Publications by authors named "Jennifer E Posey"

109 Publications

Quantitative dissection of multilocus pathogenic variation in an Egyptian infant with severe neurodevelopmental disorder resulting from multiple molecular diagnoses.

Am J Med Genet A 2021 Nov 23. Epub 2021 Nov 23.

Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.

Genomic sequencing and clinical genomics have demonstrated that substantial subsets of atypical and/or severe disease presentations result from multilocus pathogenic variation (MPV) causing blended phenotypes. In an infant with a severe neurodevelopmental disorder, four distinct molecular diagnoses were found by exome sequencing (ES). The blended phenotype that includes brain malformation, dysmorphism, and hypotonia was dissected using the Human Phenotype Ontology (HPO). ES revealed variants in CAPN3 (c.259C > G:p.L87V), MUSK (c.1781C > T:p.A594V), NAV2 (c.1996G > A:p.G666R), and ZC4H2 (c.595A > C:p.N199H). CAPN3, MUSK, and ZC4H2 are established disease genes linked to limb-girdle muscular dystrophy (OMIM# 253600), congenital myasthenia (OMIM# 616325), and Wieacker-Wolff syndrome (WWS; OMIM# 314580), respectively. NAV2 is a retinoic-acid responsive novel disease gene candidate with biological roles in neurite outgrowth and cerebellar dysgenesis in mouse models. Using semantic similarity, we show that no gene identified by ES individually explains the proband phenotype, but rather the totality of the clinically observed disease is explained by the combination of disease-contributing effects of the identified genes. These data reveal that multilocus pathogenic variation can result in a blended phenotype with each gene affecting a different part of the nervous system and nervous system-muscle connection. We provide evidence from this n = 1 study that in patients with MPV and complex blended phenotypes resulting from multiple molecular diagnoses, quantitative HPO analysis can allow for dissection of phenotypic contribution of both established disease genes and novel disease gene candidates not yet proven to cause human disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.a.62565DOI Listing
November 2021

Expanding the phenotypic and allelic spectrum of SMG8: Clinical observations reveal overlap with SMG9-associated disease trait.

Am J Med Genet A 2021 Nov 10. Epub 2021 Nov 10.

Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.

SMG8 (MIM *617315) is a regulatory subunit involved in nonsense-mediated mRNA decay (NMD), a cellular protective pathway that regulates mRNA transcription, transcript stability, and degrades transcripts containing premature stop codons. SMG8 binds SMG9 and SMG1 to form the SMG1C complex and inhibit the kinase activity of SMG1. Biallelic deleterious variants in SMG9 are known to cause a heart and brain malformation syndrome (HBMS; MIM #616920), whereas biallelic deleterious variants in SMG8 were recently described to cause a novel neurodevelopmental disorder (NDD) with dysmorphic facies and cataracts, now defined as Alzahrani-Kuwahara syndrome (ALKUS: MIM #619268). Only eight subjects from four families with ALKUS have been described to date. Through research reanalysis of a nondiagnostic clinical exome, we identified a subject from a fifth unrelated family with a homozygous deleterious variant in SMG8 and features consistent with ALKUS. Interestingly, the subject also had unilateral microphthalmia, a clinical feature that has been described in SMG9-related disorder. Our study expands the phenotypic spectrum of SMG8-related disorder, demonstrates an overlapping phenotype between SMG8- and SMG9-related rare disease traits, provides further evidence for the SMG8 and SMG9 protein interactions, and highlights the importance of revisiting nondiagnostic exome data to identify and affirm emerging novel genes for rare disease traits.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.a.62561DOI Listing
November 2021

Biallelic variants in SLC38A3 encoding a glutamine transporter cause epileptic encephalopathy.

Brain 2021 Oct 4. Epub 2021 Oct 4.

Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA.

The solute carrier (SLC) superfamily encompasses >400 transmembrane transporters involved in the exchange of amino acids, nutrients, ions, metals, neurotransmitters and metabolites across biological membranes. SLCs are highly expressed in the mammalian brain; defects in nearly 100 unique SLC-encoding genes (OMIM: https://www.omim.org) are associated with rare Mendelian disorders including developmental and epileptic encephalopathy (DEE) and severe neurodevelopmental disorders (NDDs). Exome sequencing and family-based rare variant analyses on a cohort with NDD identified two siblings with DEE and a shared deleterious homozygous splicing variant in SLC38A3. The gene encodes SNAT3, a sodium-coupled neutral amino acid transporter and a principal transporter of the amino acids asparagine, histidine, and glutamine, the latter being the precursor for the neurotransmitters GABA and glutamate. Additional subjects with a similar DEE phenotype and biallelic predicted-damaging SLC38A3 variants were ascertained through GeneMatcher and collaborations with research and clinical molecular diagnostic laboratories. Untargeted metabolomic analysis was performed to identify novel metabolic biomarkers. Ten individuals from seven unrelated families from six different countries with deleterious biallelic variants in SLC38A3 were identified. Global developmental delay, intellectual disability, hypotonia, and absent speech were common features while microcephaly, epilepsy, and visual impairment were present in the majority. Epilepsy was drug-resistant in half. Metabolomic analysis revealed perturbations of glutamate, histidine, and nitrogen metabolism in plasma, urine, and cerebrospinal fluid of selected subjects, potentially representing biomarkers of disease. Our data support the contention that SLC38A3 is a novel disease gene for DEE and illuminate the likely pathophysiology of the disease as perturbations in glutamine homeostasis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/brain/awab369DOI Listing
October 2021

High prevalence of multilocus pathogenic variation in neurodevelopmental disorders in the Turkish population.

Am J Hum Genet 2021 10 28;108(10):1981-2005. Epub 2021 Sep 28.

Department of Medical Genetics, Adana City Training and Research Hospital, Adana 01170, Turkey.

