Publications by authors named "Jen-Leih Wu"

107 Publications

Proapoptotic Involved in Brain Development, When Severely Defected, Induces Dramatic Malformation in Zebrafish.

Int J Mol Sci 2021 May 2;22(9). Epub 2021 May 2.

Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng Kung University, Tainan 701, Taiwan.

The BH3-only molecule Bad regulates cell death via its differential protein phosphorylation, but very few studies address its effect on early embryonic development in vertebrate systems. In this work, we examined the novel role of zebrafish Bad in the initial programmed cell death (PCD) for brain morphogenesis through reducing environmental stress and cell death signaling. Bad was considered to be a material factor that because of the knockdown of Bad by morpholino oligonucleotides, PCD was increased and the reactive oxygen species (ROS) level was enhanced, which correlated to trigger a p53/caspase-8 involving cell death signaling. This Bad knockdown-mediated environmental stress and enhanced cell dying can delay normal cell migration in the formation of the three germ layers, especially the ectoderm, for further brain development. Furthermore, Bad defects involved in three-germ-layers development at 8 hpf were identified by in situ hybridization approach on , , and pattern expression markers. Finally, the Bad knockdown-induced severely defected brain was examined by tissue section from 24 to 48 h postfertilization (hpf), which correlated to induce dramatic malformation in the hindbrain. Our data suggest that the BH3-only molecule Bad regulates brain development via controlling programmed cell death on overcoming environmental stress for reducing secondary cell death signaling, which suggests that correlates to brain developmental and neurological disorders in this model system.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms22094832DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8124244PMC
May 2021

Conformational epitope matching and prediction based on protein surface spiral features.

BMC Genomics 2021 May 31;22(Suppl 2):116. Epub 2021 May 31.

Department of Aquaculture, College of Life Science, National Taiwan Ocean University, Keelung, Taiwan.

Background: A conformational epitope (CE) is composed of neighboring amino acid residues located on an antigenic protein surface structure. CEs bind their complementary paratopes in B-cell receptors and/or antibodies. An effective and efficient prediction tool for CE analysis is critical for the development of immunology-related applications, such as vaccine design and disease diagnosis.

Results: We propose a novel method consisting of two sequential modules: matching and prediction. The matching module includes two main approaches. The first approach is a complete sequence search (CSS) that applies BLAST to align the sequence with all known antigen sequences. Fragments with high epitope sequence identities are identified and the predicted residues are annotated on the query structure. The second approach is a spiral vector search (SVS) that adopts a novel surface spiral feature vector for large-scale surface patch detection when queried against a comprehensive epitope database. The prediction module also contains two proposed subsystems. The first system is based on knowledge-based energy and geometrical neighboring residue contents, and the second system adopts combinatorial features, including amino acid contents and physicochemical characteristics, to formulate corresponding geometric spiral vectors and compare them with all spiral vectors from known CEs. An integrated testing dataset was generated for method evaluation, and our two searching methods effectively identified all epitope regions. The prediction results show that our proposed method outperforms previously published systems in terms of sensitivity, specificity, positive predictive value, and accuracy.

Conclusions: The proposed method significantly improves the performance of traditional epitope prediction. Matching followed by prediction is an efficient and effective approach compared to predicting directly on specific surfaces containing antigenic characteristics.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12864-020-07303-5DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8165135PMC
May 2021

Comparative transcriptome analysis reveals ectopic delta-5 and delta-6 desaturases enhance protective gene expression upon Vibrio vulnificus challenge in Tilapia (Oreochromis niloticus).

BMC Genomics 2021 Mar 22;22(1):200. Epub 2021 Mar 22.

Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Rd., Jiaushi, Ilan, 262, Taiwan.

Background: Tilapia (Oreochromis niloticus) cultures are frequently infected by Vibrio vulnificus, causing major economic losses to production units. Previously, tilapia expressing recombinant delta-5 desaturase and delta-6 desaturase (D56) were found to be resistant to V. vulnificus infection. In this report, we profile the D56-mediated molecular changes underlying this resistance in tilapia. A comparative transcriptome analysis was performed on V. vulnificus-infected wild-type and D56-transgenic tilapia using Illumina's sequencing-by-synthesis approach. Gene enrichment analysis on differentially expressed unigenes was performed, and the expression patterns were validated by real-time PCR.

