Publications by authors named "Jenny Zinke"

12 Publications

  • Page 1 of 1

Linking epigenetic signature and metabolic phenotype in IDH mutant and IDH wildtype diffuse glioma.

Neuropathol Appl Neurobiol 2020 Oct 20. Epub 2020 Oct 20.

Neurological Institute (Edinger Institute), University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany.

Aims: Changes in metabolism are known to contribute to tumour phenotypes. If and how metabolic alterations in brain tumours contribute to patient outcome is still poorly understood. Epigenetics impact metabolism and mitochondrial function. The aim of this study is a characterisation of metabolic features in molecular subgroups of isocitrate dehydrogenase mutant (IDHmut) and isocitrate dehydrogenase wildtype (IDHwt) gliomas.

Methods: We employed DNA methylation pattern analyses with a special focus on metabolic genes, large-scale metabolism panel immunohistochemistry (IHC), qPCR-based determination of mitochondrial DNA copy number and immune cell content using IHC and deconvolution of DNA methylation data. We analysed molecularly characterised gliomas (n = 57) for in depth DNA methylation, a cohort of primary and recurrent gliomas (n = 22) for mitochondrial copy number and validated these results in a large glioma cohort (n = 293). Finally, we investigated the potential of metabolic markers in Bevacizumab (Bev)-treated gliomas (n = 29).

Results: DNA methylation patterns of metabolic genes successfully distinguished the molecular subtypes of IDHmut and IDHwt gliomas. Promoter methylation of lactate dehydrogenase A negatively correlated with protein expression and was associated with IDHmut gliomas. Mitochondrial DNA copy number was increased in IDHmut tumours and did not change in recurrent tumours. Hierarchical clustering based on metabolism panel IHC revealed distinct subclasses of IDHmut and IDHwt gliomas with an impact on patient outcome. Further quantification of these markers allowed for the prediction of survival under anti-angiogenic therapy.

Conclusion: A mitochondrial signature was associated with increased survival in all analyses, which could indicate tumour subgroups with specific metabolic vulnerabilities.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/nan.12669DOI Listing
October 2020

Distribution and prognostic impact of microglia/macrophage subpopulations in gliomas.

Brain Pathol 2019 07 15;29(4):513-529. Epub 2019 Jan 15.

Edinger Institute, Institute of Neurology, Goethe University Frankfurt, Frankfurt am Main, Germany.

While the central nervous system is considered an immunoprivileged site and brain tumors display immunosuppressive features, both innate and adaptive immune responses affect glioblastoma (GBM) growth and treatment resistance. However, the impact of the major immune cell population in gliomas, represented by glioma-associated microglia/macrophages (GAMs), on patients' clinical course is still unclear. Thus, we aimed at assessing the immunohistochemical expression of selected microglia and macrophage markers in 344 gliomas (including gliomas from WHO grade I-IV). Furthermore, we analyzed a cohort of 241 IDH1R132H-non-mutant GBM patients for association of GAM subtypes and patient overall survival. Phenotypical properties of GAMs, isolated from high-grade astrocytomas by CD11b-based magnetic cell sorting, were analyzed by immunocytochemistry, mRNA microarray, qRT-PCR and bioinformatic analyses. A higher amount of CD68-, CD163- and CD206-positive GAMs in the vital tumor core was associated with beneficial patient survival. The mRNA expression profile of GAMs displayed an upregulation of factors that are considered as pro-inflammatory M1 (eg, CCL2, CCL3L3, CCL4, PTGS2) and anti-inflammatory M2 polarization markers (eg, MRC1, LGMN, CD163, IL10, MSR1), the latter rather being associated with phagocytic functions in the GBM microenvironment. In summary, we present evidence that human GBMs contain mixed M1/M2-like polarized GAMs and that the levels of different GAM subpopulations in the tumor core are positively associated with overall survival of patients with IDH1R132H-non-mutant GBMs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/bpa.12690DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6849857PMC
July 2019

Diagnostic and clinical relevance of the autophago-lysosomal network in human gliomas.

Oncotarget 2016 Apr;7(15):20016-32

Neurological Institute (Edinger Institute), Goethe University, Frankfurt am Main, Germany.