Neurodevelopmental disorders (NDDs) are clinically and genetically heterogenous; many such disorders are secondary to perturbation in brain development and/or function. The prevalence of NDDs is > 3%, resulting in significant sociocultural and economic challenges to society. With recent advances in family-based genomics, rare-variant analyses, and further exploration of the Clan Genomics hypothesis, there has been a logarithmic explosion in neurogenetic "disease-associated genes" molecular etiology and biology of NDDs; however, the majority of NDDs remain molecularly undiagnosed. We applied genome-wide screening technologies, including exome sequencing (ES) and whole-genome sequencing (WGS), to identify the molecular etiology of 234 newly enrolled subjects and 20 previously unsolved Turkish NDD families. In 176 of the 234 studied families (75.2%), a plausible and genetically parsimonious molecular etiology was identified. Out of 176 solved families, deleterious variants were identified in 218 distinct genes, further documenting the enormous genetic heterogeneity and diverse perturbations in human biology underlying NDDs. We propose 86 candidate disease-trait-associated genes for an NDD phenotype. Importantly, on the basis of objective and internally established variant prioritization criteria, we identified 51 families (51/176 = 28.9%) with multilocus pathogenic variation (MPV), mostly driven by runs of homozygosity (ROHs) - reflecting genomic segments/haplotypes that are identical-by-descent. Furthermore, with the use of additional bioinformatic tools and expansion of ES to additional family members, we established a molecular diagnosis in 5 out of 20 families (25%) who remained undiagnosed in our previously studied NDD cohort emanating from Turkey.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2021.08.009DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8546040PMC
October 2021

Deep clinicopathological phenotyping identifies a previously unrecognized pathogenic EMD splice variant.

Ann Clin Transl Neurol 2021 10 15;8(10):2052-2058. Epub 2021 Sep 15.

Texas Children's Hospital, Houston, Texas, 77030, USA.

Exome sequencing (ES) has revolutionized rare disease management, yet only ~25%-30% of patients receive a molecular diagnosis. A limiting factor is the quality of available phenotypic data. Here, we describe how deep clinicopathological phenotyping yielded a molecular diagnosis for a 19-year-old proband with muscular dystrophy and negative clinical ES. Deep phenotypic analysis identified two critical data points: (1) the absence of emerin protein in muscle biopsy and (2) clinical features consistent with Emery-Dreifuss muscular dystrophy. Sequencing data analysis uncovered an ultra-rare, intronic variant in EMD, the gene encoding emerin. The variant, NM_000117.3: c.188-6A > G, is predicted to impact splicing by in silico tools. This case thus illustrates how better integration of clinicopathologic data into ES analysis can enhance diagnostic yield with implications for clinical practice.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/acn3.51454DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8528454PMC
October 2021

Response to Biesecker et al.

Am J Hum Genet 2021 09;108(9):1807-1808

Departments of Pediatrics, Obstetrics and Gynecology, and Epidemiology, University of Florida College of Medicine and College of Public Health and Health Professions, Gainesville, FL 32610, USA.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2021.07.004DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8456153PMC
September 2021

PhenoDB, GeneMatcher and VariantMatcher, tools for analysis and sharing of sequence data.

Orphanet J Rare Dis 2021 08 18;16(1):365. Epub 2021 Aug 18.

Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Background: With the advent of whole exome (ES) and genome sequencing (GS) as tools for disease gene discovery, rare variant filtering, prioritization and data sharing have become essential components of the search for disease genes and variants potentially contributing to disease phenotypes. The computational storage, data manipulation, and bioinformatic interpretation of thousands to millions of variants identified in ES and GS, respectively, is a challenging task. To aid in that endeavor, we constructed PhenoDB, GeneMatcher and VariantMatcher.

Results: PhenoDB is an accessible, freely available, web-based platform that allows users to store, share, analyze and interpret their patients' phenotypes and variants from ES/GS data. GeneMatcher is accessible to all stakeholders as a web-based tool developed to connect individuals (researchers, clinicians, health care providers and patients) around the globe with interest in the same gene(s), variant(s) or phenotype(s). Finally, VariantMatcher was developed to enable public sharing of variant-level data and phenotypic information from individuals sequenced as part of multiple disease gene discovery projects. Here we provide updates on PhenoDB and GeneMatcher applications and implementation and introduce VariantMatcher.

Conclusion: Each of these tools has facilitated worldwide data sharing and data analysis and improved our ability to connect genes to phenotypic traits. Further development of these platforms will expand variant analysis, interpretation, novel disease-gene discovery and facilitate functional annotation of the human genome for clinical genomics implementation and the precision medicine initiative.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13023-021-01916-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8371856PMC
August 2021

Exome sequencing in children with clinically suspected maturity-onset diabetes of the young.

Pediatr Diabetes 2021 11 19;22(7):960-968. Epub 2021 Aug 19.

Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA.

Objective: Commercial gene panels identify pathogenic variants in as low as 27% of patients suspected to have MODY, suggesting the role of yet unidentified pathogenic variants. We sought to identify novel gene variants associated with MODY.

Research Design And Methods: We recruited 10 children with a clinical suspicion of MODY but non-diagnostic commercial MODY gene panels. We performed exome sequencing (ES) in them and their parents.

Results: Mean age at diabetes diagnosis was 10 (± 3.8) years. Six were females; 4 were non-Hispanic white, 5 Hispanic, and 1 Asian. Our variant prioritization analysis identified a pathogenic, de novo variant in INS (c.94G > A, p.Gly32Ser), confirmed by Sanger sequencing, in a proband who was previously diagnosed with "autoantibody-negative type 1 diabetes (T1D)" at 3 y/o. This rare variant, absent in the general population (gnomAD database), has been reported previously in neonatal diabetes. We also identified a frameshift deletion (c.2650delC, p.Gln884AsnfsTer57) in RFX6 in a child with a previous diagnosis of "autoantibody-negative T1D" at 12 y/o. The variant was inherited from the mother, who was diagnosed with "thin type 2 diabetes" at 25 y/o. Heterozygous protein-truncating variants in RFX6 gene have been recently reported in individuals with MODY.