Results: Comparative transcriptome analysis was performed on RNA-sequence profiles obtained from wild-type and D56-transgenic tilapia at 0, 6 and 24 h post-infection with V. vulnificaus. GO and KEGG gene enrichment analyses showed that D56 regulates several pathways and genes, including fatty acid (FA) metabolism associated, and inflammatory and immune response. Expression of selected FA metabolism-associated, inflammatory and immune responsive genes was validated by qPCR. The inflammatory and immune responsive genes that are modulated by FA-associated D56 likely contribute to the enhanced resistance against V. vulnificus infection in Tilapia.

Conclusions: Transcriptome profiling and filtering for two-fold change variation showed that 3795 genes were upregulated and 1839 genes were downregulated in D56-transgenic tilapia. These genes were grouped into pathways, such as FA metabolism, FA elongation, FA biosynthesis, biosynthesis of unsaturated FA, FA degradation, inflammation, immune response, and chemokines. FA-associated genes and immune-related genes were modulated by D56 at 6 h and 24 h post infection with V. vulnificus. The expression patterns of FA-related genes, inflammatory genes, antimicrobial peptide genes and immune responsive genes at 0, 3, 6, 12, 24 and 48 h post-infection suggests these genes are involved in the enhanced resistance of D56 transgenic tilapia to V. vulnificus.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12864-021-07521-5DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7983300PMC
March 2021

The Alteration of Intestinal Microbiota Profile and Immune Response in during Pathogen Infection.

Life (Basel) 2021 Jan 28;11(2). Epub 2021 Jan 28.

Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan.

, or grouper, is a high economic value fish species that plays an important role in the aquaculture industry in Asia. However, both viral and bacterial diseases have threatened grouper for many years, especially nervous necrosis virus, grouper iridovirus and , which have caused a bottleneck in the grouper industry. Currently, intestinal microbiota can provide novel insights into the pathogenesis-related factors involved in pathogen infection. Hence, we investigated the comparison of intestinal microbiota communities in control group and pathogen-infected grouper through high-throughput sequencing of the 16S rRNA gene. Our results showed that microbial diversity was decreased, whereas microbial richness was increased during pathogen infection. The individuals in each group were distributed distinctly on the PLSDA diagram, especially the GIV group. and were the most abundant bacterial phyla in all groups. Interestingly, beneficial genera, and , predominated in the intestines of the control group. In contrast, the intestines of pathogen-infected grouper had higher levels of harmful genera such as , , and Additionally, we investigated the expression levels of innate and adaptive immune-related genes after viral and bacterial infection. The results revealed that immunoglobulin T and proinflammatory cytokine levels in the intestine increased after pathogen infection. Through these unique bacterial compositions in diseased and uninfected fish, we could establish a novel therapeutic approach and bacterial marker for preventing and controlling these diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/life11020099DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7912457PMC
January 2021

Dual expression of transgenic delta-5 and delta-6 desaturase in tilapia alters gut microbiota and enhances resistance to Vibrio vulnificus infection.

PLoS One 2020 30;15(7):e0236601. Epub 2020 Jul 30.

Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, Taiwan.

Omega-3 polyunsaturated fatty acids (n-3 PUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), exhibit antibacterial and anti-inflammatory activities. Furthermore, diets rich in n-3 PUFAs are known to improve disease resistance and limit pathogen infection in commercial aquaculture fishes. In this study, we examined the effects of transgenic overexpression of n-3 PUFA biosynthesis genes on the physiological response to bacterial infection in tilapia. We first established tilapia strains with single or dual expression of salmon delta-5 desaturase and/or delta-6 desaturase and then challenged the fish with Vibrio vulnificus infection. Interestingly, our data suggest that n-3 PUFA-mediated alterations in gut microbiota may be important in determining disease outcome via effects on immune response of the host. Both liver- and muscle-specific single and dual expression of delta-5 desaturase and delta-6 desaturase resulted in higher n-3 PUFA content in transgenic fish fed with a LO basal diet. The enrichment of n-3 PUFAs in dual-transgenic fish is likely responsible for their improved survival rate and comparatively reduced expression of inflammation- and immune-associated genes after V. vulnificus infection. Gut microbiome analysis further revealed that dual-transgenic tilapia had high gut microbiota diversity, with low levels of inflammation-associated microbiota (i.e., Prevotellaceae). Thus, our findings indicate that dual expression of transgenic delta-5 and delta-6 desaturase in tilapia enhances disease resistance, an effect that is associated with increased levels of n-3 PUFAs and altered gut microbiota composition.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0236601PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7392239PMC
September 2020

Blast2Fish: a reference-based annotation web tool for transcriptome analysis of non-model teleost fish.