Recently, the conserved intracellular digestion mechanism 'autophagy' has been considered to be involved in early tumorigenesis and its blockade proposed as an alternative treatment approach. However, there is an ongoing debate about whether blocking autophagy has positive or negative effects in tumor cells. Since there is only poor data about the clinico-pathological relevance of autophagy in gliomas in vivo, we first established a cell culture based platform for the in vivo detection of the autophago-lysosomal components. We then investigated key autophagosomal (LC3B, p62, BAG3, Beclin1) and lysosomal (CTSB, LAMP2) molecules in 350 gliomas using immunohistochemistry, immunofluorescence, immunoblotting and qPCR. Autophagy was induced pharmacologically or by altering oxygen and nutrient levels. Our results show that autophagy is enhanced in astrocytomas as compared to normal CNS tissue, but largely independent from the WHO grade and patient survival. A strong upregulation of LC3B, p62, LAMP2 and CTSB was detected in perinecrotic areas in glioblastomas suggesting micro-environmental changes as a driver of autophagy induction in gliomas. Furthermore, glucose restriction induced autophagy in a concentration-dependent manner while hypoxia or amino acid starvation had considerably lesser effects. Apoptosis and autophagy were separately induced in glioma cells both in vitro and in vivo. In conclusion, our findings indicate that autophagy in gliomas is rather driven by micro-environmental changes than by primary glioma-intrinsic features thus challenging the concept of exploitation of the autophago-lysosomal network (ALN) as a treatment approach in gliomas.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.18632/oncotarget.7910DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4991435PMC
April 2016

Distribution and prognostic relevance of tumor-infiltrating lymphocytes (TILs) and PD-1/PD-L1 immune checkpoints in human brain metastases.

Oncotarget 2015 Dec;6(38):40836-49

Edinger Institute, Institute of Neurology, University of Frankfurt am Main, Frankfurt am Main, Germany.

The activation of immune cells by targeting checkpoint inhibitors showed promising results with increased patient survival in distinct primary cancers. Since only limited data exist for human brain metastases, we aimed at characterizing tumor infiltrating lymphocytes (TILs) and expression of immune checkpoints in the respective tumors. Two brain metastases cohorts, a mixed entity cohort (n = 252) and a breast carcinoma validation cohort (n = 96) were analyzed for CD3+, CD8+, FOXP3+, PD-1+ lymphocytes and PD-L1+ tumor cells by immunohistochemistry. Analyses for association with clinico-epidemiological and neuroradiological parameters such as patient survival or tumor size were performed. TILs infiltrated brain metastases in three different patterns (stromal, peritumoral, diffuse). While carcinomas often show a strong stromal infiltration, TILs in melanomas often diffusely infiltrate the tumors. Highest levels of CD3+ and CD8+ lymphocytes were seen in renal cell carcinomas (RCC) and strongest PD-1 levels on RCCs and melanomas. High amounts of TILs, high ratios of PD-1+/CD8+ cells and high levels of PD-L1 were negatively correlated with brain metastases size, indicating that in smaller brain metastases CD8+ immune response might get blocked. PD-L1 expression strongly correlated with TILs and FOXP3 expression. No significant association of patient survival with TILs was observed, while high levels of PD-L1 showed a strong trend towards better survival in melanoma brain metastases (Log-Rank p = 0.0537). In summary, melanomas and RCCs seem to be the most immunogenic entities. Differences in immunotherapeutic response between tumor entities regarding brain metastases might be attributable to this finding and need further investigation in larger patient cohorts.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.18632/oncotarget.5696DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4747372PMC
December 2015

Expression Profile of Sonic Hedgehog Pathway Members in the Developing Human Fetal Brain.

Biomed Res Int 2015 21;2015:494269. Epub 2015 Jul 21.

Edinger Institute, Institute of Neurology, Goethe University Frankfurt, 60528 Frankfurt am Main, Germany.