Conclusions: We diagnosed two patients with MODY using ES in children initially classified as "T1D". One has a likely pathogenic novel gene variant not previously associated with MODY. We demonstrate the clinical utility of ES in patients with clinical suspicion of MODY.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/pedi.13257DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8530905PMC
November 2021

Biallelic loss-of-function variants in the splicing regulator NSRP1 cause a severe neurodevelopmental disorder with spastic cerebral palsy and epilepsy.

Genet Med 2021 Dec 12;23(12):2455-2460. Epub 2021 Aug 12.

Texas Children's Hospital, Houston, TX, USA.

Purpose: Alternative splicing plays a critical role in mouse neurodevelopment, regulating neurogenesis, cortical lamination, and synaptogenesis, yet few human neurodevelopmental disorders are known to result from pathogenic variation in splicing regulator genes. Nuclear Speckle Splicing Regulator Protein 1 (NSRP1) is a ubiquitously expressed splicing regulator not known to underlie a Mendelian disorder.

Methods: Exome sequencing and rare variant family-based genomics was performed as a part of the Baylor-Hopkins Center for Mendelian Genomics Initiative. Additional families were identified via GeneMatcher.

Results: We identified six patients from three unrelated families with homozygous loss-of-function variants in NSRP1. Clinical features include developmental delay, epilepsy, variable microcephaly (Z-scores -0.95 to -5.60), hypotonia, and spastic cerebral palsy. Brain abnormalities included simplified gyral pattern, underopercularization, and/or vermian hypoplasia. Molecular analysis identified three pathogenic NSRP1 predicted loss-of-function variant alleles: c.1359_1362delAAAG (p.Glu455AlafsTer20), c.1272dupG (p.Lys425GlufsTer5), and c.52C>T (p.Gln18Ter). The two frameshift variants result in a premature termination codon in the last exon, and the mutant transcripts are predicted to escape nonsense mediated decay and cause loss of a C-terminal nuclear localization signal required for NSRP1 function.

Conclusion: We establish NSRP1 as a gene for a severe autosomal recessive neurodevelopmental disease trait characterized by developmental delay, epilepsy, microcephaly, and spastic cerebral palsy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41436-021-01291-xDOI Listing
December 2021

IFIH1 loss-of-function variants contribute to very early-onset inflammatory bowel disease.

Hum Genet 2021 Sep 29;140(9):1299-1312. Epub 2021 Jun 29.

Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Genetic defects of innate immunity impairing intestinal bacterial sensing are linked to the development of Inflammatory Bowel Disease (IBD). Although much evidence supports a role of the intestinal virome in gut homeostasis, most studies focus on intestinal viral composition rather than on host intestinal viral sensitivity. To demonstrate the association between the development of Very Early Onset IBD (VEOIBD) and variants in the IFIH1 gene which encodes MDA5, a key cytosolic sensor for viral nucleic acids. Whole exome sequencing (WES) was performed in two independent cohorts of children with VEOIBD enrolled in Italy (n = 18) and USA (n = 24). Luciferase reporter assays were employed to assess MDA5 activity. An enrichment analysis was performed on IFIH1 comparing 42 VEOIBD probands with 1527 unrelated individuals without gastrointestinal or immunological issues. We identified rare, likely loss-of-function (LoF), IFIH1 variants in eight patients with VEOIBD from a combined cohort of 42 children. One subject, carrying a homozygous truncating variant resulting in complete LoF, experienced neonatal-onset, pan-gastrointestinal, IBD-like enteropathy plus multiple infectious episodes. The remaining seven subjects, affected by VEOIBD without immunodeficiency, were carriers of one LoF variant in IFIH1. Among these, two patients also carried a second hypomorphic variant, with partial function apparent when MDA5 was weakly stimulated. Furthermore, IFIH1 variants were significantly enriched in children with VEOIBD as compared to controls (p = 0.007). Complete and partial MDA5 deficiency is associated with VEOIBD with variable penetrance and expressivity, suggesting a role for impaired intestinal viral sensing in IBD pathogenesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00439-021-02300-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8423350PMC
September 2021

Exome variant discrepancies due to reference-genome differences.

Am J Hum Genet 2021 07 14;108(7):1239-1250. Epub 2021 Jun 14.

Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA. Electronic address:

Despite release of the GRCh38 human reference genome more than seven years ago, GRCh37 remains more widely used by most research and clinical laboratories. To date, no study has quantified the impact of utilizing different reference assemblies for the identification of variants associated with rare and common diseases from large-scale exome-sequencing data. By calling variants on both the GRCh37 and GRCh38 references, we identified single-nucleotide variants (SNVs) and insertion-deletions (indels) in 1,572 exomes from participants with Mendelian diseases and their family members. We found that a total of 1.5% of SNVs and 2.0% of indels were discordant when different references were used. Notably, 76.6% of the discordant variants were clustered within discrete discordant reference patches (DISCREPs) comprising only 0.9% of loci targeted by exome sequencing. These DISCREPs were enriched for genomic elements including segmental duplications, fix patch sequences, and loci known to contain alternate haplotypes. We identified 206 genes significantly enriched for discordant variants, most of which were in DISCREPs and caused by multi-mapped reads on the reference assembly that lacked the variant call. Among these 206 genes, eight are implicated in known Mendelian diseases and 53 are associated with common phenotypes from genome-wide association studies. In addition, variant interpretations could also be influenced by the reference after lifting-over variant loci to another assembly. Overall, we identified genes and genomic loci affected by reference assembly choice, including genes associated with Mendelian disorders and complex human diseases that require careful evaluation in both research and clinical applications.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2021.05.011DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8322936PMC
July 2021

Haploinsufficiency of ARFGEF1 is associated with developmental delay, intellectual disability, and epilepsy with variable expressivity.

