Publications by authors named "Jessica van Setten"

70 Publications

The genomics of heart failure: design and rationale of the HERMES consortium.

ESC Heart Fail 2021 Sep 3. Epub 2021 Sep 3.

Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.

Aims: The HERMES (HEart failure Molecular Epidemiology for Therapeutic targetS) consortium aims to identify the genomic and molecular basis of heart failure.

Methods And Results: The consortium currently includes 51 studies from 11 countries, including 68 157 heart failure cases and 949 888 controls, with data on heart failure events and prognosis. All studies collected biological samples and performed genome-wide genotyping of common genetic variants. The enrolment of subjects into participating studies ranged from 1948 to the present day, and the median follow-up following heart failure diagnosis ranged from 2 to 116 months. Forty-nine of 51 individual studies enrolled participants of both sexes; in these studies, participants with heart failure were predominantly male (34-90%). The mean age at diagnosis or ascertainment across all studies ranged from 54 to 84 years. Based on the aggregate sample, we estimated 80% power to genetic variant associations with risk of heart failure with an odds ratio of ≥1.10 for common variants (allele frequency ≥ 0.05) and ≥1.20 for low-frequency variants (allele frequency 0.01-0.05) at P < 5 × 10 under an additive genetic model.

Conclusions: HERMES is a global collaboration aiming to (i) identify the genetic determinants of heart failure; (ii) generate insights into the causal pathways leading to heart failure and enable genetic approaches to target prioritization; and (iii) develop genomic tools for disease stratification and risk prediction.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ehf2.13517DOI Listing
September 2021

Next-Generation HLA Sequence Analysis Uncovers Shared Risk Alleles Between Clinically Distinct Forms of Childhood Uveitis.

Invest Ophthalmol Vis Sci 2021 07;62(9):19

Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, The Netherlands.

Purpose: Classical alleles of the human leukocyte antigen (HLA) complex have been linked to specific entities of pediatric noninfectious uveitis, yet genetic predisposition encoded by the HLA super-locus across the patient population remains understudied.

Methods: We performed next-generation full-length sequencing of HLA-A, HLA-B, HLA-C, HLA-DPB1, HLA-DQB1, and HLA-DRB1 in 280 cases. Dense genotype data from 499 Dutch controls from Genome of the Netherlands were imputed using an HLA-specific reference panel (n = 5225 samples from European ancestry). Cases and controls were compared using logistic regression models adjusting for sex.

Results: In total, 179 common and rare alleles were detected. Considering all cases and controls, HLA-DQB1*04:02 and HLA-DRB1*08:01 were identified as the principal HLA association, which was mainly driven by 92 cases with juvenile idiopathic arthritis-associated uveitis (JIA-U). The HLA-DQB1*04:02-HLA-DRB1*08:01 haplotype was also the primary association for the phenotypically similar idiopathic chronic anterior uveitis without arthritis (CAU). Also, HLA-DQB1*05:03 was an independent risk allele for CAU, but not in JIA-U. Analysis of 185 cases with other forms of uveitis revealed HLA-wide associations (P < 2.79 × 10-4) for HLA-DRB1*01:02, HLA-DRB1*04:03, and HLA-DQB1*05:03, which could be primarily attributed to cases with panuveitis. Finally, amino acid substitution modeling revealed that aspartic acid at position 57 that distinguishes the risk allele HLA-DQB1*05:03 (for CAU and panuveitis) from nonrisk alleles, significantly increased the binding capacity of naturally presented ligands to HLA-DQ.

Conclusions: These results uncovered novel shared HLA associations among clinically distinct phenotypes of pediatric uveitis and highlight genetic predisposition affecting the antigen presentation pathway.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1167/iovs.62.9.19DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8287043PMC
July 2021

Common Genetic Variation in MC4R Does Not Affect Atherosclerotic Plaque Phenotypes and Cardiovascular Disease Outcomes.

J Clin Med 2021 Mar 1;10(5). Epub 2021 Mar 1.

Department Medicine, Division Endocrinology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands.

We analyzed the effects of the common BMI-increasing melanocortin 4 receptor (MC4R) rs17782313-C allele with a minor allele frequency of 0.22-0.25 on (1) cardiovascular disease outcomes in two large population-based cohorts (Copenhagen City Heart Study and Copenhagen General Population Study, = 106,018; and UK Biobank, = 357,426) and additionally in an elderly population at risk for cardiovascular disease ( = 5241), and on (2) atherosclerotic plaque phenotypes in samples of patients who underwent endarterectomy ( = 1439). Using regression models, we additionally analyzed whether potential associations were modified by sex or explained by changes in body mass index. We confirmed the BMI-increasing effects of +0.22 kg/m per additional copy of the C allele ( < 0.001). However, we found no evidence for an association of common MC4R genetic variation with coronary artery disease (HR 1.03; 95% CI 0.99, 1.07), ischemic vascular disease (HR 1.00; 95% CI 0.98, 1.03), myocardial infarction (HR 1.01; 95% CI 0.94, 1.08 and 1.02; 0.98, 1.07) or stroke (HR 0.93; 95% CI 0.85, 1.01), nor with any atherosclerotic plaque phenotype. Thus, common MC4R genetic variation, despite increasing BMI, does not affect cardiovascular disease risk in the general population or in populations at risk for cardiovascular disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/jcm10050932DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7957774PMC
March 2021

Genome-wide association analysis in dilated cardiomyopathy reveals two new players in systolic heart failure on chromosomes 3p25.1 and 22q11.23.

Eur Heart J 2021 05;42(20):2000-2011

Université de Paris, INSERM, UMR-S970, Integrative Epidemiology of cardiovascular disease, Paris, France.

Aims: Our objective was to better understand the genetic bases of dilated cardiomyopathy (DCM), a leading cause of systolic heart failure.