The Sonic Hedgehog (SHH) pathway plays a central role in the developing mammalian CNS. In our study, we aimed to investigate the spatiotemporal SHH pathway expression pattern in human fetal brains. We analyzed 22 normal fetal brains for Shh, Patched, Smoothened, and Gli1-3 expression by immunohistochemistry. In the telencephalon, strongest expression of Shh, Smoothened, and Gli2 was found in the cortical plate (CP) and ventricular zone. Patched was strongly upregulated in the ventricular zone and Gli1 in the CP. In the cerebellum, SHH pathway members were strongly expressed in the external granular layer (EGL). SHH pathway members significantly decreased over time in the ventricular and subventricular zone and in the cerebellar EGL, while increasing levels were found in more superficial telencephalic layers. Our findings show that SHH pathway members are strongly expressed in areas important for proliferation and differentiation and indicate a temporal expression gradient in telencephalic and cerebellar layers probably due to decreased proliferation of progenitor cells and increased differentiation. Our data about the spatiotemporal expression of SHH pathway members in the developing human brain serves as a base for the understanding of both normal and pathological CNS development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1155/2015/494269DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4523658PMC
May 2016

β-Catenin-Gli1 interaction regulates proliferation and tumor growth in medulloblastoma.

Mol Cancer 2015 Feb 3;14:17. Epub 2015 Feb 3.

Institute of Neurology (Edinger-Institute), Johann Wolfgang Goethe-University Frankfurt, Medical School, Heinrich-Hoffmann-Straße 7, 60528, Frankfurt, Germany.

Background: The Wnt/beta-catenin and the Hedgehog (Hh) pathway interact in various cell types while eliciting opposing or synergistic cellular effects. Both pathways are known as exclusive drivers of two distinct molecular subtypes of medulloblastoma (MB). In sonic hedgehog (Shh)-driven MB, activation of Wnt signaling has been shown to suppress tumor growth by either beta-catenin-dependent or -independent inhibition of Shh signaling. However, mechanistic insight in how beta-catenin inhibits the Hh pathway is not known.

Findings: Here we show that beta-catenin stabilization by the glycogen synthase kinase 3 inhibitor lithium chloride (LiCl) reduced growth of primary hedgehog-driven MB tumor spheres from patched heterozygous mice (Ptch(+/-)) in vitro. LiCl treatment of MB spheres down-regulated the Hh target Gli1, whereas the repressive Gli3 protein (Gli3R) was increased. Mechanistically, we show by co-immunoprecipitation and proximity ligation assay that stabilized beta-catenin physically interacts with Gli1, leading to Gli1 sequestration and inhibition of its transcriptional activity. Reduction of Hh signaling upon LiCl stimulation resulted in reduced proliferation, sphere self renewal, a G2/M arrest and induction of a senescent-like state, indicated by p21 upregulation and by increased staining of senescence-associated beta-galactosidase (SA-betaGal). Moreover, LiCl treatment of subcutaneously transplanted MB cells significantly reduced tumor initiation defined as "tumor take". Although tumor progression was similar, LiCl-treated tumors showed decreased mitotic figures and phospho-histone H3 staining.

Conclusion: We propose that beta-catenin stabilization increases its physical interaction with Gli1, leading to Gli1 degradation and inhibition of Hh signaling, thereby promoting tumor cell senescence and suppression of "tumor take" in mice.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12943-015-0294-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4320815PMC
February 2015

Paired box gene 8 (PAX8) expression is associated with sonic hedgehog (SHH)/wingless int (WNT) subtypes, desmoplastic histology and patient survival in human medulloblastomas.

Neuropathol Appl Neurobiol 2015 Feb;41(2):165-79

Institute of Neurology (Edinger Institute), Goethe University, Frankfurt, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.

Aims: The paired box gene 8 (PAX8) plays crucial roles in organ patterning and cellular differentiation during development and tumorigenesis. Although its function is partly understood in vertebrate development, there is poor data concerning human central nervous system (CNS) development and brain tumours.

Methods: We investigated developing human (n = 19) and mouse (n = 3) brains as well as medulloblastomas (MBs) (n = 113) for PAX8 expression by immunohistochemistry. Human MB cell lines were assessed for PAX8 expression using polymerase chain reaction and immunoblotting and analysed for growth and migration following PAX8 knock-down by small interfering ribonucleic acid (siRNA).

Results: PAX8 protein expression was associated with germinal layers in human and murine forebrain and hindbrain development. PAX8 expression significantly decreased over time in the external granule cell layer but increased in the internal granule cell layer. In MB subtypes, we observed an association of PAX8 expression with sonic hedgehog (SHH) and wingless int subtypes but not with group 3 and 4 MBs. Beyond that, we detected high PAX8 levels in desmoplastic MB subtypes. Univariate analyses revealed high PAX8 levels as a prognostic factor associated with a significantly better patient prognosis in human MB (overall survival: Log-Rank P = 0.0404, Wilcoxon P = 0.0280; progression-free survival: Log-Rank P = 0.0225; Wilcoxon P = 0.0136). In vitro assays revealed increased proliferation and migration of MB cell lines after PAX8 siRNA knock-down.