Genet Med 2021 10 10;23(10):1901-1911. Epub 2021 Jun 10.

Inserm UMR1231 team GAD, University of Burgundy and Franche-Comté, Dijon, France.

Purpose: ADP ribosylation factor guanine nucleotide exchange factors (ARFGEFs) are a family of proteins implicated in cellular trafficking between the Golgi apparatus and the plasma membrane through vesicle formation. Among them is ARFGEF1/BIG1, a protein involved in axon elongation, neurite development, and polarization processes. ARFGEF1 has been previously suggested as a candidate gene for different types of epilepsies, although its implication in human disease has not been well characterized.

Methods: International data sharing, in silico predictions, and in vitro assays with minigene study, western blot analyses, and RNA sequencing.

Results: We identified 13 individuals with heterozygous likely pathogenic variants in ARFGEF1. These individuals displayed congruent clinical features of developmental delay, behavioral problems, abnormal findings on brain magnetic resonance image (MRI), and epilepsy for almost half of them. While nearly half of the cohort carried de novo variants, at least 40% of variants were inherited from mildly affected parents who were clinically re-evaluated by reverse phenotyping. Our in silico predictions and in vitro assays support the contention that ARFGEF1-related conditions are caused by haploinsufficiency, and are transmitted in an autosomal dominant fashion with variable expressivity.

Conclusion: We provide evidence that loss-of-function variants in ARFGEF1 are implicated in sporadic and familial cases of developmental delay with or without epilepsy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41436-021-01218-6DOI Listing
October 2021

Risk of sudden cardiac death in EXOSC5-related disease.

Am J Med Genet A 2021 08 4;185(8):2532-2540. Epub 2021 Jun 4.

Department of Pediatrics, Division of Cardiology, Texas Children's Hospital, Houston, Texas, USA.

The RNA exosome is a multi-subunit complex involved in the processing, degradation, and regulated turnover of RNA. Several subunits are linked to Mendelian disorders, including pontocerebellar hypoplasia (EXOSC3, MIM #614678; EXOSC8, MIM #616081: and EXOSC9, MIM #618065) and short stature, hearing loss, retinitis pigmentosa, and distinctive facies (EXOSC2, MIM #617763). More recently, EXOSC5 (MIM *606492) was found to underlie an autosomal recessive neurodevelopmental disorder characterized by developmental delay, hypotonia, cerebellar abnormalities, and dysmorphic facies. An unusual feature of EXOSC5-related disease is the occurrence of complete heart block requiring a pacemaker in a subset of affected individuals. Here, we provide a detailed clinical and molecular characterization of two siblings with microcephaly, developmental delay, cerebellar volume loss, hypomyelination, with cardiac conduction and rhythm abnormalities including sinus node dysfunction, intraventricular conduction delay, atrioventricular block, and ventricular tachycardia (VT) due to compound heterozygous variants in EXOSC5: (1) NM_020158.4:c.341C > T (p.Thr114Ile; pathogenic, previously reported) and (2) NM_020158.4:c.302C > A (p.Thr101Lys; novel variant). A review of the literature revealed an additional family with biallelic EXOSC5 variants and cardiac conduction abnormalities. These clinical and molecular data provide compelling evidence that cardiac conduction abnormalities and arrhythmias are part of the EXOSC5-related disease spectrum and argue for proactive screening due to potential risk of sudden cardiac death.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.a.62352DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8382094PMC
August 2021

Biallelic and monoallelic variants in PLXNA1 are implicated in a novel neurodevelopmental disorder with variable cerebral and eye anomalies.

Genet Med 2021 09 30;23(9):1715-1725. Epub 2021 May 30.

Department of Medical Genetics, Centre for Applied Neurogenetics, University of British Columbia, Vancouver, BC, Canada.

Purpose: To investigate the effect of PLXNA1 variants on the phenotype of patients with autosomal dominant and recessive inheritance patterns and to functionally characterize the zebrafish homologs plxna1a and plxna1b during development.

Methods: We assembled ten patients from seven families with biallelic or de novo PLXNA1 variants. We describe genotype-phenotype correlations, investigated the variants by structural modeling, and used Morpholino knockdown experiments in zebrafish to characterize the embryonic role of plxna1a and plxna1b.

Results: Shared phenotypic features among patients include global developmental delay (9/10), brain anomalies (6/10), and eye anomalies (7/10). Notably, seizures were predominantly reported in patients with monoallelic variants. Structural modeling of missense variants in PLXNA1 suggests distortion in the native protein. Our zebrafish studies enforce an embryonic role of plxna1a and plxna1b in the development of the central nervous system and the eye.

Conclusion: We propose that different biallelic and monoallelic variants in PLXNA1 result in a novel neurodevelopmental syndrome mainly comprising developmental delay, brain, and eye anomalies. We hypothesize that biallelic variants in the extracellular Plexin-A1 domains lead to impaired dimerization or lack of receptor molecules, whereas monoallelic variants in the intracellular Plexin-A1 domains might impair downstream signaling through a dominant-negative effect.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41436-021-01196-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8460429PMC
September 2021

Exome sequencing reveals genetic architecture in patients with isolated or syndromic short stature.

J Genet Genomics 2021 05 22;48(5):396-402. Epub 2021 Mar 22.

Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China. Electronic address:

Short stature is among the most common endocrinological disease phenotypes of childhood and may occur as an isolated finding or in conjunction with other clinical manifestations. Although the diagnostic utility of clinical genetic testing in short stature has been implicated, the genetic architecture and the utility of genomic studies such as exome sequencing (ES) in a sizable cohort of patients with short stature have not been investigated systematically. In this study, we recruited 561 individuals with short stature from two centers in China during a 4-year period. We performed ES for all patients and available parents. All patients were retrospectively divided into two groups: an isolated short stature group (group I, n = 257) and an apparently syndromic short stature group (group II, n = 304). Causal variants were identified in 135 of 561 (24.1%) patients. In group I, 29 of 257 (11.3%) of the patients were solved by variants in 24 genes. In group II, 106 of 304 (34.9%) patients were solved by variants in 57 genes. Genes involved in fundamental cellular process played an important role in the genetic architecture of syndromic short stature. Distinct genetic architectures and pathophysiological processes underlie isolated and syndromic short stature.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jgg.2021.02.008DOI Listing
May 2021

Biallelic Pathogenic Variants in Associated With Congenital Myopathy.

Neurol Genet 2021 Jun 26;7(3):e589. Epub 2021 Apr 26.

Division of Neurology and Developmental Neuroscience (D.G.C., I.H., D.P., T.L.), Department of Pediatrics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital (D.G.C., I.H., D.P., J.R.L.), Houston, TX; Department of Molecular and Human Genetics (D.G.C., J.F., I.H., Z.C.A., H.D., R.A.G., D.M., D.P., J.E.P., J.R.L.), Baylor College of Medicine, Houston, TX; Human Genome Sequencing Center (S.N.J., R.A.G., J.R.L.), Baylor College of Medicine, Houston, TX; Department of Pediatrics (D.M.), Faculty of Medicine, Kuwait University, Safat, Kuwait; Division of Child and Adolescent Neurology (P.M.), Department of Pediatrics, University of Texas Health Science Center, Houston, TX; Pathology and Laboratory Medicine (M.B.B.), University of Texas Health Science Center at Houston-McGovern Medical School, Houston, TX; and Department of Pediatrics (J.R.L.), Baylor College of Medicine, Houston, TX.

Objective: Pathogenic variants in , the gene encoding fast skeletal muscle troponin T, were first described in autosomal dominant distal arthrogryposis type 2B2. Recently, a homozygous splice site variant, c.681+1G>A, was identified in a patient with nemaline myopathy and distal arthrogryposis. Here, we describe the second individual with congenital myopathy associated with biallelic variants.

Methods: Clinical exome sequencing data from a patient with molecularly undiagnosed congenital myopathy underwent research reanalysis. Clinical and histopathologic data were collected and compared with the single reported patient with -related congenital myopathy.

Results: A homozygous variant, c.481-1G>A, was identified. This variant alters a consensus splice acceptor and is predicted to affect splicing by multiple prediction tools. Both the patient reported here and the previously published patient exhibited limb, bulbar, and respiratory muscle weakness from birth, which improved over time. Other shared features include history of polyhydramnios, hypotonia, scoliosis, and high-arched palate. Distal arthrogryposis and nemaline rods, findings reported in the first patient with -related congenital myopathy, were not observed in the patient reported here.

Conclusions: This report provides further evidence for the association of biallelic variants with severe recessive congenital myopathy with or without nemaline rods and distal arthrogryposis. sequencing and copy number analysis should be incorporated into the workup of congenital myopathies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1212/NXG.0000000000000589DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8105884PMC
June 2021

Heterozygous variants in SPTBN1 cause intellectual disability and autism.

Am J Med Genet A 2021 07 13;185(7):2037-2045. Epub 2021 Apr 13.

Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.

Spectrins are common components of cytoskeletons, binding to cytoskeletal elements and the plasma membrane, allowing proper localization of essential membrane proteins, signal transduction, and cellular scaffolding. Spectrins are assembled from α and β subunits, encoded by SPTA1 and SPTAN1 (α) and SPTB, SPTBN1, SPTBN2, SPTBN4, and SPTBN5 (β). Pathogenic variants in various spectrin genes are associated with erythroid cell disorders (SPTA1, SPTB) and neurologic disorders (SPTAN1, SPTBN2, and SPTBN4), but no phenotypes have been definitively associated with variants in SPTBN1 or SPTBN5. Through exome sequencing and case matching, we identified seven unrelated individuals with heterozygous SPTBN1 variants: two with de novo missense variants and five with predicted loss-of-function variants (found to be de novo in two, while one was inherited from a mother with a history of learning disabilities). Common features include global developmental delays, intellectual disability, and behavioral disturbances. Autistic features (4/6) and epilepsy (2/7) or abnormal electroencephalogram without overt seizures (1/7) were present in a subset. Identification of loss-of-function variants suggests a haploinsufficiency mechanism, but additional functional studies are required to fully elucidate disease pathogenesis. Our findings support the essential roles of SPTBN1 in human neurodevelopment and expand the knowledge of human spectrinopathy disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.a.62201DOI Listing
July 2021

Clinical, neuroimaging, and molecular spectrum of TECPR2-associated hereditary sensory and autonomic neuropathy with intellectual disability.

Hum Mutat 2021 06 11;42(6):762-776. Epub 2021 May 11.

Oxford Centre for Genomic Medicine, Oxford, UK.