Methods And Results: We conducted the largest genome-wide association study performed so far in DCM, with 2719 cases and 4440 controls in the discovery population. We identified and replicated two new DCM-associated loci on chromosome 3p25.1 [lead single-nucleotide polymorphism (SNP) rs62232870, P = 8.7 × 10-11 and 7.7 × 10-4 in the discovery and replication steps, respectively] and chromosome 22q11.23 (lead SNP rs7284877, P = 3.3 × 10-8 and 1.4 × 10-3 in the discovery and replication steps, respectively), while confirming two previously identified DCM loci on chromosomes 10 and 1, BAG3 and HSPB7. A genetic risk score constructed from the number of risk alleles at these four DCM loci revealed a 3-fold increased risk of DCM for individuals with 8 risk alleles compared to individuals with 5 risk alleles (median of the referral population). In silico annotation and functional 4C-sequencing analyses on iPSC-derived cardiomyocytes identify SLC6A6 as the most likely DCM gene at the 3p25.1 locus. This gene encodes a taurine transporter whose involvement in myocardial dysfunction and DCM is supported by numerous observations in humans and animals. At the 22q11.23 locus, in silico and data mining annotations, and to a lesser extent functional analysis, strongly suggest SMARCB1 as the candidate culprit gene.

Conclusion: This study provides a better understanding of the genetic architecture of DCM and sheds light on novel biological pathways underlying heart failure.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/eurheartj/ehab030DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8139853PMC
May 2021

Genetic Determinants of Electrocardiographic P-Wave Duration and Relation to Atrial Fibrillation.

Circ Genom Precis Med 2020 10 21;13(5):387-395. Epub 2020 Aug 21.

DZHK (German Center for Cardiovascular Research), partner site Greifswald, Germany (A.T., U.V., M.D., S.B.F.).

Background: The P-wave duration (PWD) is an electrocardiographic measurement that represents cardiac conduction in the atria. Shortened or prolonged PWD is associated with atrial fibrillation (AF). We used exome-chip data to examine the associations between common and rare variants with PWD.

Methods: Fifteen studies comprising 64 440 individuals (56 943 European, 5681 African, 1186 Hispanic, 630 Asian) and ≈230 000 variants were used to examine associations with maximum PWD across the 12-lead ECG. Meta-analyses summarized association results for common variants; gene-based burden and sequence kernel association tests examined low-frequency variant-PWD associations. Additionally, we examined the associations between PWD loci and AF using previous AF genome-wide association studies.

Results: We identified 21 common and low-frequency genetic loci (14 novel) associated with maximum PWD, including several AF loci (, , , , , , , ). The top variants at known sarcomere genes () were associated with longer PWD and increased AF risk. However, top variants at other loci (eg, and ) were associated with longer PWD but lower AF risk.

Conclusions: Our results highlight multiple novel genetic loci associated with PWD, and underscore the shared mechanisms of atrial conduction and AF. Prolonged PWD may be an endophenotype for several different genetic mechanisms of AF.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCGEN.119.002874DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7578098PMC
October 2020

Pharmacogenomics in kidney transplant recipients and potential for integration into practice.

J Clin Pharm Ther 2020 Dec 14;45(6):1457-1465. Epub 2020 Jul 14.

Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA.

What Is Known And Objective: Pharmacogenomic biomarkers are now used in many clinical care settings and represent one of the successes of precision medicine. Genetic variants are associated with pharmacokinetic and pharmacodynamic changes leading to medication adverse effects and changes in clinical response. Actionable pharmacogenomic variants are common in transplant recipients and have implications for medications used in transplant, but yet are not broadly incorporated into practice.

Methods: From the Clinical Pharmacogenetics Implementation Consortium and Dutch Pharmacogenetics Working Group guidelines, and PharmGKB databases, 12 pharmacogenomic genes with 30 variants were selected and used to create diplotypes and actionable pharmacogenomic phenotypes. A total of 853 kidney allograft recipients who had genomic information available from a genome-wide association study were included.

Results: Each recipient had at least one actionable pharmacogenomic diplotype/phenotype, whereas the majority (58%) had three or four actionable diplotypes/phenotypes and 17.4% had five or more among the 12 genes. The participants carried actionable diplotypes/phenotypes for multiple medications, including tacrolimus, azathioprine, clopidogrel, warfarin, simvastatin, voriconazole, antidepressants and proton-pump inhibitors.

What Is New And Conclusion: Pharmacogenomic variants are common in transplant recipients, and transplant recipients receive medications that have actionable variants.

Clinical Trial: Genomics of Transplantation, clinicaltrials.gov (NCT01714440).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/jcpt.13223DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7719579PMC
December 2020

Association of Factor V Leiden With Subsequent Atherothrombotic Events: A GENIUS-CHD Study of Individual Participant Data.

Circulation 2020 08 13;142(6):546-555. Epub 2020 Jul 13.

Department of Cardiology, Division Heart and Lungs (V.T., A.F.S., J.v.S., A.O.K., F.W.A.), UMC Utrecht, Utrecht University, the Netherlands.

Background: Studies examining the role of factor V Leiden among patients at higher risk of atherothrombotic events, such as those with established coronary heart disease (CHD), are lacking. Given that coagulation is involved in the thrombus formation stage on atherosclerotic plaque rupture, we hypothesized that factor V Leiden may be a stronger risk factor for atherothrombotic events in patients with established CHD.

Methods: We performed an individual-level meta-analysis including 25 prospective studies (18 cohorts, 3 case-cohorts, 4 randomized trials) from the GENIUS-CHD (Genetics of Subsequent Coronary Heart Disease) consortium involving patients with established CHD at baseline. Participating studies genotyped factor V Leiden status and shared risk estimates for the outcomes of interest using a centrally developed statistical code with harmonized definitions across studies. Cox proportional hazards regression models were used to obtain age- and sex-adjusted estimates. The obtained estimates were pooled using fixed-effect meta-analysis. The primary outcome was composite of myocardial infarction and CHD death. Secondary outcomes included any stroke, ischemic stroke, coronary revascularization, cardiovascular mortality, and all-cause mortality.

Results: The studies included 69 681 individuals of whom 3190 (4.6%) were either heterozygous or homozygous (n=47) carriers of factor V Leiden. Median follow-up per study ranged from 1.0 to 10.6 years. A total of 20 studies with 61 147 participants and 6849 events contributed to analyses of the primary outcome. Factor V Leiden was not associated with the combined outcome of myocardial infarction and CHD death (hazard ratio, 1.03 [95% CI, 0.92-1.16]; =28%; -heterogeneity=0.12). Subgroup analysis according to baseline characteristics or strata of traditional cardiovascular risk factors did not show relevant differences. Similarly, risk estimates for the secondary outcomes including stroke, coronary revascularization, cardiovascular mortality, and all-cause mortality were also close to identity.