Conclusion: In summary, high PAX8 expression is linked to better prognosis in MBs potentially by suppressing both proliferative and migratory properties of MB cells. The distinct spatio-temporal expression pattern of PAX8 during brain development might contribute to the understanding of distinct MB subtype histogenesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/nan.12186DOI Listing
February 2015

Netrin-1 expression is an independent prognostic factor for poor patient survival in brain metastases.

PLoS One 2014 19;9(3):e92311. Epub 2014 Mar 19.

Edinger Institute, Institute of Neurology, University of Frankfurt am Main, Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.

The multifunctional molecule netrin-1 is upregulated in various malignancies and has recently been presented as a major general player in tumorigenesis leading to tumor progression and maintenance in various animal models. However, there is still a lack of clinico-epidemiological data related to netrin-1 expression. Therefore, the aim of our study was to elucidate the association of netrin-1 expression and patient survival in brain metastases since those constitute one of the most limiting factors for patient prognosis. We investigated 104 brain metastases cases for netrin-1 expression using in-situ hybridization and immunohistochemistry with regard to clinical parameters such as patient survival and MRI data. Our data show that netrin-1 is strongly upregulated in most cancer subtypes. Univariate analyses revealed netrin-1 expression as a significant factor associated with poor patient survival in the total cohort of brain metastasis patients and in sub-entities such as non-small cell lung carcinomas. Interestingly, many cancer samples showed a strong nuclear netrin-1 signal which was recently linked to a truncated netrin-1 variant that enhances tumor growth. Nuclear netrin-1 expression was associated with poor patient survival in univariate as well as in multivariate analyses. Our data indicate both total and nuclear netrin-1 expression as prognostic factors in brain metastases patients in contrast to other prognostic markers in oncology such as patient age, number of brain metastases or Ki67 proliferation index. Therefore, nuclear netrin-1 expression constitutes one of the first reported molecular biomarkers for patient survival in brain metastases. Furthermore, netrin-1 may constitute a promising target for future anti-cancer treatment approaches in brain metastases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0092311PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3960244PMC
November 2014

Differential expression of the tumor suppressor A-kinase anchor protein 12 in human diffuse and pilocytic astrocytomas is regulated by promoter methylation.

J Neuropathol Exp Neurol 2013 Oct;72(10):933-41

From the Institute of Pathology, University Hospital Heidelberg (BG, MR, WW, PS); Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ) (CRS, LG, CD, PS, OP, CP); Department of Neuropathology, University of Heidelberg (DC); Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ) (DC, WW); and Department of Neuroradiology, University of Heidelberg (MNV), Heidelberg; Edinger Institute, University Hospital Frankfurt a.M., Frankfurt (CZ, JZ, PNH, MM); and Division of Neurosurgical Research, Department of Neurosurgery, University of Heidelberg (BC); and Department of Neurooncology, Neurology Clinic and National Center for Tumor Diseases, University of Heidelberg (WW), Heidelberg, Germany; Department of Neurology, University Hospital Zurich, Zurich, Switzerland (MW); and Department of Neuropathology, Institute of Pathology and Neuropathology, Eberhard-Karls-University of Tübingen, Tübingen (RM, JS); and Department of Sports Medicine, Rehabilitation and Disease Prevention, Johannes Gutenberg University, Mainz (PS), Germany.