BMC Bioinformatics 2020 May 4;21(1):174. Epub 2020 May 4.

Department of Aquaculture, National Taiwan Ocean University, No.2, Beining Rd., Zhongzheng Dist, Keelung City, 20224, Taiwan.

Background: Transcriptome analysis by next-generation sequencing has become a popular technique in recent years. This approach is quite suitable for non-model organism study, as de novo assembly is independent of prior genomic sequences of organisms. De novo sequencing has benefited many studies on commercially important fish species. However, to understand the functions of these assembled sequences, they still need to be annotated with existing sequence databases. By combining Basic Local Alignment Search Tool (BLAST) and Gene Ontology analysis, we were able to identify homologous sequences of assembled sequences and describe their characteristics using pre-defined tags for each gene, though the above conventional annotation results obtained for non-model assembled sequences was still associated with a lack of pre-defined tags and poorly documented records in the database.

Results: We introduced Blast2Fish, a novel approach for performing functional enrichment analysis on non-model teleost fish transcriptome data. The Blast2Fish pipeline was designed to be a reference-based enrichment method. Instead of annotating the BLAST single top hit by a pre-defined gene-to-tag database, we included 500 hits to search related PubMed articles and parse biological terms. These descriptive terms were then sorted and recorded as annotations for the query. The results showed that Blast2Fish was capable of providing meaningful annotations on immunology topics for non-model fish transcriptome analysis.

Conclusion: Blast2Fish provides a novel approach for annotating sequences of non-model fish. The reference-based strategy allows annotation to be performed without pre-defined tags for each gene. This method strongly benefits non-model teleost fish studies for gene functional enrichment analysis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12859-020-3507-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7199347PMC
May 2020

Omega-3 polyunsaturated fatty acids suppress metastatic features of human cholangiocarcinoma cells by suppressing twist.

J Nutr Biochem 2019 12 15;74:108245. Epub 2019 Oct 15.

Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan; College of Life Sciences, National Taiwan Ocean University, Keelung, Taiwan. Electronic address:

Cholangiocarcinoma (CCA) is a highly malignant cancer of the bile duct, which has a five-year survival rate less than 5% due to a high metastasis rate and lack of therapeutic options. Although omega-3 polyunsaturated fatty acids (n-3 PUFAs) have been shown to inhibit the proliferation of CCA cells, the effects on CCA metastasis have not been previously reported. In this study, we first assessed the proliferation, migration and invasion effects of n-3 PUFA-based fish oil on human CCA cells. Then, we investigated PUFA effects on metastasis in vivo by xenografting CCA cells into zebrafish larvae that overexpress a critical n-3 PUFA synthesis gene, Δ6 fatty acid desaturase. The results indicated that n-3 PUFA-based fish oil suppresses CCA cell growth, potentially by blocking the cell cycle at G/M phase, and it inhibits migration and invasion potential with coincident downregulation of migration-related genes. Furthermore, zebrafish endogenous n-3 PUFAs appear to suppress CCA metastasis by inhibiting the expression of twist, a key regulator of tumor metastasis. Interestingly, only long chain n-3 PUFAs could inhibit the expression of twist in CCA cells. Together, our results suggest that n-3 PUFAs, especially DHA, may inhibit proliferation and metastasis of CCA cells by inhibiting the expression of twist.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jnutbio.2019.108245DOI Listing
December 2019

EPA and DHA can modulate cell death via inhibition of the Fas/tBid-mediated signaling pathway with ISKNV infection in grouper fin cell line (GF-1) cells.

Fish Shellfish Immunol 2020 Feb 12;97:608-616. Epub 2019 Oct 12.