Conclusions: Factor V Leiden was not associated with increased risk of subsequent atherothrombotic events and mortality in high-risk participants with established and treated CHD. Routine assessment of factor V Leiden status is unlikely to improve atherothrombotic events risk stratification in this population.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCULATIONAHA.119.045526DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7493828PMC
August 2020

Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure.

Nat Commun 2020 01 9;11(1):163. Epub 2020 Jan 9.

Department of Biostatistics, University of Liverpool, Liverpool, UK.

Heart failure (HF) is a leading cause of morbidity and mortality worldwide. A small proportion of HF cases are attributable to monogenic cardiomyopathies and existing genome-wide association studies (GWAS) have yielded only limited insights, leaving the observed heritability of HF largely unexplained. We report results from a GWAS meta-analysis of HF comprising 47,309 cases and 930,014 controls. Twelve independent variants at 11 genomic loci are associated with HF, all of which demonstrate one or more associations with coronary artery disease (CAD), atrial fibrillation, or reduced left ventricular function, suggesting shared genetic aetiology. Functional analysis of non-CAD-associated loci implicate genes involved in cardiac development (MYOZ1, SYNPO2L), protein homoeostasis (BAG3), and cellular senescence (CDKN1A). Mendelian randomisation analysis supports causal roles for several HF risk factors, and demonstrates CAD-independent effects for atrial fibrillation, body mass index, and hypertension. These findings extend our knowledge of the pathways underlying HF and may inform new therapeutic strategies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-019-13690-5DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6952380PMC
January 2020

Polygenic Susceptibility of Aortic Aneurysms Associates to the Diameter of the Aneurysm Sac: the Aneurysm-Express Biobank Cohort.

Sci Rep 2019 12 27;9(1):19844. Epub 2019 Dec 27.

Laboratory of Clinical Chemistry and Hematology, Division Laboratories, Pharmacy, and Biomedical genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.

Recent genome-wide association studies (GWAS) have discovered ten genetic risk variants for abdominal aortic aneurysms (AAA). To what extent these genetic variants contribute to the pathology of aneurysms is yet unknown. The present study aims to investigate whether genetic risk variants are associated with three clinical features: diameter of aneurysm sac, type of artery and aneurysm related-symptoms in aortic and peripheral aneurysm patients. Aneurysm tissue of 415 patients included in the Aneurysm-Express biobank was used. A best-fit polygenic risk score (PRS) based on previous GWAS effect estimates was modeled for each clinical phenotype. The best-fit PRS (including 272 variants at P = 0.01015) showed a significant correlation with aneurysm diameter (R = 0.019, p = 0.001). No polygenic association was found with clinical symptoms or artery type. In addition, the ten genome-wide significant risk variants for AAA were tested individually, but no associations were observed with any of the clinical phenotypes. All models were corrected for confounders and data was normalized. In conclusion, a weighted PRS of AAA susceptibility explained 1.9% of the phenotypic variation (p = 0.001) in diameter in aneurysm patients. Given our limited sample size, future biobank collaborations need to confirm a potential causal role of susceptibility variants on aneurysmal disease initiation and progression.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-019-56230-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6934821PMC
December 2019

Genome-Wide Study Updates in the International Genetics and Translational Research in Transplantation Network (iGeneTRAiN).

Front Genet 2019 15;10:1084. Epub 2019 Nov 15.

Division of Transplantation Department of Surgery, University of Pennsylvania, Philadelphia, PA, United States.

The prevalence of end-stage renal disease (ESRD) and the number of kidney transplants performed continues to rise every year, straining the procurement of deceased and living kidney allografts and health systems. Genome-wide genotyping and sequencing of diseased populations have uncovered genetic contributors in substantial proportions of ESRD patients. A number of these discoveries are beginning to be utilized in risk stratification and clinical management of patients. Specifically, genetics can provide insight into the primary cause of chronic kidney disease (CKD), the risk of progression to ESRD, and post-transplant outcomes, including various forms of allograft rejection. The International Genetics & Translational Research in Transplantation Network (iGeneTRAiN), is a multi-site consortium that encompasses >45 genetic studies with genome-wide genotyping from over 51,000 transplant samples, including genome-wide data from >30 kidney transplant cohorts (n = 28,015). iGeneTRAiN is statistically powered to capture both rare and common genetic contributions to ESRD and post-transplant outcomes. The primary cause of ESRD is often difficult to ascertain, especially where formal biopsy diagnosis is not performed, and is unavailable in ∼2% to >20% of kidney transplant recipients in iGeneTRAiN studies. We overview our current copy number variant (CNV) screening approaches from genome-wide genotyping datasets in iGeneTRAiN, in attempts to discover and validate genetic contributors to CKD and ESRD. Greater aggregation and analyses of well phenotyped patients with genome-wide datasets will undoubtedly yield insights into the underlying pathophysiological mechanisms of CKD, leading the way to improved diagnostic precision in nephrology.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fgene.2019.01084DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6873800PMC
November 2019

Exome-chip association analysis of intracranial aneurysms.

Neurology 2020 02 15;94(5):e481-e488. Epub 2019 Nov 15.

From the Department of Neurology and Neurosurgery (F.N.G.v.H., G.J.E.R., Y.M.R.), Brain Center Rudolf Magnus, Department of Cardiology (J.v.S.), Department of Medical Genetics (P.I.W.d.B.), Centre for Molecular Medicine, and Department of Epidemiology (M.L.B., I.V., P.I.W.d.B.), Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, the Netherlands; Department of Medical and Molecular Genetics (D.L., T.F.), Indiana University School of Medicine, Indianapolis; and Department of Neurology and Rehabilitation Medicine (J.B., D.W.), University of Cincinnati School of Medicine, OH.

Objective: To investigate to what extent low-frequency genetic variants (with minor allele frequencies <5%) affect the risk of intracranial aneurysms (IAs).