The scaffold protein A-kinase anchor protein 12 (AKAP12) exerts tumor suppressor activity and is downregulated in several tumor entities. We characterized AKAP12 expression and regulation in astrocytomas, including pilocytic and diffusely infiltrating astrocytomas. We examined 194 human gliomas and 23 normal brain white matter samples by immunohistochemistry or immunoblotting for AKAP12 expression. We further performed quantitative methylation analysis of the AKAP12 promoter by MassARRAY® of normal brain, World Health Organization (WHO) grade I to IV astrocytomas, and glioma cell lines. Our results show that AKAP12 is expressed in a perivascular distribution in normal CNS, strongly upregulated in tumor cells in pilocytic astrocytomas, and weakly expressed in diffuse astrocytomas of WHO grade II to IV. Methylation analyses revealed specific hypermethylation of AKAP12α promoter in WHO grade II to IV astrocytomas. Restoration experiments using 5-aza-2'-deoxycytidine in primary glioblastoma cells decreased AKAP12α promoter methylation and markedly increased AKAP12α mRNA levels. In summary, we demonstrate that AKAP12 is differentially expressed in human astrocytomas showing high expression in pilocytic but low expression in diffuse astrocytomas of all WHO-grades. Our results further indicate that epigenetic mechanisms are involved in silencing AKAP12 in diffuse astrocytomas; however, a tumor suppressive role of AKAP12 in distinct astrocytoma subtypes remains to be determined.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/NEN.0b013e3182a59a88DOI Listing
October 2013

Expression of vascular endothelial growth factor (VEGF) and its receptors VEGFR1 and VEGFR2 in primary and recurrent WHO grade III meningiomas.

Histol Histopathol 2013 09 11;28(9):1157-66. Epub 2013 Mar 11.

Institute of Neurology, Edinger Institute, Goethe University, Frankfurt, Germany.

Aims: WHO grade III meningiomas are malignant neoplasms for which new and more targeted treatment strategies are urgently needed. Although clinical trials investigating anti-angiogenic vascular endothelial growth factor (VEGF) targeted therapies are currently recruiting, knowledge about the expression of VEGF and VEGF receptors remains to be determined.

Methods: We investigated the expression of VEGF and its receptors VEGFR1 and VEGFR2 in 32 WHO grade III meningioma samples by immunohistochemistry. Furthermore, we performed in-situ hybridisation for VEGF.

Results: We found low VEGF expression in tumor and endothelial cells. Highest VEGF expression levels were seen in peri-necrotic tumor cells potentially suffering from hypoxia. VEGFR1 and 2 were virtually absent on tumor cells, although endothelial cells displayed significantly higher levels reaching stronger expression for VEGFR2 than VEGFR1.

Conclusions: Our findings showing constant expression levels of VEGFR2 in endothelial cells serve as a first indication that the use of small tyrosine kinase inhibitors such as Sunitinib directly targeting the VEGF-receptors might be worth testing, also in the clinical context in cases of therapy-refractory meningiomas. Further investigations are needed to study the response to drugs targeting the VEGF pathway in relation to the expression profile of VEGF and its receptors in high grade meningiomas.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.14670/HH-28.1157DOI Listing
September 2013

Endothelial Wnt/β-catenin signaling inhibits glioma angiogenesis and normalizes tumor blood vessels by inducing PDGF-B expression.

J Exp Med 2012 Aug 20;209(9):1611-27. Epub 2012 Aug 20.

Institute of Neurology (Edinger Institute) and 2 Institute for Cardiovascular Regeneration, Johann Wolfgang Goethe University Frankfurt Medical School, 60590 Frankfurt am Main, Germany.

Endothelial Wnt/β-catenin signaling is necessary for angiogenesis of the central nervous system and blood-brain barrier (BBB) differentiation, but its relevance for glioma vascularization is unknown. In this study, we show that doxycycline-dependent Wnt1 expression in subcutaneous and intracranial mouse glioma models induced endothelial Wnt/β-catenin signaling and led to diminished tumor growth, reduced vascular density, and normalized vessels with increased mural cell attachment. These findings were corroborated in GL261 glioma cells intracranially transplanted in mice expressing dominant-active β-catenin specifically in the endothelium. Enforced endothelial β-catenin signaling restored BBB characteristics, whereas inhibition by Dkk1 (Dickkopf-1) had opposing effects. By overactivating the Wnt pathway, we induced the Wnt/β-catenin-Dll4/Notch signaling cascade in tumor endothelia, blocking an angiogenic and favoring a quiescent vascular phenotype, indicated by induction of stalk cell genes. We show that β-catenin transcriptional activity directly regulated endothelial expression of platelet-derived growth factor B (PDGF-B), leading to mural cell recruitment thereby contributing to vascular quiescence and barrier function. We propose that reinforced Wnt/β-catenin signaling leads to inhibition of angiogenesis with normalized and less permeable vessels, which might prove to be a valuable therapeutic target for antiangiogenic and edema glioma therapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1084/jem.20111580DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3428944PMC
August 2012