Laboratory of Molecular Virology and Biotechnology, Department of Biotechnology and Bioindustry Sciences, Institute of Biotechnology, National Cheng Kung University, No 1. University Road, Tainan City, 701, Taiwan, ROC; Institute of Biotechnology, National Cheng Kung University, No 1. University Road, Tainan City, 701, Taiwan, ROC. Electronic address:

Polyunsaturated fatty acids (PUFAs) play important roles in organisms, including the structure and liquidity of cell membranes, anti-oxidation and anti-inflammation. Very little has been done in terms of the effect of PUFAs on cell death, especially on DNA virus. In this study, we demonstrated that the infectious spleen and kidney necrosis virus (ISKNV) can induce host cell death via the apoptotic cell death pathway, which correlated to modulation by PUFAs in grouper fin cell line (GF-1) cells. We screened the PUFAs, including docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), for the ability of different dosages to prevent cell death in GF-1 cells with ISKNV infection. In the results, each 10 μM of DHA and EPA treatment enhanced host cell viability up to 80% at day 5 post-infection. Then, in Terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL) assay, DHA- and EPA-treated groups reduced TUNEL positive signals 50% in GF-1 cells with ISKNV infection. Then, through studies of the mechanism of cell death, we found that ISKNV can induce both the Bax/caspase-3 and Fas/caspase-8/tBid death signaling pathways in GF-1 cells, especially at day 5 post-infection. Furthermore, we found that DHA and EPA treatment can either prevent caspase-3 activation on 17-kDa form cleavage or Bid cleaved (15-kDa form) for activation by caspase-8, apparently. On the other hand, the anti-apoptotic gene Bcl-2 was upregulated 0.3-fold and 0.15-fold at day 3 and day 5, respectively, compared to ISKNV-infected and DHA-treated cells; that this did not happen in the EPA-treated group showed that different PUFAs trigger different signals. Finally, ISKNV-infected GF-1 cells treated with either DHA or EPA showed a 5-fold difference in viral titer at day 5. Taken together, these results suggest that optimal PUFA treatment can affect cell death signaling through both the intrinsic and extrinsic death pathways, reducing viral expression and viral titer in GF-1 cells. This finding may provide insight in DNA virus infection and control.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsi.2019.10.029DOI Listing
February 2020

Granulin peptide GRN-41 of Mozambique tilapia is a novel antimicrobial peptide against Vibrio species.

Biochem Biophys Res Commun 2019 08 8;515(4):706-711. Epub 2019 Jun 8.

Department of Aquaculture, College of Life Sciences, National Taiwan Ocean University, Keelung, 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan. Electronic address:

In our previous study, the novel GRN-41 peptide generated from alternative splicing of the Mozambique tilapia PGRN1 gene was identified to be a potent peptide that protected against V. vulnificus in the transgenic zebrafish model by modulating innate immune-related genes. In this study, the anti-bacterial activities of synthetic Mozambique tilapia GRN-41 peptide (OmGRN-41) against various bacterial pathogens were investigated. The results showed that OmGRN-41 had bactericidal activity against Vibrio species, including V. vulnificus, V. alginolyticus, and V. harveyi, but exhibited bacteriostatic activity against V. parahaemolyticus. OmGRN-41 maintained bactericidal activity (64 μM) against V. vulnificus at pH 2 to pH 10 or after heat treatment for 1 h at high temperatures between 40 °C and 100 °C. TEM observations revealed that the outer membrane of V. vulnificus was disrupted by OmGRN-41, leading to morphological rupture and loss of cytoplasmic contents. Additionally, little hemolytic activity against tilapia and sheep erythrocytes was detected after treatment with 128 μM OmGRN-41. OmGRN-41 can effectively enhance the survival of Nile tilapia infected by V. vulnificus. Our results suggest that the OmGRN-41 is a novel antimicrobial peptide possessing bactericidal activity, especially against Vibrio species. These results indicate that OmGRN-41 can be applied in human Vibriosis treatment and has the potential to defend against Vibrio spp. infection in critical aquaculture organisms.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2019.06.022DOI Listing
August 2019

A voting mechanism-based linear epitope prediction system for the host-specific Iridoviridae family.