Bi-allelic TECPR2 variants have been associated with a complex syndrome with features of both a neurodevelopmental and neurodegenerative disorder. Here, we provide a comprehensive clinical description and variant interpretation framework for this genetic locus. Through international collaboration, we identified 17 individuals from 15 families with bi-allelic TECPR2-variants. We systemically reviewed clinical and molecular data from this cohort and 11 cases previously reported. Phenotypes were standardized using Human Phenotype Ontology terms. A cross-sectional analysis revealed global developmental delay/intellectual disability, muscular hypotonia, ataxia, hyporeflexia, respiratory infections, and central/nocturnal hypopnea as core manifestations. A review of brain magnetic resonance imaging scans demonstrated a thin corpus callosum in 52%. We evaluated 17 distinct variants. Missense variants in TECPR2 are predominantly located in the N- and C-terminal regions containing β-propeller repeats. Despite constituting nearly half of disease-associated TECPR2 variants, classifying missense variants as (likely) pathogenic according to ACMG criteria remains challenging. We estimate a pathogenic variant carrier frequency of 1/1221 in the general and 1/155 in the Jewish Ashkenazi populations. Based on clinical, neuroimaging, and genetic data, we provide recommendations for variant reporting, clinical assessment, and surveillance/treatment of individuals with TECPR2-associated disorder. This sets the stage for future prospective natural history studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/humu.24206DOI Listing
June 2021

A novel homozygous SLC13A5 whole-gene deletion generated by Alu/Alu-mediated rearrangement in an Iraqi family with epileptic encephalopathy.

Am J Med Genet A 2021 07 2;185(7):1972-1980. Epub 2021 Apr 2.

Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.

Biallelic loss-of-function (LoF) of SLC13A5 (solute carrier family 13, member 5) induced deficiency in sodium/citrate transporter (NaCT) causes autosomal recessive developmental epileptic encephalopathy 25 with hypoplastic amelogenesis imperfecta (DEE25; MIM #615905). Many pathogenic SLC13A5 single nucleotide variants (SNVs) and small indels have been described; however, no cases with copy number variants (CNVs) have been sufficiently investigated. We describe a consanguineous Iraqi family harboring an 88.5 kb homozygous deletion including SLC13A5 in Chr17p13.1. The three affected male siblings exhibit neonatal-onset epilepsy with fever-sensitivity, recurrent status epilepticus, global developmental delay/intellectual disability (GDD/ID), and other variable neurological findings as shared phenotypical features of DEE25. Two of the three affected subjects exhibit hypoplastic amelogenesis imperfecta (AI), while the proband shows no evidence of dental abnormalities or AI at 2 years of age with apparently unaffected primary dentition. Characterization of the genomic architecture at this locus revealed evidence for genomic instability generated by an Alu/Alu-mediated rearrangement; confirmed by break-point junction Sanger sequencing. This multiplex family from a distinct population elucidates the phenotypic consequence of complete LoF of SLC13A5 and illustrates the importance of read-depth-based CNV detection in comprehensive exome sequencing analysis to solve cases that otherwise remain molecularly unsolved.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.a.62192DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8445493PMC
July 2021

Exome sequencing reveals predominantly de novo variants in disorders with intellectual disability (ID) in the founder population of Finland.

Hum Genet 2021 Jul 12;140(7):1011-1029. Epub 2021 Mar 12.

Center for Statistical Genetics, Sergievsky Center, Taub Institute for Alzheimer's Disease and the Aging Brain, and the Department of Neurology, Columbia University Medical Center, New York, NY, USA.

The genetics of autosomal recessive intellectual disability (ARID) has mainly been studied in consanguineous families, however, founder populations may also be of interest to study intellectual disability (ID) and the contribution of ARID. Here, we used a genotype-driven approach to study the genetic landscape of ID in the founder population of Finland. A total of 39 families with syndromic and non-syndromic ID were analyzed using exome sequencing, which revealed a variant in a known ID gene in 27 families. Notably, 75% of these variants in known ID genes were de novo or suspected de novo (64% autosomal dominant; 11% X-linked) and 25% were inherited (14% autosomal recessive; 7% X-linked; and 4% autosomal dominant). A dual molecular diagnosis was suggested in two families (5%). Via additional analysis and molecular testing, we identified three cases with an abnormal molecular karyotype, including chr21q22.12q22.2 uniparental disomy with a mosaic interstitial 2.7 Mb deletion covering DYRK1A and KCNJ6. Overall, a pathogenic or likely pathogenic variant was identified in 64% (25/39) of the families. Last, we report an alternate inheritance model for 3 known ID genes (UBA7, DDX47, DHX58) and discuss potential candidate genes for ID, including SYPL1 and ERGIC3 with homozygous founder variants and de novo variants in POLR2F and DNAH3. In summary, similar to other European populations, de novo variants were the most common variants underlying ID in the studied Finnish population, with limited contribution of ARID to ID etiology, though mainly driven by founder and potential founder variation in the latter case.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00439-021-02268-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8197721PMC
July 2021

Disruption of RFX family transcription factors causes autism, attention-deficit/hyperactivity disorder, intellectual disability, and dysregulated behavior.

Genet Med 2021 06 3;23(6):1028-1040. Epub 2021 Mar 3.

Division of Medical Genetics, Nemours/A.I. DuPont Hospital for Children, Wilmington, DE, USA.

Purpose: We describe a novel neurobehavioral phenotype of autism spectrum disorder (ASD), intellectual disability, and/or attention-deficit/hyperactivity disorder (ADHD) associated with de novo or inherited deleterious variants in members of the RFX family of genes. RFX genes are evolutionarily conserved transcription factors that act as master regulators of central nervous system development and ciliogenesis.

Methods: We assembled a cohort of 38 individuals (from 33 unrelated families) with de novo variants in RFX3, RFX4, and RFX7. We describe their common clinical phenotypes and present bioinformatic analyses of expression patterns and downstream targets of these genes as they relate to other neurodevelopmental risk genes.

Results: These individuals share neurobehavioral features including ASD, intellectual disability, and/or ADHD; other frequent features include hypersensitivity to sensory stimuli and sleep problems. RFX3, RFX4, and RFX7 are strongly expressed in developing and adult human brain, and X-box binding motifs as well as RFX ChIP-seq peaks are enriched in the cis-regulatory regions of known ASD risk genes.

