Publications by authors named "Jeremias Zubrzycki"

3 Publications

  • Page 1 of 1

Fine-scale genomic analyses of admixed individuals reveal unrecognized genetic ancestry components in Argentina.

PLoS One 2020 16;15(7):e0233808. Epub 2020 Jul 16.

Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.

Similarly to other populations across the Americas, Argentinean populations trace back their genetic ancestry into African, European and Native American ancestors, reflecting a complex demographic history with multiple migration and admixture events in pre- and post-colonial times. However, little is known about the sub-continental origins of these three main ancestries. We present new high-throughput genotyping data for 87 admixed individuals across Argentina. This data was combined to previously published data for admixed individuals in the region and then compared to different reference panels specifically built to perform population structure analyses at a sub-continental level. Concerning the Native American ancestry, we could identify four Native American components segregating in modern Argentinean populations. Three of them are also found in modern South American populations and are specifically represented in Central Andes, Central Chile/Patagonia, and Subtropical and Tropical Forests geographic areas. The fourth component might be specific to the Central Western region of Argentina, and it is not well represented in any genomic data from the literature. As for the European and African ancestries, we confirmed previous results about origins from Southern Europe, Western and Central Western Africa, and we provide evidences for the presence of Northern European and Eastern African ancestries.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0233808PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7365470PMC
September 2020

Main and epistatic QTL analyses for Sclerotinia Head Rot resistance in sunflower.

PLoS One 2017 20;12(12):e0189859. Epub 2017 Dec 20.

Instituto de Biotecnología, Centro de Investigaciones en Ciencias Agronómicas y Veterinarias, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires, Argentina.

Sclerotinia Head Rot (SHR), a disease caused by Sclerotinia sclerotiorum, is one of the most limiting factors in sunflower production. In this study, we identified genomic loci associated with resistance to SHR to support the development of assisted breeding strategies. We genotyped 114 Recombinant Inbred Lines (RILs) along with their parental lines (PAC2 -partially resistant-and RHA266 -susceptible-) by using a 384 single nucleotide polymorphism (SNP) Illumina Oligo Pool Assay to saturate a sunflower genetic map. Subsequently, we tested these lines for SHR resistance using assisted inoculations with S. sclerotiorum ascospores. We also conducted a randomized complete-block assays with three replicates to visually score disease incidence (DI), disease severity (DS), disease intensity (DInt) and incubation period (IP) through four field trials (2010-2014). We finally assessed main effect quantitative trait loci (M-QTLs) and epistatic QTLs (E-QTLs) by composite interval mapping (CIM) and mixed-model-based composite interval mapping (MCIM), respectively. As a result of this study, the improved map incorporates 61 new SNPs over candidate genes. We detected a broad range of narrow sense heritability (h2) values (1.86-59.9%) as well as 36 M-QTLs and 13 E-QTLs along 14 linkage groups (LGs). On LG1, LG10, and LG15, we repeatedly detected QTLs across field trials; which emphasizes their putative effectiveness against SHR. In all selected variables, most of the identified QTLs showed high determination coefficients, associated with moderate to high heritability values. Using markers shared with previous Sclerotinia resistance studies, we compared the QTL locations in LG1, LG2, LG8, LG10, LG11, LG15 and LG16. This study constitutes the largest report of QTLs for SHR resistance in sunflower. Further studies focusing on the regions in LG1, LG10, and LG15 harboring the detected QTLs are necessary to identify causal alleles and contribute to unraveling the complex genetic basis governing the resistance.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0189859PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5738076PMC
January 2018

Population structure and genetic diversity characterization of a sunflower association mapping population using SSR and SNP markers.

BMC Plant Biol 2015 Feb 13;15:52. Epub 2015 Feb 13.

Background: Argentina has a long tradition of sunflower breeding, and its germplasm is a valuable genetic resource worldwide. However, knowledge of the genetic constitution and variability levels of the Argentinean germplasm is still scarce, rendering the global map of cultivated sunflower diversity incomplete. In this study, 42 microsatellite loci and 384 single nucleotide polymorphisms (SNPs) were used to characterize the first association mapping population used for quantitative trait loci mapping in sunflower, along with a selection of allied open-pollinated and composite populations from the germplasm bank of the National Institute of Agricultural Technology of Argentina. The ability of different kinds of markers to assess genetic diversity and population structure was also evaluated.

Results: The analysis of polymorphism in the set of sunflower accessions studied here showed that both the microsatellites and SNP markers were informative for germplasm characterization, although to different extents. In general, the estimates of genetic variability were moderate. The average genetic diversity, as quantified by the expected heterozygosity, was 0.52 for SSR loci and 0.29 for SNPs. Within SSR markers, those derived from non-coding regions were able to capture higher levels of diversity than EST-SSR. A significant correlation was found between SSR and SNP- based genetic distances among accessions. Bayesian and multivariate methods were used to infer population structure. Evidence for the existence of three different genetic groups was found consistently across data sets (i.e., SSR, SNP and SSR + SNP), with the maintainer/restorer status being the most prevalent characteristic associated with group delimitation.

Conclusion: The present study constitutes the first report comparing the performance of SSR and SNP markers for population genetics analysis in cultivated sunflower. We show that the SSR and SNP panels examined here, either used separately or in conjunction, allowed consistent estimations of genetic diversity and population structure in sunflower breeding materials. The generated knowledge about the levels of diversity and population structure of sunflower germplasm is an important contribution to this crop breeding and conservation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12870-014-0360-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4351844PMC
February 2015