BMC Bioinformatics 2019 May 1;20(Suppl 7):192. Epub 2019 May 1.

Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung, Taiwan.

Background: The Iridoviridae family is categorized into five genera and clustered into two subfamilies: Alphairidovirinae includes Lymphocystivirus, Ranavirus (GIV), and Megalocystivirus (TGIV), which infect vertebrate hosts and Betairidovirinae includes Iridovirus and Chloriridovirus, which infect invertebrate hosts. Clustered Iridoviridae subfamilies possess host-specific characteristics, which can be considered as exclusive features for in-silico prediction of effective epitopes for vaccine development. A voting mechanism-based linear epitope (LE) prediction system was applied to identify and endorse LE candidates with a minimum length requirement for each clustered subfamily RESULTS: The experimental results showed that four conserved epitopes among the Iridovirideae family, one exclusive epitope for invertebrate subfamily and two exclusive epitopes for vertebrate family were predicted. These predicted LE candidates were further validated by ELISA assays for evaluating the strength of antigenicity and cross antigenicity. The conserved LEs for Iridoviridae family reflected high antigenicity responses for the two subfamilies, while exclusive LEs reflected high antigenicity responses only for the host-specific subfamily CONCLUSIONS: Host-specific characteristics are important features and constraints for effective epitope prediction. Our proposed voting mechanism based system provides a novel approach for in silico LE prediction prior to vaccine development, and it is especially powerful for analyzing antigen sequences with exclusive features between two clustered groups.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12859-019-2736-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6509842PMC
May 2019

The microbiota profile and transcriptome analysis of immune response during metamorphosis stages in orange spotted grouper (Epinephelus coioides).

Fish Shellfish Immunol 2019 Jul 2;90:141-149. Epub 2019 May 2.

Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan. Electronic address:

Metamorphosis is a transformation process in larval development associated with changes in morphological and physiological features, including the immune system. The gastrointestinal tract harbors a plethora of bacteria, which might affect the digestion and absorption of nutrients, immunity, and gut-brain crosstalk in the host. In this study, we have performed metagenomic and transcriptomic analyses on the intestines of grouper at the pre-, mid- and post-metamorphosis stages. The sequencing data of 16S rRNA gene showed drastic changes in the microbial communities at different developmental stages. The transcriptomic data revealed that the leukocyte transendothelial migration and the phagosome pathways might play important roles in mediating immunity in grouper at the three developmental stages. This information will increase our understanding of the metamorphosis process in grouper larvae, and shed light on the development of antimicrobial strategy during larval development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsi.2019.03.063DOI Listing
July 2019

A potent tilapia secreted granulin peptide enhances the survival of transgenic zebrafish infected by Vibrio vulnificus via modulation of innate immunity.

Fish Shellfish Immunol 2018 Apr 2;75:74-90. Epub 2018 Feb 2.

Division of Life Science, Department of Aquaculture, College of Life Sciences, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan. Electronic address:

Progranulin (PGRN) is a multi-functional growth factor that mediates cell proliferation, survival, migration, tumorigenesis, wound healing, development, and anti-inflammation activity. A novel alternatively spliced transcript from the short-form PGRN1 gene encoding a novel, secreted GRN peptide composed of 20-a.a. signal peptide and 41-a.a. GRN named GRN-41 was identified to be abundantly expressed in immune-related organs including spleen, head kidney, and intestine of Mozambique tilapia. The expression of GRN-41 and PGRN1 were further induced in the spleen of tilapia challenged with Vibrio vulnificus at 3 h post infection (hpi) and 6 hpi, respectively. In this study, we established three transgenic zebrafish lines expressing the secreted GRN-41, GRN-A and PGRN1 of Mozambique tilapia specifically in muscle. The relative percent of survival (RPS) was enhanced in adult transgenic zebrafish expressing tilapia GRN-41 (68%), GRN-A (32%) and PGRN1 (36%) compared with control transgenic zebrafish expressing AcGFP after challenge with V. vulnificus. It indicates tilapia GRN-41 is a potent peptide against V. vulnificus infection. The secreted tilapia GRN-41 can induce the expression of innate immune response-related genes, such as TNFa, TNFb, IL-8, IL-1β, IL-6, IL-26, IL-21, IL-10, complement C3, lysozyme (Lyz) and the hepatic antimicrobial peptide hepcidin (HAMP), in adult transgenic zebrafish without V. vulnificus infection. The tilapia GRN-41 peptide can enhance the innate immune response by further elevating TNFb, IL-1β, IL-8, IL-6, and HAMP expression in early responsive time to the V. vulnificus challenge in transgenic zebrafish. Our results suggest that the novel GRN-41 peptide generated from alternative splicing of the tilapia PGRN1 gene is a potent peptide that defends against V. vulnificus in the transgenic zebrafish model by modulation of innate immunity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsi.2018.01.044DOI Listing
April 2018

