Publications by authors named "Jennifer D Venable"

8 Publications

  • Page 1 of 1

Discovery of a Gut-Restricted JAK Inhibitor for the Treatment of Inflammatory Bowel Disease.

J Med Chem 2020 03 16;63(6):2915-2929. Epub 2020 Mar 16.

Janssen Research and Development, 3210 Merryfield Row, San Diego, California 92121, United States.

To identify Janus kinase (JAK) inhibitors that selectively target gastrointestinal tissues with limited systemic exposures, a class of imidazopyrrolopyridines with a range of physical properties was prepared and evaluated. We identified compounds with low intrinsic permeability and determined a correlation between permeability and physicochemical properties, clogP and tPSA, for a subset of compounds. This low intrinsic permeability translated into compounds displaying high colonic exposure and low systemic exposure after oral dosing at 25 mg/kg in mouse. In a mouse PK/PD model, oral dosing of lead compound demonstrated dose-dependent inhibition of pSTAT phosphorylation in colonic explants post-oral dose but low systemic exposure and no measurable systemic pharmacodynamic activity. We thus demonstrate the utility of JAK inhibitors with low intrinsic permeability as a feasible approach to develop gut-restricted, pharmacologically active molecules with a potential advantage over systemically available compounds that are limited by systemic on-target adverse events.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jmedchem.9b01439DOI Listing
March 2020

Functional Profiling of 2-Aminopyrimidine Histamine H4 Receptor Modulators.

J Med Chem 2015 Sep 3;58(18):7119-27. Epub 2015 Jun 3.

Janssen Research & Development, LLC , 3210 Merryfield Row, San Diego, California 92121, United States.

Histamine is an important endogenous signaling molecule that is involved in a number of physiological processes including allergic reactions, gastric acid secretion, neurotransmitter release, and inflammation. The biological effects of histamine are mediated by four histamine receptors with distinct functions and distribution profiles (H1-H4). The most recently discovered histamine receptor (H4) has emerged as a promising drug target for treating inflammatory diseases. A detailed understanding of the role of the H4 receptor in human disease remains elusive, in part because low sequence similarity between the human and rodent H4 receptors complicates the translation of preclinical pharmacology to humans. This review provides an overview of H4 drug discovery programs that have studied cross-species structure-activity relationships, with a focus on the functional profiling of the 2-aminopyrimidine chemotype that has advanced to the clinic for allergy, atopic dermatitis, asthma, and rheumatoid arthritis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jmedchem.5b00516DOI Listing
September 2015

Agonist/antagonist modulation in a series of 2-aryl benzimidazole H4 receptor ligands.

Bioorg Med Chem Lett 2010 Jun 11;20(11):3367-71. Epub 2010 Apr 11.

Johnson & Johnson Pharmaceutical Research & Development, L.L.C, 3210 Merryfield Row, San Diego, CA 92121, USA.

The present work details the transformation of a series of human histamine H(4) agonists into potent functional antagonists. Replacement of the aminopyrrolidine diamine functionality with a 5,6-fused pyrrolopiperidine ring system led to an antagonist. The dissection of this fused diamine led to the eventual replacement with heterocycles. The incorporation of histamine as the terminal amine led to a very potent and selective histamine H(4) agonist; whereas incorporation of the constrained histamine analog, spinacamine, modulated the functional activity to give a partial agonist. In two separate series, we demonstrate that constraining the terminal amino portion modulated the spectrum of functional activity of histamine H(4) ligands.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2010.04.017DOI Listing
June 2010

Phosphoinositide 3-kinase gamma (PI3Kgamma) inhibitors for the treatment of inflammation and autoimmune disease.

Recent Pat Inflamm Allergy Drug Discov 2010 Jan;4(1):1-15

Johnson & Johnson Pharmaceutical Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA92121, USA.

Phosphoinositide 3-kinase gamma (PI3Kgamma) is a lipid kinase in leukocytes that generates phosphatidylinositol 3,4,5-trisphosphate to recruit and activate downstream signaling molecules. Distinct from other members in the PI3K family, PI3Kgamma is activated by G-protein coupled-receptors responding to chemotactic ligands. PI3Kgamma plays an important role in migration of both myeloid and lymphoid cells. It is also required for other leukocyte functions such as neutrophil oxidative burst, T cell proliferation and mast degranulation. Mice with PI3Kgamma inactivated by genetic or pharmacological approaches are protected from disease development in a number of inflammation and autoimmune disease models. The function of PI3Kgamma depends on its kinase activity and therefore it has been suggested by many reports that small molecules inhibiting its kinase activity could be promising for the treatment of inflammation and autoimmune diseases. Over the last five years, a number of pharmaceutical companies have reported a wide variety of PI3Kgamma inhibitors, of which several x-ray crystal structures with PI3Kgamma have been elucidated. The structural characteristics and selectivity profiles of these inhibitors, in particular thiazolidinones and 2-aminoheterocycles, and those disclosed in related patent applications are summarized in this review.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2174/187221310789895603DOI Listing
January 2010

Small molecule inhibitors of phosphoinositide 3-kinase (PI3K) delta and gamma.