Conclusion: These results establish a likely role of deleterious variation in RFX3, RFX4, and RFX7 in cases of monogenic intellectual disability, ADHD and ASD, and position these genes as potentially critical transcriptional regulators of neurobiological pathways associated with neurodevelopmental disease pathogenesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41436-021-01114-zDOI Listing
June 2021

Phenotypic and protein localization heterogeneity associated with AHDC1 pathogenic protein-truncating alleles in Xia-Gibbs syndrome.

Hum Mutat 2021 May 6;42(5):577-591. Epub 2021 Mar 6.

Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA.

Xia-Gibbs syndrome (XGS) is a rare Mendelian disease typically caused by de novo stop-gain or frameshift mutations in the AT-hook DNA binding motif containing 1 (AHDC1) gene. Patients usually present in early infancy with hypotonia and developmental delay and later exhibit intellectual disability (ID). The overall presentation is variable, however, and the emerging clinical picture is still evolving. A detailed phenotypic analysis of 34 XGS individuals revealed five core phenotypes (delayed motor milestones, speech delay, low muscle tone, ID, and hypotonia) in more than 80% of individuals and an additional 12 features that occurred more variably. Seizures and scoliosis were more frequently associated with truncations that arise before the midpoint of the protein although the occurrence of most features could not be predicted by the mutation position. Transient expression of wild type and different patient truncated AHDC1 protein forms in human cell lines revealed abnormal patterns of nuclear localization including a diffuse distribution of a short truncated form and nucleolar aggregation in mid-protein truncated forms. Overall, both the occurrence of variable phenotypes and the different distribution of the expressed protein reflect the heterogeneity of this syndrome.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/humu.24190DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8115934PMC
May 2021

Clinical characterization of individuals with the distal 1q21.1 microdeletion.

Am J Med Genet A 2021 05 11;185(5):1388-1398. Epub 2021 Feb 11.

Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.

Distal 1q21.1 microdeletions have shown highly variable clinical expressivity and incomplete penetrance, with affected individuals manifesting a broad spectrum of nonspecific features. The goals of this study were to better describe the phenotypic spectrum of patients with distal 1q21.1 microdeletions and to compare the clinical features among affected individuals. We performed a retrospective chart review of 47 individuals with distal 1q21.1 microdeletions tested at a large clinical genetic testing laboratory, with most patients being clinically evaluated in the same children's hospital. Health information such as growth charts, results of imaging studies, developmental history, and progress notes were collected. Statistical analysis was performed using Fisher's exact test to compare clinical features among study subjects. Common features in our cohort include microcephaly (51.2%), seizures (29.8%), developmental delay (74.5%), failure to thrive (FTT) (68.1%), dysmorphic features (63.8%), and a variety of congenital anomalies such as cardiac abnormalities (23.4%) and genitourinary abnormalities (19.1%). Compared to prior literature, we found that seizures, brain anomalies, and FTT were more prevalent among our study cohort. Females were more likely than males to have microcephaly (p = 0.0199) and cardiac abnormalities (p = 0.0018). Based on existing genome-wide clinical testing results, at least a quarter of the cohort had additional genetic findings that may impact the phenotype of the individual. Our study represents the largest cohort of distal 1q21.1 microdeletion carriers available in the literature thus far, and it further illustrates the wide spectrum of clinical manifestations among symptomatic individuals. These results may allow for improved genetic counseling and management of affected individuals. Future studies may help to elucidate the underlying molecular mechanisms impacting the phenotypic variability observed with this microdeletion.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.a.62104DOI Listing
May 2021

Neurodevelopmental disorder in an Egyptian family with a biallelic ALKBH8 variant.

Am J Med Genet A 2021 04 5;185(4):1288-1293. Epub 2021 Feb 5.

Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.

Alkylated DNA repair protein AlkB homolog 8 (ALKBH8) is a member of the AlkB family of dioxygenases. ALKBH8 is a methyltransferase of the highly variable wobble nucleoside position in the anticodon loop of tRNA and thus plays a critical role in tRNA modification by preserving codon recognition and preventing errors in amino acid incorporation during translation. Moreover, its activity catalyzes uridine modifications that are proposed to be critical for accurate protein translation. Previously, two distinct homozygous truncating variants in the final exon of ALKBH8 were described in two unrelated large Saudi Arabian kindreds with intellectual developmental disorder and autosomal recessive 71 (MRT71) syndrome (MIM# 618504). Here, we report a third family-of Egyptian descent-harboring a novel homozygous frame-shift variant in the last exon of ALKBH8. Two affected siblings in this family exhibit global developmental delay and intellectual disability as shared characteristic features of MRT71 syndrome, and we further characterize their observed dysmorphic features and brain MRI findings. This description of a third family with a truncating ALKBH8 variant from a distinct population broadens the phenotypic and genotypic spectrum of MRT71 syndrome, affirms that perturbations in tRNA biogenesis can contribute to neurogenetic disease traits, and firmly establishes ALKBH8 as a novel neurodevelopmental disease gene.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.a.62100DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8450764PMC
April 2021

MED27 Variants Cause Developmental Delay, Dystonia, and Cerebellar Hypoplasia.

Ann Neurol 2021 04 8;89(4):828-833. Epub 2021 Feb 8.

Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX.

The Mediator multiprotein complex functions as a regulator of RNA polymerase II-catalyzed gene transcription. In this study, exome sequencing detected biallelic putative disease-causing variants in MED27, encoding Mediator complex subunit 27, in 16 patients from 11 families with a novel neurodevelopmental syndrome. Patient phenotypes are highly homogeneous, including global developmental delay, intellectual disability, axial hypotonia with distal spasticity, dystonic movements, and cerebellar hypoplasia. Seizures and cataracts were noted in severely affected individuals. Identification of multiple patients with biallelic MED27 variants supports the critical role of MED27 in normal human neural development, particularly for the cerebellum. ANN NEUROL 2021;89:828-833.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ana.26019DOI Listing
April 2021

Perturbations of genes essential for Müllerian duct and Wölffian duct development in Mayer-Rokitansky-Küster-Hauser syndrome.