Development of the LYVE-1 gene with an acidic-amino-acid-rich (AAAR) domain in evolution is associated with acquisition of lymph nodes and efficient adaptive immunity.

J Cell Physiol 2018 04 4;233(4):2681-2692. Epub 2017 Oct 4.

Department of Biochemistry and Molecular Biology, Doisy Research Center, Saint Louis University School of Medicine, St. Louis, Missouri.

CRSBP-1 (mammalian LYVE-1) is a membrane glycoprotein highly expressed in lymphatic endothelial cells (LECs). It has multiple ligands, including hyaluronic acid (HA) and growth factors/cytokines (e.g., PDGF-BB and VEGF-A) containing CRS motifs (clusters of basic amino-acid residues). The ligand binding activities are mediated by Link module and acidic-amino-acid-rich (AAAR) domains, respectively. These CRSBP-1/LYVE-1 ligands have been shown to induce opening of lymphatic intercellular junctions in LEC monolayers and in lymphatic vessels in wild-type mice. We hypothesize that CRSBP-1/LYVE-1 ligands, particularly CRS-containing growth factors/cytokines, are secreted by immune and cancer cells for lymphatic entry during adaptive immune responses and lymphatic metastasis. We have looked into the origin of the Link module and AAAR domain of LYVE-1 in evolution and its association with the development of lymph nodes and efficient adaptive immunity. Lymph nodes represent the only major recent innovation of the adaptive immune systems in evolution particularly to mammals and bird. Here we demonstrate that the development of the LYVE-1 gene with the AAAR domain in evolution is associated with acquisition of lymph nodes and adaptive immunity. LYVE-1 from other species, which have no lymph nodes, lack the AAAR domain and efficient adaptive immunity. Synthetic CRSBP-1 ligands PDGF and VEGF peptides, which contain the CRS motifs of PDGF-BB and VEGF-A, respectively, specifically bind to CRSBP-1 but do not interact with either PDGFβR or VEGFR2. These peptides function as adjuvants by enhancing adaptive immunity of pseudorabies virus (PRV) vaccine in pigs. These results support the notion that LYVE-1 is involved in adaptive immunity in mammals.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.26159DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6123220PMC
April 2018

Inducible liver-specific overexpression of gankyrin in zebrafish results in spontaneous intrahepatic cholangiocarcinoma and hepatocellular carcinoma formation.

Biochem Biophys Res Commun 2017 08 28;490(3):1052-1058. Epub 2017 Jun 28.

Institute of Fisheries Science, National Taiwan University, Taipei 106, Taiwan; Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan; College of Life Sciences, National Taiwan Ocean University, Keelung 202, Taiwan; Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan. Electronic address:

Liver cancer is the second leading cause of death worldwide. As such, establishing animal models of the disease is important for both basic and translational studies that move toward developing new therapies. Gankyrin is a critical oncoprotein in the genetic control of liver pathology. In order to evaluate the oncogenic role of gankyrin without cancer cell inoculation and drug treatment, we overexpressed gankyrin under the control of the fabp10a promoter. A Tet-Off system was used to drive expression in hepatocytes. At seven to twelve months of age, gankyrin transgenic fish spontaneously incurred persistent hepatocyte damage, steatosis, cholestasis, cholangitis, fibrosis and hepatic tumors. The tumors were both hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). ICC is the second most frequent primary liver cancer in human patients and the first to develop in this tumor model. We further investigated the role of complement C3, a central molecule of the complement system, and found the expression levels of both in mRNA and protein are decreased during tumorigenesis. Together, these findings suggest that gankyrin can promote malignant transformation of liver cells in the context of persistent liver injury. This transformation may be related to compensatory proliferation and the inflammatory microenvironment. The observed decrease in complement C3 may allow transforming cells to escape coordinated induction of the immune response. Herein, we demonstrate an excellent zebrafish model for liver cancers that will be useful for studying the molecular mechanisms of tumorgenesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2017.06.164DOI Listing
August 2017

MiR-145 mediates zebrafish hepatic outgrowth through progranulin A signaling.