Methods: One thousand fifty-six patients with IA and 2,097 population-based controls from the Netherlands were genotyped with the Illumina HumanExome BeadChip. After quality control (QC) of samples and single nucleotide variants (SNVs), we conducted a single variant analysis using the Fisher exact test. We also performed the variable threshold (VT) test and the sequence kernel association test (SKAT) at different minor allele count (MAC) thresholds of >5 and >0 to test the hypothesis that multiple variants within the same gene are associated with IA risk. Significant results were tested in a replication cohort of 425 patients with IA and 311 controls, and results of the 2 cohorts were combined in a meta-analysis.

Results: After QC, 995 patients with IA and 2,080 controls remained for further analysis. The single variant analysis comprising 46,534 SNVs did not identify significant loci at the genome-wide level. The gene-based tests showed a statistically significant association for fibulin 2 () (best = 1 × 10 for the VT test, MAC >5). Associations were not statistically significant in the independent but smaller replication cohort ( > 0.57) but became slightly stronger in a meta-analysis of the 2 cohorts (best = 4.8 × 10 for the SKAT, MAC ≥1).

Conclusion: Gene-based tests indicated an association for , a gene encoding an extracellular matrix protein implicated in vascular wall remodeling, but independent validation in larger cohorts is warranted. We did not identify any significant associations for single low-frequency genetic variants.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1212/WNL.0000000000008665DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7080288PMC
February 2020

Associations of autozygosity with a broad range of human phenotypes.

Nat Commun 2019 10 31;10(1):4957. Epub 2019 Oct 31.

Department of Neurology, Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht University, Utrecht, 3584 CX, The Netherlands.

In many species, the offspring of related parents suffer reduced reproductive success, a phenomenon known as inbreeding depression. In humans, the importance of this effect has remained unclear, partly because reproduction between close relatives is both rare and frequently associated with confounding social factors. Here, using genomic inbreeding coefficients (F) for >1.4 million individuals, we show that F is significantly associated (p < 0.0005) with apparently deleterious changes in 32 out of 100 traits analysed. These changes are associated with runs of homozygosity (ROH), but not with common variant homozygosity, suggesting that genetic variants associated with inbreeding depression are predominantly rare. The effect on fertility is striking: F equivalent to the offspring of first cousins is associated with a 55% decrease [95% CI 44-66%] in the odds of having children. Finally, the effects of F are confirmed within full-sibling pairs, where the variation in F is independent of all environmental confounding.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-019-12283-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6823371PMC
October 2019

Sequence variants with large effects on cardiac electrophysiology and disease.

Nat Commun 2019 10 22;10(1):4803. Epub 2019 Oct 22.

deCODE genetics/Amgen Inc., Reykjavik, Iceland.

Features of the QRS complex of the electrocardiogram, reflecting ventricular depolarisation, associate with various physiologic functions and several pathologic conditions. We test 32.5 million variants for association with ten measures of the QRS complex in 12 leads, using 405,732 electrocardiograms from 81,192 Icelanders. We identify 190 associations at 130 loci, the majority of which have not been reported before, including associations with 21 rare or low-frequency coding variants. Assessment of genes expressed in the heart yields an additional 13 rare QRS coding variants at 12 loci. We find 51 unreported associations between the QRS variants and echocardiographic traits and cardiovascular diseases, including atrial fibrillation, complete AV block, heart failure and supraventricular tachycardia. We demonstrate the advantage of in-depth analysis of the QRS complex in conjunction with other cardiovascular phenotypes to enhance our understanding of the genetic basis of myocardial mass, cardiac conduction and disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-019-12682-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6805929PMC
October 2019

A Single Nucleotide C3 Polymorphism Associates With Clinical Outcome After Lung Transplantation.

Front Immunol 2019 26;10:2245. Epub 2019 Sep 26.

Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands.

Development of chronic rejection is still a severe problem and causes high mortality rates after lung transplantation (LTx). Complement activation is important in the development of acute rejection (AR) and bronchiolitis obliterans syndrome, with C3 as a key complement factor. We investigated a single nucleotide polymorphism (SNP) in the C3 gene (rs2230199) in relation to long-term outcome after LTx in 144 patient-donor pairs. In addition, we looked at local production of donor C3 by analyzing bronchoalveolar lavage fluid (BALF) of 6 LTx patients using isoelectric focusing (IEF). We demonstrated the presence of C3 in BALF and showed that this is produced by the donor lung based on the genotype of SNP rs2230199. We also analyzed donor and patient SNP configurations and observed a significant association between the SNP configuration in patients and episodes of AR during 4-years follow-up. Survival analysis showed a lower AR-free survival in homozygous C3 slow patients ( = 0.005). Furthermore, we found a significant association between the SNP configuration in donors and BOS development. Patients receiving a graft from a donor with at least one C3 fast variant for rs2230199 had an inferior BOS-free survival ( = 0.044). In conclusion, our data indicate local C3 production by donor lung cells. In addition, a single C3 SNP present in recipients affects short-term outcome after LTx, while this SNP in donors has an opposite effect on long-term outcome after LTx. These results could contribute to an improved risk stratification after transplantation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fimmu.2019.02245DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6775212PMC
October 2020

Allele-specific NKX2-5 binding underlies multiple genetic associations with human electrocardiographic traits.

Nat Genet 2019 10 30;51(10):1506-1517. Epub 2019 Sep 30.

Department of Pediatrics, Rady Children's Hospital, Division of Genome Information Sciences, University of California, San Diego, La Jolla, CA, USA.

The cardiac transcription factor (TF) gene NKX2-5 has been associated with electrocardiographic (EKG) traits through genome-wide association studies (GWASs), but the extent to which differential binding of NKX2-5 at common regulatory variants contributes to these traits has not yet been studied. We analyzed transcriptomic and epigenomic data from induced pluripotent stem cell-derived cardiomyocytes from seven related individuals, and identified ~2,000 single-nucleotide variants associated with allele-specific effects (ASE-SNVs) on NKX2-5 binding. NKX2-5 ASE-SNVs were enriched for altered TF motifs, for heart-specific expression quantitative trait loci and for EKG GWAS signals. Using fine-mapping combined with epigenomic data from induced pluripotent stem cell-derived cardiomyocytes, we prioritized candidate causal variants for EKG traits, many of which were NKX2-5 ASE-SNVs. Experimentally characterizing two NKX2-5 ASE-SNVs (rs3807989 and rs590041) showed that they modulate the expression of target genes via differential protein binding in cardiac cells, indicating that they are functional variants underlying EKG GWAS signals. Our results show that differential NKX2-5 binding at numerous regulatory variants across the genome contributes to EKG phenotypes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-019-0499-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6858543PMC
October 2019

A comparison of two workflows for regulome and transcriptome-based prioritization of genetic variants associated with myocardial mass.

