Ultramicroscopy 2020 Feb 10;209:112887. Epub 2019 Nov 10.
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China; Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China. Electronic address:
A new design scheme for ultrafast transmission electron microscopy (UTEM) has been developed based on a Schottky-type field emission gun (FEG) at the Institute of Physics, Chinese Academy of Sciences (IOP CAS). In this UTEM setup, electron pulse emission is achieved by integrating a laser port between the electron gun and the column and the resulting microscope can operate in either continuous or pulsed mode. In pulsed mode, the optimized electron beam properties are an energy width of ~0.65 eV, micrometer-scale coherence lengths and sub-picosecond pulse durations. The potential applications of this UTEM, which include electron diffraction, high-resolution imaging, electron energy loss spectroscopy, and photon-induced near-field electron microscopy, are demonstrated using ultrafast electron pulses. Furthermore, we use a nanosecond laser (~10 ns) to show that the laser-driven FEG can support high-quality TEM imaging and electron holography when using a stroboscopic configuration. Our results also indicate that FEG-based ultrafast electron sources may enable high-performance analytical UTEM.