Am J Hum Genet 2021 02;108(2):337-345

Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.

Mayer-Rokitansky-Küster-Hauser syndrome (MRKHS) is associated with congenital absence of the uterus, cervix, and the upper part of the vagina; it is a sex-limited trait. Disrupted development of the Müllerian ducts (MD)/Wölffian ducts (WD) through multifactorial mechanisms has been proposed to underlie MRKHS. In this study, exome sequencing (ES) was performed on a Chinese discovery cohort (442 affected subjects and 941 female control subjects) and a replication MRKHS cohort (150 affected subjects of mixed ethnicity from North America, South America, and Europe). Phenotypic follow-up of the female reproductive system was performed on an additional cohort of PAX8-associated congenital hypothyroidism (CH) (n = 5, Chinese). By analyzing 19 candidate genes essential for MD/WD development, we identified 12 likely gene-disrupting (LGD) variants in 7 genes: PAX8 (n = 4), BMP4 (n = 2), BMP7 (n = 2), TBX6 (n = 1), HOXA10 (n = 1), EMX2 (n = 1), and WNT9B (n = 1), while LGD variants in these genes were not detected in control samples (p = 1.27E-06). Interestingly, a sex-limited penetrance with paternal inheritance was observed in multiple families. One additional PAX8 LGD variant from the replication cohort and two missense variants from both cohorts were revealed to cause loss-of-function of the protein. From the PAX8-associated CH cohort, we identified one individual presenting a syndromic condition characterized by CH and MRKHS (CH-MRKHS). Our study demonstrates the comprehensive utilization of knowledge from developmental biology toward elucidating genetic perturbations, i.e., rare pathogenic alleles involving the same loci, contributing to human birth defects.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2020.12.014DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7896104PMC
February 2021

Clinical presentation and evolution of Xia-Gibbs syndrome due to p.Gly375ArgfsTer3 variant in a patient from DR Congo (Central Africa).

Am J Med Genet A 2021 03 29;185(3):990-994. Epub 2020 Dec 29.

Centre for Human Genetics, Faculty of Medicine, University of Kinshasa, Kinshasa, Congo.

Xia-Gibbs syndrome (XGS) is a very rare genetic condition. The clinical spectrum is very broad and variable. The phenotype and evolution in a Congolese boy with XGS have been reported. At 6 years he had speech delay, drooling, marked hyperactivity, attention deficit, aggressive behavior, and intellectual disability. Dysmorphological evaluation revealed strabismus, mild unilateral ptosis, uplifted ear lobes, flat philtrum, thin upper lip vermillion, high arched palate, and flat feet. Patient-only whole exome sequencing identified a known pathogenic frameshift variant in the AHDC1 gene [NM_001029882.3(AHDC1):c.1122dupC;(p.Gly375ArgfsTer3)]. The clinical follow-up revealed the deterioration of his fine motor skills and significant cerebellar phenotype including tremor, pes cavus, and gait instability at the age of 12 years. This patient was compared with three previously reported patients with the same variant but did not identify a consistent pattern in the evolution of symptoms with age.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.a.62049DOI Listing
March 2021

Dominant mitochondrial membrane protein-associated neurodegeneration (MPAN) variants cluster within a specific C19orf12 isoform.

Parkinsonism Relat Disord 2021 01 11;82:84-86. Epub 2020 Nov 11.

RILD Wellcome Wolfson Centre, University of Exeter Medical School, Exeter, EX2 5DW, UK. Electronic address:

Mitochondria membrane protein-associated neurodegeneration (MPAN) neurodegenerative disorder is typically associated with biallelic C19orf12 variants. Here we describe a new and review candidate previous monoallelic de novo C19orf12 variants to define loss of function mutations located in the putative non-membrane spanning C19orf12 isoform as the potential basis of monoallelic MPAN.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.parkreldis.2020.10.041DOI Listing
January 2021

Alternative genomic diagnoses for individuals with a clinical diagnosis of Dubowitz syndrome.

Am J Med Genet A 2021 01 24;185(1):119-133. Epub 2020 Oct 24.

Department of Medical Genetics, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, Turkey.

Dubowitz syndrome (DubS) is considered a recognizable syndrome characterized by a distinctive facial appearance and deficits in growth and development. There have been over 200 individuals reported with Dubowitz or a "Dubowitz-like" condition, although no single gene has been implicated as responsible for its cause. We have performed exome (ES) or genome sequencing (GS) for 31 individuals clinically diagnosed with DubS. After genome-wide sequencing, rare variant filtering and computational and Mendelian genomic analyses, a presumptive molecular diagnosis was made in 13/27 (48%) families. The molecular diagnoses included biallelic variants in SKIV2L, SLC35C1, BRCA1, NSUN2; de novo variants in ARID1B, ARID1A, CREBBP, POGZ, TAF1, HDAC8, and copy-number variation at1p36.11(ARID1A), 8q22.2(VPS13B), Xp22, and Xq13(HDAC8). Variants of unknown significance in known disease genes, and also in genes of uncertain significance, were observed in 7/27 (26%) additional families. Only one gene, HDAC8, could explain the phenotype in more than one family (N = 2). All but two of the genomic diagnoses were for genes discovered, or for conditions recognized, since the introduction of next-generation sequencing. Overall, the DubS-like clinical phenotype is associated with extensive locus heterogeneity and the molecular diagnoses made are for emerging clinical conditions sharing characteristic features that overlap the DubS phenotype.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.a.61926DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8197629PMC
January 2021
-->