Genet Epidemiol 2019 09 30;43(6):717-726. Epub 2019 May 30.

Department of Biostatistics, Epidemiology, & Informatics, University of Pennsylvania, Philadelphia, Pennsylvania.

A typical task arising from main effect analyses in a Genome Wide Association Study (GWAS) is to identify single nucleotide polymorphisms (SNPs), in linkage disequilibrium with the observed signals, that are likely causal variants and the affected genes. The affected genes may not be those closest to associating SNPs. Functional genomics data from relevant tissues are believed to be helpful in selecting likely causal SNPs and interpreting implicated biological mechanisms, ultimately facilitating prevention and treatment in the case of a disease trait. These data are typically used post GWAS analyses to fine-map the statistically significant signals identified agnostically by testing all SNPs and applying a multiple testing correction. The number of tested SNPs is typically in the millions, so the multiple testing burden is high. Motivated by this, in this study we investigated an alternative workflow, which consists in utilizing the available functional genomics data as a first step to reduce the number of SNPs tested for association. We analyzed GWAS on electrocardiographic QRS duration using these two workflows. The alternative workflow identified more SNPs, including some residing in loci not discovered with the typical workflow. Moreover, the latter are corroborated by other reports on QRS duration. This indicates the potential value of incorporating functional genomics information at the onset in GWAS analyses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/gepi.22215DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6687530PMC
September 2019

Tacrolimus troughs and genetic determinants of metabolism in kidney transplant recipients: A comparison of four ancestry groups.

Am J Transplant 2019 10 13;19(10):2795-2804. Epub 2019 May 13.

Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota.

Tacrolimus trough and dose requirements vary dramatically between individuals of European and African American ancestry. These differences are less well described in other populations. We conducted an observational, prospective, multicenter study from which 2595 kidney transplant recipients of European, African, Native American, and Asian ancestry were studied for tacrolimus trough, doses, and genetic determinants of metabolism. We studied the well-known variants and conducted a CYP3A4/5 gene-wide analysis to identify new variants. Daily doses, and dose-normalized troughs were significantly different between the four groups (P < .001). CYP3A5*3 (rs776746) was associated with higher dose-normalized tacrolimus troughs in all groups but occurred at different allele frequencies and had differing effect sizes. The CYP3A5*6 (rs10264272) and *7 (rs413003343) variants were only present in African Americans. CYP3A4*22 (rs35599367) was not found in any of the Asian ancestry samples. We identified seven suggestive variants in the CYP3A4/5 genes associated with dose-normalized troughs in Native Americans (P = 1.1 × 10 -8.8 × 10 ) and one suggestive variant in Asian Americans (P = 5.6 × 10 ). Tacrolimus daily doses and dose-normalized troughs vary significantly among different ancestry groups. We identified potential new variants important in Asians and Native Americans. Studies with larger populations should be conducted to assess the importance of the identified suggestive variants.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/ajt.15385DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6763344PMC
October 2019

The impact of donor and recipient common clinical and genetic variation on estimated glomerular filtration rate in a European renal transplant population.

Am J Transplant 2019 08 28;19(8):2262-2273. Epub 2019 Mar 28.

Department of Surgery, University of Minnesota, Minneapolis, Minnesota.

Genetic variation across the human leukocyte antigen loci is known to influence renal-transplant outcome. However, the impact of genetic variation beyond the human leukocyte antigen loci is less clear. We tested the association of common genetic variation and clinical characteristics, from both the donor and recipient, with posttransplant eGFR at different time-points, out to 5 years posttransplantation. We conducted GWAS meta-analyses across 10 844 donors and recipients from five European ancestry cohorts. We also analyzed the impact of polygenic risk scores (PRS), calculated using genetic variants associated with nontransplant eGFR, on posttransplant eGFR. PRS calculated using the recipient genotype alone, as well as combined donor and recipient genotypes were significantly associated with eGFR at 1-year posttransplant. Thirty-two percent of the variability in eGFR at 1-year posttransplant was explained by our model containing clinical covariates (including weights for death/graft-failure), principal components and combined donor-recipient PRS, with 0.3% contributed by the PRS. No individual genetic variant was significantly associated with eGFR posttransplant in the GWAS. This is the first study to examine PRS, composed of variants that impact kidney function in the general population, in a posttransplant context. Despite PRS being a significant predictor of eGFR posttransplant, the effect size of common genetic factors is limited compared to clinical variables.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/ajt.15326DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6989089PMC
August 2019

Association of Chromosome 9p21 With Subsequent Coronary Heart Disease Events.

Circ Genom Precis Med 2019 04 21;12(4):e002471. Epub 2019 Mar 21.

Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital (M.H.).

Background: Genetic variation at chromosome 9p21 is a recognized risk factor for coronary heart disease (CHD). However, its effect on disease progression and subsequent events is unclear, raising questions about its value for stratification of residual risk.

Methods: A variant at chromosome 9p21 (rs1333049) was tested for association with subsequent events during follow-up in 103 357 Europeans with established CHD at baseline from the GENIUS-CHD (Genetics of Subsequent Coronary Heart Disease) Consortium (73.1% male, mean age 62.9 years). The primary outcome, subsequent CHD death or myocardial infarction (CHD death/myocardial infarction), occurred in 13 040 of the 93 115 participants with available outcome data. Effect estimates were compared with case/control risk obtained from the CARDIoGRAMplusC4D consortium (Coronary Artery Disease Genome-wide Replication and Meta-analysis [CARDIoGRAM] plus The Coronary Artery Disease [C4D] Genetics) including 47 222 CHD cases and 122 264 controls free of CHD.

