Publications by authors named "Jennifer M Folster"

3 Publications

  • Page 1 of 1

Clinical and Laboratory Findings in Patients with Potential SARS-CoV-2 Reinfection, May-July 2020.

Clin Infect Dis 2021 Feb 18. Epub 2021 Feb 18.

Health Systems Worker Safety Task Force, COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, USA.

Background: We investigated patients with potential SARS-CoV-2 reinfection in the United States during May-July 2020.

Methods: We conducted case finding for patients with potential SARS-CoV-2 reinfection through the Emerging Infections Network. Cases reported were screened for laboratory and clinical findings of potential reinfection followed by requests for medical records and laboratory specimens. Available medical records were abstracted to characterize patient demographics, comorbidities, clinical course, and laboratory test results. Submitted specimens underwent further testing, including RT-PCR, viral culture, whole genome sequencing, subgenomic RNA PCR, and testing for anti-SARS-CoV-2 total antibody.

Results: Among 73 potential reinfection patients with available records, 30 patients had recurrent COVID-19 symptoms explained by alternative diagnoses with concurrent SARS-CoV-2 positive RT-PCR, 24 patients remained asymptomatic after recovery but had recurrent or persistent RT-PCR, and 19 patients had recurrent COVID-19 symptoms with concurrent SARS-CoV-2 positive RT-PCR but no alternative diagnoses. These 19 patients had symptom recurrence a median of 57 days after initial symptom onset (interquartile range: 47 - 76). Six of these patients had paired specimens available for further testing, but none had laboratory findings confirming reinfections. Testing of an additional three patients with recurrent symptoms and alternative diagnoses also did not confirm reinfection.

Conclusions: We did not confirm SARS-CoV-2 reinfection within 90 days of the initial infection based on the clinical and laboratory characteristics of cases in this investigation. Our findings support current CDC guidance around quarantine and testing for patients who have recovered from COVID-19.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/cid/ciab148DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7929000PMC
February 2021

Evaluation of Abbott BinaxNOW Rapid Antigen Test for SARS-CoV-2 Infection at Two Community-Based Testing Sites - Pima County, Arizona, November 3-17, 2020.

MMWR Morb Mortal Wkly Rep 2021 Jan 22;70(3):100-105. Epub 2021 Jan 22.

Rapid antigen tests, such as the Abbott BinaxNOW COVID-19 Ag Card (BinaxNOW), offer results more rapidly (approximately 15-30 minutes) and at a lower cost than do highly sensitive nucleic acid amplification tests (NAATs) (1). Rapid antigen tests have received Food and Drug Administration (FDA) Emergency Use Authorization (EUA) for use in symptomatic persons (2), but data are lacking on test performance in asymptomatic persons to inform expanded screening testing to rapidly identify and isolate infected persons (3). To evaluate the performance of the BinaxNOW rapid antigen test, it was used along with real-time reverse transcription-polymerase chain reaction (RT-PCR) testing to analyze 3,419 paired specimens collected from persons aged ≥10 years at two community testing sites in Pima County, Arizona, during November 3-17, 2020. Viral culture was performed on 274 of 303 residual real-time RT-PCR specimens with positive results by either test (29 were not available for culture). Compared with real-time RT-PCR testing, the BinaxNOW antigen test had a sensitivity of 64.2% for specimens from symptomatic persons and 35.8% for specimens from asymptomatic persons, with near 100% specificity in specimens from both groups. Virus was cultured from 96 of 274 (35.0%) specimens, including 85 (57.8%) of 147 with concordant antigen and real-time RT-PCR positive results, 11 (8.9%) of 124 with false-negative antigen test results, and none of three with false-positive antigen test results. Among specimens positive for viral culture, sensitivity was 92.6% for symptomatic and 78.6% for asymptomatic individuals. When the pretest probability for receiving positive test results for SARS-CoV-2 is elevated (e.g., in symptomatic persons or in persons with a known COVID-19 exposure), a negative antigen test result should be confirmed by NAAT (1). Despite a lower sensitivity to detect infection, rapid antigen tests can be an important tool for screening because of their quick turnaround time, lower costs and resource needs, high specificity, and high positive predictive value (PPV) in settings of high pretest probability. The faster turnaround time of the antigen test can help limit transmission by more rapidly identifying infectious persons for isolation, particularly when used as a component of serial testing strategies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.15585/mmwr.mm7003e3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7821766PMC
January 2021

Regulation of the expression of the varicella-zoster virus open reading frame 66 gene.

Virus Res 2011 Jan 11;155(1):334-42. Epub 2010 Nov 11.

Division of Viral Diseases, Measles, Mumps, Rubella, and Herpesvirus Laboratory Branch, Centers for Disease Control and Prevention, Office of Infectious Diseases, National Center for Immunizations and Respiratory Diseases, Atlanta, GA 30333, USA.

The varicella-zoster virus (VZV) open reading frame (ORF) 66 encodes a serine/threonine kinase that phosphorylates the major viral transactivator protein, immediate-early (IE) 62, preventing its nuclear importation. Cytoplasmic sequestration of IE62 may alter viral gene transcription and could serve as a mechanism for maintaining VZV latency. We examined the regulation of expression of the ORF66 gene by mapping the promoter region, which was localized to within 150 bases of the start codon. The ORF66 promoter was activated by two viral regulatory proteins, IE62 and IE63. We evaluated the binding of viral regulatory proteins and cellular transcription factors based on recognized cellular transcription factor binding sites identified within the ORF66 promoter. These included Sp1 and TBP binding sites, several of which were essential for optimal promoter activity. Site-directed mutations in Sp1 and TBP binding sites led to varying degrees of impairment of ORF66 gene expression in the context of VZV infection. We also examined the effect of Sp1 and TBP mutations on IE62, Sp1, and TBP binding. These studies reveal that host cell-derived and viral factors contribute to and cooperate in the expression of this important viral kinase gene.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.virusres.2010.11.001DOI Listing
January 2011