Publications by authors named "Jerry J Hooker"

3 Publications

  • Page 1 of 1

Terrestrial cooling in Northern Europe during the eocene-oligocene transition.

Proc Natl Acad Sci U S A 2013 May 22;110(19):7562-7. Epub 2013 Apr 22.

Department of Chemistry and Center for Integrative Geoscience, University of Connecticut, Storrs, CT 06269, USA.

Geochemical and modeling studies suggest that the transition from the "greenhouse" state of the Late Eocene to the "icehouse" conditions of the Oligocene 34-33.5 Ma was triggered by a reduction of atmospheric pCO2 that enabled the rapid buildup of a permanent ice sheet on the Antarctic continent. Marine records show that the drop in pCO2 during this interval was accompanied by a significant decline in high-latitude sea surface and deep ocean temperature and enhanced seasonality in middle and high latitudes. However, terrestrial records of this climate transition show heterogeneous responses to changing pCO2 and ocean temperatures, with some records showing a significant time lag in the temperature response to declining pCO2. We measured the Δ47 of aragonite shells of the freshwater gastropod Viviparus lentus from the Solent Group, Hampshire Basin, United Kingdom, to reconstruct terrestrial temperature and hydrologic change in the North Atlantic region during the Eocene-Oligocene transition. Our data show a decrease in growing-season surface water temperatures (~10 °C) during the Eocene-Oligocene transition, corresponding to an average decrease in mean annual air temperature of ~4-6 °C from the Late Eocene to Early Oligocene. The magnitude of cooling is similar to observed decreases in North Atlantic sea surface temperature over this interval and occurs during major glacial expansion. This suggests a close linkage between atmospheric carbon dioxide concentrations, Northern Hemisphere temperature, and expansion of the Antarctic ice sheets.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1210930110DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3651463PMC
May 2013

Experimental determination of a Viviparus contectus thermometry equation.

Rapid Commun Mass Spectrom 2009 Sep;23(18):2939-51

School of Earth, Ocean & Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK.

Experimental measurements of the (18)O/(16)O isotope fractionation between the biogenic aragonite of Viviparus contectus (Gastropoda) and its host freshwater were undertaken to generate a species-specific thermometry equation. The temperature dependence of the fractionation factor and the relationship between Deltadelta(18)O (delta(18)O(carb.) - delta(18)O(water)) and temperature were calculated from specimens maintained under laboratory and field (collection and cage) conditions. The field specimens were grown (Somerset, UK) between August 2007 and August 2008, with water samples and temperature measurements taken monthly. Specimens grown in the laboratory experiment were maintained under constant temperatures (15 degrees C, 20 degrees C and 25 degrees C) with water samples collected weekly. Application of a linear regression to the datasets indicated that the gradients of all three experiments were within experimental error of each other (+/-2 times the standard error); therefore, a combined (laboratory and field data) correlation could be applied. The relationship between Deltadelta(18)O (delta(18)O(carb.) - delta(18)O(water)) and temperature (T) for this combined dataset is given by: T = - 7.43( + 0.87, - 1.13)*Deltadelta18O + 22.89(+/- 2.09) (T is in degrees C, delta(18)O(carb.) is with respect to Vienna Pee Dee Belemnite (VPDB) and delta(18)O(water) is with respect to Vienna Standard Mean Ocean Water (VSMOW). Quoted errors are 2 times standard error).Comparisons made with existing aragonitic thermometry equations reveal that the linear regression for the combined Viviparus contectus equation is within 2 times the standard error of previously reported aragonitic thermometry equations. This suggests there are no species-specific vital effects for Viviparus contectus. Seasonal delta(18)O(carb.) profiles from specimens retrieved from the field cage experiment indicate that during shell secretion the delta(18)O(carb.) of the shell carbonate is not influenced by size, sex or whether females contained eggs or juveniles.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/rcm.4203DOI Listing
September 2009

Increased terrestrial methane cycling at the Palaeocene-Eocene thermal maximum.

Nature 2007 Sep;449(7160):332-5

Organic Geochemistry Unit, Bristol Biogeochemistry Research Centre, School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.

The Palaeocene-Eocene thermal maximum (PETM), a period of intense, global warming about 55 million years ago, has been attributed to a rapid rise in greenhouse gas levels, with dissociation of methane hydrates being the most commonly invoked explanation. It has been suggested previously that high-latitude methane emissions from terrestrial environments could have enhanced the warming effect, but direct evidence for an increased methane flux from wetlands is lacking. The Cobham Lignite, a recently characterized expanded lacustrine/mire deposit in England, spans the onset of the PETM and therefore provides an opportunity to examine the biogeochemical response of wetland-type ecosystems at that time. Here we report the occurrence of hopanoids, biomarkers derived from bacteria, in the mire sediments from Cobham. We measure a decrease in the carbon isotope values of the hopanoids at the onset of the PETM interval, which suggests an increase in the methanotroph population. We propose that this reflects an increase in methane production potentially driven by changes to a warmer and wetter climate. Our data suggest that the release of methane from the terrestrial biosphere increased and possibly acted as a positive feedback mechanism to global warming.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature06012DOI Listing
September 2007