Results: Meta-analyses revealed no significant association between chromosome 9p21 and the primary outcome of CHD death/myocardial infarction among those with established CHD at baseline (GENIUS-CHD odds ratio, 1.02; 95% CI, 0.99-1.05). This contrasted with a strong association in CARDIoGRAMPlusC4D odds ratio 1.20; 95% CI, 1.18-1.22; P for interaction <0.001 compared with the GENIUS-CHD estimate. Similarly, no clear associations were identified for additional subsequent outcomes, including all-cause death, although we found a modest positive association between chromosome 9p21 and subsequent revascularization (odds ratio, 1.07; 95% CI, 1.04-1.09).

Conclusions: In contrast to studies comparing individuals with CHD to disease-free controls, we found no clear association between genetic variation at chromosome 9p21 and risk of subsequent acute CHD events when all individuals had CHD at baseline. However, the association with subsequent revascularization may support the postulated mechanism of chromosome 9p21 for promoting atheroma development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCGEN.119.002471DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6625876PMC
April 2019

Subsequent Event Risk in Individuals With Established Coronary Heart Disease.

Circ Genom Precis Med 2019 04 21;12(4):e002470. Epub 2019 Mar 21.

Department of Pharmacotherapy and Translational Research, Centre for Pharmacogenomics (Y.G., R.M.C.-D., J.A.J.), University of Florida, Gainesville.

Background: The Genetics of Subsequent Coronary Heart Disease (GENIUS-CHD) consortium was established to facilitate discovery and validation of genetic variants and biomarkers for risk of subsequent CHD events, in individuals with established CHD.

Methods: The consortium currently includes 57 studies from 18 countries, recruiting 185 614 participants with either acute coronary syndrome, stable CHD, or a mixture of both at baseline. All studies collected biological samples and followed-up study participants prospectively for subsequent events.

Results: Enrollment into the individual studies took place between 1985 to present day with a duration of follow-up ranging from 9 months to 15 years. Within each study, participants with CHD are predominantly of self-reported European descent (38%-100%), mostly male (44%-91%) with mean ages at recruitment ranging from 40 to 75 years. Initial feasibility analyses, using a federated analysis approach, yielded expected associations between age (hazard ratio, 1.15; 95% CI, 1.14-1.16) per 5-year increase, male sex (hazard ratio, 1.17; 95% CI, 1.13-1.21) and smoking (hazard ratio, 1.43; 95% CI, 1.35-1.51) with risk of subsequent CHD death or myocardial infarction and differing associations with other individual and composite cardiovascular endpoints.

Conclusions: GENIUS-CHD is a global collaboration seeking to elucidate genetic and nongenetic determinants of subsequent event risk in individuals with established CHD, to improve residual risk prediction and identify novel drug targets for secondary prevention. Initial analyses demonstrate the feasibility and reliability of a federated analysis approach. The consortium now plans to initiate and test novel hypotheses as well as supporting replication and validation analyses for other investigators.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCGEN.119.002470DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6629546PMC
April 2019

Non-HLA Genetic Factors and Their Influence on Heart Transplant Outcomes: A Systematic Review.

Transplant Direct 2019 Feb 21;5(2):e422. Epub 2019 Jan 21.

Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands.

Background: Improvement of immunosuppressive therapies and surgical techniques has increased the survival rate after heart transplantation. Nevertheless, a large number of patients still experience complications, such as allograft rejection, vasculopathy, kidney dysfunction, and diabetes in response to immunosuppressive therapy. Variants in HLA genes have been extensively studied for their role in clinical outcomes after transplantation, whereas the knowledge about non-HLA genetic variants in this setting is still limited. Non-HLA polymorphisms are involved in the metabolism of major immunosuppressive therapeutics and may play a role in clinical outcomes after cardiac transplantation. This systematic review summarizes the existing knowledge of associations between non-HLA genetic variation and heart transplant outcomes.

Methods: The current evidence available on genetic polymorphisms associated with outcomes after heart transplantation was identified by a systematic search in PubMed and Embase. Studies reporting on polymorphisms significantly associated with clinical outcomes after cardiac transplantation were included.

Results: A total of 56 studies were included, all were candidate gene studies. These studies identified 58 polymorphisms in 36 genes that were associated with outcomes after cardiac transplantation. Variants in , and are consistently replicated across multiple studies for various transplant outcomes.

Conclusions: The research currently available supports the hypothesis that non-HLA polymorphisms are associated with clinical outcomes after heart transplantation. However, many genetic variants were only identified in a single study, questioning their true effect on the clinical outcomes tested. Further research in larger cohorts with well-defined phenotypes is warranted.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/TXD.0000000000000859DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6415970PMC
February 2019

Genetic Variants Associated With Immunosuppressant Pharmacokinetics and Adverse Effects in the DeKAF Genomics Genome-wide Association Studies.

Transplantation 2019 06;103(6):1131-1139

Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN.

Background: The immunosuppressants tacrolimus and mycophenolate are important components to the success of organ transplantation, but are also associated with adverse effects, such as nephrotoxicity, anemia, leukopenia, and new-onset diabetes after transplantation. In this report, we attempted to identify genetic variants which are associated with these adverse outcomes.

Methods: We performed a genome-wide association study, using a genotyping array tailored specifically for transplantation outcomes containing 722 147 single nucleotide polymorphisms, and 2 cohorts of kidney allograft recipients-a discovery cohort and a confirmation cohort-to identify and then confirm genetic variants associated with immunosuppressant pharmacokinetics and adverse outcomes.

Results: Several genetic variants were found to be associated with tacrolimus trough concentrations. We did not confirm variants associated with the other phenotypes tested although several suggestive variants were identified.

Conclusions: These results show that adverse effects associated with tacrolimus and mycophenolate are complex, and recipient risk is not determined by a few genetic variants with large effects with but most likely are due to many variants, each with small effect sizes, and clinical factors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/TP.0000000000002625DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6597284PMC
June 2019

Contribution of non-HLA incompatibility between donor and recipient to kidney allograft survival: genome-wide analysis in a prospective cohort.

Lancet 2019 03 14;393(10174):910-917. Epub 2019 Feb 14.

Department of Nephrology, Medical University of Vienna, Vienna, Austria. Electronic address:

Background: The introduction of HLA matching of donors and recipients was a breakthrough in kidney transplantation. However, half of all transplanted kidneys still fail within 15 years after transplantation. Epidemiological data suggest a fundamental role of non-HLA alloimmunity.

