxidative stress.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2018.03.192DOI Listing
August 2018
-->