Publications by authors named "Jeong Been Park"

2 Publications

  • Page 1 of 1

Anti-obesity effects of yellow catfish protein hydrolysate on mice fed a 45% kcal high-fat diet.

Int J Mol Med 2017 Sep 10;40(3):784-800. Epub 2017 Jul 10.

Major in Food Biotechnology, Division of Bioindustry, College of Medical and Life Sciences, Silla University, Busan 46958, Republic of Korea.

Obesity contributes to the etiologies of a variety of comorbid conditions, such as type 2 diabetes, hypertension and cardiovascular disease. In the present study, the anti-obesity effects of yellow catfish protein hydrolysate (YPh) were observed in mice fed a 45% kcal high-fat diet (HFD) compared with those of mice treated with simvastatin. The HFD-fed control mice exhibited noticeable increase in body weight, and whole-body and abdominal fat densities, periovarian and abdominal wall-deposited fat pad weight, as well as in the levels of triglycerides (TG), blood total cholesterol (TC), low-density lipoprotein, alanine aminotransferase, aspartate aminotransferase, creatinine, blood urea nitrogen, and in the fecal TG and TC contents. However, they exhibited a decrease in serum high-density lipoprotein levels. In addition, an increase was detected in periovarian and dorsal abdominally deposited fat pad thickness, adipocyte hypertrophy, the number of steatohepatitis regions, hepatocyte hypertrophy and lipid droplet deposition-related renal tubular vacuolation degenerative lesions, along with increased hepatic lipid peroxidation and a deteriorated endogenous antioxidant defense system (glutathione, catalase and superoxide dismutase). However, all the above-mentioned obesity-related complications were dose-dependently and significantly inhibited after 84 days of thye consecutive oral administration of 125, 250 and 500 mg/kg YPh. In addition, YPh dose-dependently depleted the liver endogenous antioxidant defense system and inhibited hepatic lipid peroxidation. Overall, the effects of 250 mg/kg YPh on HFD-induced obesity and related complications were similar or more potent than those of 10 mg/kg simvastatin. These results indicate that YPh is a promising new potent medicinal ingredient for possible use in the treatment of obesity and related complications.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3892/ijmm.2017.3063DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5548026PMC
September 2017

Blood glycemia-modulating effects of melanian snail protein hydrolysates in mice with type II diabetes.

Int J Mol Med 2017 Jun 26;39(6):1437-1451. Epub 2017 Apr 26.

Major in Food Biotechnology, Division of Bioindustry, College of Medical and Life Sciences, Silla University, Sasang-gu, Busan 46958, Republic of Korea.

Freshwater animal proteins have long been used as nutrient supplements. In this study, melanian snail (Semisulcospira libertina) protein hydrolysates (MPh) were found to exert anti-diabetic and protective effects against liver and kidney damage in mice with type II diabetes adapted to a 45% kcal high-fat diet (HFD). The hypoglycemic, hepatoprotective and nephroprotective effects of MPh were analyzed after 12 weeks of the continuous oral administration of MPh at 125, 250 and 500 mg/kg. Diabetic control mice exhibited an increase in body weight, and blood glucose and insulin levels, with a decrease in serum high-density lipoprotein (HDL) levels. In addition, an increase in the regions of steatohepatitis, hepatocyte hypertrophy, and lipid droplet deposit-related renal tubular vacuolation degenerative lesions were detected, with noticeable expansion and hyperplasia of the pancreatic islets, and an increase in glucagon- and insulin-producing cells, insulin/glucagon cell ratios in the endocrine pancreas and hepatic lipid peroxidation, as well as decreased zymogen contents. Furthermore, a deterioration of the endogenous antioxidant defense system was observed, with reduced glucose utilization related hepatic glucokinase (GK) activity and an increase in hepatic gluconeogenesis-related phosphoenolpyruvate carboxykinase (PEPCK) and glucose‑6-phosphatase (G6pase) activity. However, all of these diabetic complications were significantly inhibited by oral treatment with MPh in a dose-dependent manner. In addition, the marked dose-dependent inhibition of hepatic lipid peroxidation, the depletion of the liver endogenous antioxidant defense system, and changes in hepatic glucose-regulating enzyme activities were also observed. The results of this study suggest that MPh exerts potent anti-diabetic effects, along with the amelioration of related complications in mice with type II diabetes. The overall effects of MPh at a dose of 125 mg/kg on HFD-induced diabetes and related complications were similar or more potent than those of metformin (250 mg/kg).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3892/ijmm.2017.2967DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5428967PMC
June 2017
-->