Methods: We genotyped 477 pairs of deceased donors and first kidney transplant recipients with stable graft function at three months that were transplanted between Dec 1, 2005, and April 30, 2015. Genome-wide genetic mismatches in non-synonymous single nucleotide polymorphisms (nsSNPs) were calculated to identify incompatibilities in transmembrane and secreted proteins. We estimated the association between nsSNP mismatch and graft loss in a Cox proportional hazard model, adjusting for HLA mismatch and clinical covariates. Customised peptide arrays were generated to screen for antibodies against genotype-derived mismatched epitopes in 25 patients with biopsy-confirmed chronic antibody-mediated rejection.

Findings: 59 268 nsSNPs affecting a transmembrane or secreted protein were analysed. The median number of nsSNP mismatches in immune-accessible transmembrane and secreted proteins between donors and recipients was 1892 (IQR 1850-1936). The degree of nsSNP mismatch was independently associated with graft loss in a multivariable model adjusted for HLA eplet mismatch (HLA-A, HLA-B, HLA-C, HLA-DP, HLA-DQ, and HLA-DR). Each increase by a unit of one IQR had an HR of 1·68 (95% CI 1·17-2·41, p=0·005). 5-year death censored graft survival was 98% in the quartile with the lowest mismatch, 91% in the second quartile, 89% in the third quartile, and 82% in the highest quartile (p=0·003, log-rank test). Customised peptide arrays verified a donor-specific alloimmune response to genetically predicted mismatched epitopes.

Interpretation: Genetic mismatch of non-HLA haplotypes coding for transmembrane or secreted proteins is associated with an increased risk of functional graft loss independently of HLA incompatibility. As in HLA alloimmunity, donor-specific alloantibodies can be identified against genotype derived non-HLA epitopes.

Funding: Austrian Science Fund, WWTF (Vienna Science and Technology Fund), and Ministry of Health of the Czech Republic.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/S0140-6736(18)32473-5DOI Listing
March 2019

The Autoimmune-Associated Single Nucleotide Polymorphism Within Correlates With Clinical Outcome After Lung Transplantation.

Front Immunol 2018 17;9:3105. Epub 2019 Jan 17.

Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands.

Obstructive chronic lung allograft dysfunction (BOS) is the major limiting factor for lung transplantation (LTx) outcome. is described as the hallmark autoimmunity gene, and one specific single nucleotide polymorphism (SNP), rs2476601, is associated with multiple autoimmune diseases, impaired T cell regulation, and autoantibody formation. Taking into consideration the contribution of autoimmunity to LTx outcome, we hypothesized that polymorphisms in the gene could be associated with BOS incidence. We selected six SNPs within and analyzed both patient and donor genotypes on BOS development post-LTx. A total of 144 patients and matched donors were included, and individual SNPs and haplotype configurations were analyzed. We found a significant association between patients carrying the heterozygous configuration of rs2476601 and a higher risk for BOS development ( = 0.005, OR: 4.400, 95%CI: 1.563-12.390). Kaplan-Meier analysis showed that heterozygous patients exhibit a lower BOS-free survival compared to patients homozygous for rs2476601 ( = 0.0047). One haplotype, which solely contained the heterozygous risk variant, was associated with BOS development ( = 0.015, OR: 7.029, 95%CI: 1.352-36.543). Our results show that LTx patients heterozygous for rs2476601 are more susceptible for BOS development and indicate a deleterious effect of the autoimmune-related risk factor of in patients on LTx outcome.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fimmu.2018.03105DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6344400PMC
October 2019

Integrative Functional Annotation of 52 Genetic Loci Influencing Myocardial Mass Identifies Candidate Regulatory Variants and Target Genes.

Circ Genom Precis Med 2019 02;12(2):e002328

Department of Cardiology (D.H., M.H., J.v.S., V.T., F.W.A.), UMC Utrecht, Utrecht University, The Netherlands.

Background: Regulatory elements may be involved in the mechanisms by which 52 loci influence myocardial mass, reflected by abnormal amplitude and duration of the QRS complex on the ECG. Functional annotation thus far did not take into account how these elements are affected in disease context.

Methods: We generated maps of regulatory elements on hypertrophic cardiomyopathy patients (ChIP-seq N=14 and RNA-seq N=11) and nondiseased hearts (ChIP-seq N=4 and RNA-seq N=11). We tested enrichment of QRS-associated loci on elements differentially acetylated and directly regulating differentially expressed genes between hypertrophic cardiomyopathy patients and controls. We further performed functional annotation on QRS-associated loci using these maps of differentially active regulatory elements.

Results: Regions differentially affected in disease showed a stronger enrichment ( P=8.6×10) for QRS-associated variants than those not showing differential activity ( P=0.01). Promoters of genes differentially regulated between hypertrophic cardiomyopathy patients and controls showed more enrichment ( P=0.001) than differentially acetylated enhancers ( P=0.8) and super-enhancers ( P=0.025). We also identified 74 potential causal variants overlapping these differential regulatory elements. Eighteen of the genes mapped confirmed previous findings, now also pinpointing the potentially affected regulatory elements and candidate causal variants. Fourteen new genes were also mapped.

Conclusions: Our results suggest differentially active regulatory elements between hypertrophic cardiomyopathy patients and controls can offer more insights into the mechanisms of QRS-associated loci than elements not affected by disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCGEN.118.002328DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6380958PMC
February 2019

Genome-wide association meta-analysis of 30,000 samples identifies seven novel loci for quantitative ECG traits.

Eur J Hum Genet 2019 06 24;27(6):952-962. Epub 2019 Jan 24.

Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital-The Capital Region, Copenhagen, Denmark.

