Publications by authors named "Jenna Conway"

5 Publications

  • Page 1 of 1

Increase in Ventricle Size and the Evolution of White Matter Changes on Serial Imaging in Critically Ill Patients with COVID-19.

Neurocrit Care 2021 Mar 5. Epub 2021 Mar 5.

Department of Neurology, NYU Langone Medical Center, New York, NY, 10016, USA.

Background: Evolution of brain magnetic resonance imaging (MRI) findings in critically ill patients with coronavirus disease 2019 (COVID-19) is unknown.

Methods: We retrospectively reviewed 4530 critically ill patients with COVID-19 admitted to three tertiary care hospitals in New York City from March 1 to June 30, 2020 to identify patients who had more than one brain MRI. We reviewed the initial and final MRI for each patient to (1) measure the percent change in the bicaudate index and third ventricular diameter and (2) evaluate changes in the presence and severity of white matter changes.

Results: Twenty-one patients had two MRIs separated by a median of 22 [Interquartile range (IQR) 14-30] days. Ventricle size increased for 15 patients (71%) between scans [median bicaudate index 0.16 (IQR 0.126-0.181) initially and 0.167 (IQR 0.138-0.203) on final imaging (p < 0.001); median third ventricular diameter 6.9 mm (IQR 5.4-10.3) initially and 7.2 mm (IQR 6.4-10.8) on final imaging (p < 0.001)]. Every patient had white matter changes on the initial and final MRI; between images, they worsened for seven patients (33%) and improved for three (14%).

Conclusions: On serial imaging of critically ill patients with COVID-19, ventricle size frequently increased over several weeks. White matter changes were often unchanged, but in some cases they worsened or improved, demonstrating there is likely a spectrum of pathophysiological processes responsible for these changes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12028-021-01207-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7935478PMC
March 2021

Sleep-deprived residents and rapid picture naming performance using the Mobile Universal Lexicon Evaluation System (MULES) test.

eNeurologicalSci 2021 Mar 2;22:100323. Epub 2021 Feb 2.

Departments of Neurology, New York University Grossman School of Medicine, New York, NY, USA.

Objective: The Mobile Universal Lexicon Evaluation System (MULES) is a rapid picture naming task that captures extensive brain networks involving neurocognitive, afferent/efferent visual, and language pathways. Many of the factors captured by MULES may be abnormal in sleep-deprived residents. This study investigates the effect of sleep deprivation in post-call residents on MULES performance.

Methods: MULES, consisting of 54 color photographs, was administered to a cohort of neurology residents taking 24-hour in-hospital call ( = 18) and a group of similar-aged controls not taking call (n = 18). Differences in times between baseline and follow-up MULES scores were compared between the two groups.

Results: MULES time change in call residents was significantly worse (slower) from baseline (mean 1.2 s slower) compared to non-call controls (mean 11.2 s faster) ( < 0.001, Wilcoxon rank sum test). The change in MULES time from baseline was significantly correlated to the change in subjective level of sleepiness for call residents and to the amount of sleep obtained in the 24 h prior to follow-up testing for the entire cohort. For call residents, the duration of sleep obtained during call did not significantly correlate with change in MULES scores. There was no significant correlation between MULES change and sleep quality questionnaire score for the entire cohort.

Conclusion: The MULES is a novel test for effects of sleep deprivation on neurocognition and vision pathways. Sleep deprivation significantly worsens MULES performance. Subjective sleepiness may also affect MULES performance. MULES may serve as a useful performance assessment tool for sleep deprivation in residents.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ensci.2021.100323DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7876539PMC
March 2021

Rapid picture naming in Parkinson's disease using the Mobile Universal Lexicon Evaluation System (MULES).

J Neurol Sci 2020 Mar 9;410:116680. Epub 2020 Jan 9.

Departments of Neurology, New York University School of Medicine, New York, NY, USA; Departments of Population Health, New York University School of Medicine, New York, NY, USA; Departments of Ophthalmology, New York University School of Medicine, New York, NY, USA. Electronic address:

Objective: The Mobile Universal Lexicon Evaluation System (MULES) is a test of rapid picture naming that captures extensive brain networks, including cognitive, language and afferent/efferent visual pathways. MULES performance is slower in concussion and multiple sclerosis, conditions in which vision dysfunction is common. Visual aspects captured by the MULES may be impaired in Parkinson's disease (PD) including color discrimination, object recognition, visual processing speed, and convergence. The purpose of this study was to compare MULES time scores for a cohort of PD patients with those for a control group of participants of similar age. We also sought to examine learning effects for the MULES by comparing scores for two consecutive trials within the patient and control groups.

Methods: MULES consists of 54 colored pictures (fruits, animals, random objects). The test was administered in a cohort of PD patients and in a group of similar aged controls. Wilcoxon rank-sum tests were used to determine statistical significance for differences in MULES time scores between PD patients and controls. Spearman rank-correlation coefficients were calculated to examine the relation between MULES time scores and PD motor symptom severity (UPDRS). Learning effects were assessed using Wilcoxon rank-sum tests.

Results: Among 51 patients with PD (median age 70 years, range 52-82) and 20 disease-free control participants (median age 67 years, range 51-90), MULES scores were significantly slower (worse performance) in PD patients (median 63.2 s, range 37.3-296.3) vs. controls (median 53.9 s, range 37.5-128.6, P = .03, Wilcoxon rank-sum test). Slower MULES times were associated with increased motor symptom severity as measured by the Unified Parkinson's Disease Rating Scale, Section III (r = 0.37, P = .02). Learning effects were greater among patients with PD (median improvement of 14.8 s between two MULES trials) compared to controls (median 7.4 s, P = .004).

Conclusion: The MULES is a complex test of rapid picture naming that captures numerous brain pathways including an extensive visual network. MULES performance is slower in patients with PD and our study suggests an association with the degree of motor impairment. Future studies will determine the relation of MULES time scores to other modalities that test visual function and structure in PD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jns.2020.116680DOI Listing
March 2020

Clinical Reasoning: A 55-year-old obese woman with headache and rhinorrhea.

Neurology 2019 05;92(22):e2614-e2617

From the Department of Neurology, NYU School of Medicine, New York, NY.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1212/WNL.0000000000007582DOI Listing
May 2019

Clinical Reasoning: A 41-year-old man with thunderclap headache.

Neurology 2018 07;91(1):e87-e91

From the Departments of Neurology (S. Grossman, A.R., J.C., L.G., S. Galetta) and Psychiatry (L.G.), New York University, New York.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1212/WNL.0000000000005738DOI Listing
July 2018