Curr Top Med Chem 2009 ;9(8):738-53

Johnson & Johnson Pharmaceutical Research & Development LLC San Diego, CA 92121, USA.

In recent years, pharmaceutical companies have increasingly focused on phosphoinositide 3-kinases delta (PI3Kdelta) and gamma (PI3Kgamma) as therapeutic targets for the treatment of inflammatory and autoimmune diseases. All class 1 PI3-kinases (alpha/beta/gamma/delta) generate phospholipid second messengers that help govern cellular processes such as migration, proliferation, and apoptosis. PI3K delta/ gamma lipid kinases are mainly restricted to the hematopoetic system whereas PI3K alpha/beta are ubiquitously expressed, thus raising potential toxicity concerns for chronic indications such as asthma and rheumatoid arthritis. Therefore, the challenge in developing a small molecule inhibitor of PI3K is to define and attain the appropriate isoform selectivity profile. Significant advances in the design of such compounds have been achieved by utilizing x-ray crystal structures of various inhibitors bound to PI3Kgamma in conjunction with pharmacophore modeling and high-throughput screening. Herein, we review the history and challenges involved with the discovery of small molecule isoform-specific PI3K inhibitors. Recent progress in the design of selective PI3Kdelta, PI3Kgamma, and PI3Kdelta/gamma dual inhibitors will be presented.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2174/156802609789044434DOI Listing
October 2009

The histamine H4 receptor in autoimmune disease.

Expert Opin Investig Drugs 2006 Nov;15(11):1443-52

Johnson & Johnson Pharmaceutical Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA.

Histamine exerts its actions through four known receptors. The recently cloned histamine receptor, H4R, has been shown to have a role in chemotaxis and mediator release in various types of immune cells including mast cells, eosinophils, dendritic cells and T cells. H4R antagonists have been shown to have anti-inflammatory properties and efficacy in a number of disease models, such as those for asthma and colitis in vivo. Recently, H4R antagonists have been developed with high receptor affinity and specificity, which make them good tools for further characterisation of the receptor in animal models and, eventually, in humans. Histamine and the cells that produce it, such as mast cells and basophils, have long been thought to be involved in allergic conditions but there has recently been recognition that they may also play a role in various autoimmune diseases. Given this and the fact that the H4R has function in mast cells, dendritic cells and T cells, antagonists for the receptor may be useful in treating autoimmune diseases in addition to allergy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1517/13543784.15.11.1443DOI Listing
November 2006

Preparation and biological evaluation of indole, benzimidazole, and thienopyrrole piperazine carboxamides: potent human histamine h(4) antagonists.

J Med Chem 2005 Dec;48(26):8289-98

Johnson & Johnson Pharmaceutical Research and Development, L.L.C., 3210 Merryfield Row, San Diego, California 92121, USA.

Three series of H(4) receptor ligands, derived from indoly-2-yl-(4-methyl-piperazin-1-yl)-methanones, have been synthesized and their structure-activity relationships evaluated for activity at the H(4) receptor in competitive binding and functional assays. In all cases, substitution of small lipophilic groups in the 4 and 5-positions led to increased activity in a [(3)H]histamine radiolabeled ligand competitive binding assay. In vitro metabolism and initial pharmacokinetic studies were performed on selected compounds leading to the identification of indole 8 and benzimidazole 40 as potent H(4) antagonists with the potential for further development. In addition, both 8 and 40 demonstrated efficacy in in vitro mast cell and eosinophil chemotaxis assays.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm0502081DOI Listing
December 2005

The first potent and selective non-imidazole human histamine H4 receptor antagonists.

J Med Chem 2003 Sep;46(19):3957-60

Johnson & Johnson Pharmaceutical Research and Development, L.L.C, 3210 Merryfield Row, San Diego, California 92121, USA.

Following the discovery of the human histamine H4 receptor, a high throughput screen of our corporate compound collection identified compound 6 as a potential lead. Investigation of the SAR resulted in the discovery of novel compounds 10e and 10l, which are the first potent and selective histamine H4 receptor antagonists to be described.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm0341047DOI Listing
September 2003