Genome-wide association studies (GWAS) of quantitative electrocardiographic (ECG) traits in large consortia have identified more than 130 loci associated with QT interval, QRS duration, PR interval, and heart rate (RR interval). In the current study, we meta-analyzed genome-wide association results from 30,000 mostly Dutch samples on four ECG traits: PR interval, QRS duration, QT interval, and RR interval. SNP genotype data was imputed using the Genome of the Netherlands reference panel encompassing 19 million SNPs, including millions of rare SNPs (minor allele frequency < 5%). In addition to many known loci, we identified seven novel locus-trait associations: KCND3, NR3C1, and PLN for PR interval, KCNE1, SGIP1, and NFKB1 for QT interval, and ATP2A2 for QRS duration, of which six were successfully replicated. At these seven loci, we performed conditional analyses and annotated significant SNPs (in exons and regulatory regions), demonstrating involvement of cardiac-related pathways and regulation of nearby genes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41431-018-0295-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6777533PMC
June 2019

Genetic Susceptibility Loci for Cardiovascular Disease and Their Impact on Atherosclerotic Plaques.

Circ Genom Precis Med 2018 09;11(9):e002115

Laboratory of Experimental Cardiology, Division Heart and Lungs, University Medical Center Utrecht, University Utrecht, The Netherlands (S.W.v.d.L., M.A.S., S.H., H.M.d.R., G.P.).

Background: Atherosclerosis is a chronic inflammatory disease in part caused by lipid uptake in the vascular wall, but the exact underlying mechanisms leading to acute myocardial infarction and stroke remain poorly understood. Large consortia identified genetic susceptibility loci that associate with large artery ischemic stroke and coronary artery disease. However, deciphering their underlying mechanisms are challenging. Histological studies identified destabilizing characteristics in human atherosclerotic plaques that associate with clinical outcome. To what extent established susceptibility loci for large artery ischemic stroke and coronary artery disease relate to plaque characteristics is thus far unknown but may point to novel mechanisms.

Methods: We studied the associations of 61 established cardiovascular risk loci with 7 histological plaque characteristics assessed in 1443 carotid plaque specimens from the Athero-Express Biobank Study. We also assessed if the genotyped cardiovascular risk loci impact the tissue-specific gene expression in 2 independent biobanks, Biobank of Karolinska Endarterectomy and Stockholm Atherosclerosis Gene Expression.

Results: A total of 21 established risk variants (out of 61) nominally associated to a plaque characteristic. One variant (rs12539895, risk allele A) at 7q22 associated to a reduction of intraplaque fat, P=5.09×10 after correction for multiple testing. We further characterized this 7q22 Locus and show tissue-specific effects of rs12539895 on HBP1 expression in plaques and COG5 expression in whole blood and provide data from public resources showing an association with decreased LDL (low-density lipoprotein) and increase HDL (high-density lipoprotein) in the blood.

Conclusions: Our study supports the view that cardiovascular susceptibility loci may exert their effect by influencing the atherosclerotic plaque characteristics.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCGEN.118.002115DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7664607PMC
September 2018

Functionally distinct ERAP1 and ERAP2 are a hallmark of HLA-A29-(Birdshot) Uveitis.

Hum Mol Genet 2018 12;27(24):4333-4343

Laboratory of Translational Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands.

Birdshot Uveitis (Birdshot) is a rare eye condition that affects HLA-A29-positive individuals and could be considered a prototypic member of the recently proposed 'MHC-I (major histocompatibility complex class I)-opathy' family. Genetic studies have pinpointed the endoplasmic reticulum aminopeptidase (ERAP1) and (ERAP2) genes as shared associations across MHC-I-opathies, which suggests ERAP dysfunction may be a root cause for MHC-I-opathies. We mapped the ERAP1 and ERAP2 haplotypes in 84 Dutch cases and 890 controls. We identified association at variant rs10044354, which mediated a marked increase in ERAP2 expression. We also identified and cloned an independently associated ERAP1 haplotype (tagged by rs2287987) present in more than half of the cases; this ERAP1 haplotype is also the primary risk and protective haplotype for other MHC-I-opathies. We show that the risk ERAP1 haplotype conferred significantly altered expression of ERAP1 isoforms in transcriptomic data (n = 360), resulting in lowered protein expression and distinct enzymatic activity. Both the association for rs10044354 (meta-analysis: odds ratio (OR) [95% CI]=2.07[1.58-2.71], P = 1.24 × 10(-7)) and rs2287987 (OR[95% CI]: =2.01[1.51-2.67], P = 1.41 × 10(-6)) replicated and showed consistent direction of effect in an independent Spanish cohort of 46 cases and 2103 controls. In both cohorts, the combined rs2287987-rs10044354 haplotype associated with Birdshot more strongly than either variant alone [meta-analysis: P=3.9 × 10(-9)]. Finally, we observed that ERAP2 protein expression is dependent on the ERAP1 background across three European populations (n = 3353). In conclusion, a functionally distinct combination of ERAP1 and ERAP2 are a hallmark of Birdshot and provide rationale for strategies designed to correct ERAP function for treatment of Birdshot and MHC-I-opathies more broadly.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddy319DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6276832PMC
December 2018

Polygenic risk score as a determinant of risk of non-melanoma skin cancer in a European-descent renal transplant cohort.

Am J Transplant 2019 03 5;19(3):801-810. Epub 2018 Sep 5.

Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland.

Renal transplant recipients have an increased risk of non-melanoma skin cancer (NMSC) compared to in the general population. Here, we show polygenic risk scores (PRS) calculated from genome-wide association studies (GWAS) of NMSC in a general, nontransplant setting, can predict risk of, and time to posttransplant skin cancer. Genetic variants, reaching predefined P-value thresholds were chosen from published squamous cell carcinoma (SCC) and basal cell carcinoma (BCC) nontransplant GWAS. Using these GWAS, BCC and SCC PRS were calculated for each sample across three European ancestry renal transplant cohorts (n = 889) and tested as predictors of case:control status and time to NMSC posttransplant. BCC PRS calculated at P-value threshold 1 × 10 was the most significant predictor of case:control status of NMSC posttransplant (OR = 1.61; adjusted P = .0022; AUC [full model adjusted for clinical predictors and PRS] = 0.81). SCC PRS at P-value threshold 1 × 10 was the most significant predictor of time to posttransplant NMSC (adjusted P = 9.39 × 10 ; HR = 1.41, concordance [full model] = 0.74). PRS of nontransplant NMSC is predictive of case:control status and time to NMSC posttransplant. These results are relevant to how genomics can risk stratify patients to help develop personalized treatment regimens.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/ajt.15057DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6367067PMC
March 2019
-->