PLoS One 2017 22;12(5):e0177887. Epub 2017 May 22.

Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.

MicroRNAs (miRs) are mRNA-regulatory molecules that fine-tune gene expression and modulate both processes of development and tumorigenesis. Our previous studies identified progranulin A (GrnA) as a growth factor which induces zebrafish hepatic outgrowth through MET signaling. We also found that miR-145 is one of potential fine-tuning regulators of GrnA involved in embryonic hepatic outgrowth. The low level of miR-145 seen in hepatocarinogenesis has been shown to promote pathological liver growth. However, little is known about the regulatory mechanism of miR-145 in embryonic liver development. In this study, we demonstrate a significant decrease in miR-145 expression during hepatogenesis. We modulate miR-145 expression in zebrafish embryos by injection with a miR-145 mimic or a miR-145 hairpin inhibitor. Altered embryonic liver outgrowth is observed in response to miR-145 expression modulation. We also confirm a critical role of miR-145 in hepatic outgrowth by using whole-mount in situ hybridization. Loss of miR-145 expression in embryos results in hepatic cell proliferation, and vice versa. Furthermore, we demonstrate that GrnA is a target of miR-145 and GrnA-induced MET signaling is also regulated by miR-145 as determined by luciferase reporter assay and gene expression analysis, respectively. In addition, co-injection of GrnA mRNA with miR-145 mimic or MO-GrnA with miR-145 inhibitor restores the liver defects caused by dysregulation of miR-145 expression. In conclusion, our findings suggest an important role of miR-145 in regulating GrnA-dependent hepatic outgrowth in zebrafish embryonic development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0177887PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5439702PMC
September 2017

A Sketch of the Taiwan Zebrafish Core Facility.

Zebrafish 2016 07 6;13 Suppl 1:S24-9. Epub 2016 Jun 6.

3 Institute of Cellular and Organismic Biology , Academia Sinica, Taipei, Taiwan .

In the past three decades, the number of zebrafish laboratories has significantly increased in Taiwan. The Taiwan Zebrafish Core Facility (TZCF), a government-funded core facility, was launched to serve this growing community. The Core Facility was built on two sites, one located at the National Health Research Institutes (NHRI, called Taiwan Zebrafish Core Facility at NHRI or TZeNH) and the other is located at the Academia Sinica (Taiwan Zebrafish Core Facility at AS a.k.a. TZCAS). The total surface area of the TZCF is about 180 m(2) encompassing 2880 fish tanks. Each site has a separate quarantine room and centralized water recirculating systems, monitoring key water parameters. To prevent diseases, three main strategies have been implemented: (1) imported fish must be quarantined; (2) only bleached embryos are introduced into the main facilities; and (3) working practices were implemented to minimize pathogen transfer between stocks and facilities. Currently, there is no health program in place; however, a fourth measure for the health program, specific regular pathogen tests, is being planned. In March 2015, the TZCF at NHRI has been AAALAC accredited. It is our goal to ensure that we provide "disease-free" fish and embryos to the Taiwanese research community.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1089/zeb.2015.1208DOI Listing
July 2016

Knockdown of zebrafish YY1a can downregulate the phosphatidylserine (PS) receptor expression, leading to induce the abnormal brain and heart development.

J Biomed Sci 2016 Feb 29;23:31. Epub 2016 Feb 29.

Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan, ROC.

Background: Yin Yang 1 (YY1) is a ubiquitously expressed GLI-Kruppel zinc finger-containing transcriptional regulator. YY1 plays a fundamental role in normal biologic processes such as embryogenesis, differentiation, and cellular proliferation. YY1 effects on the genes involved in these processes are mediated via initiation, activation, or repression of transcription depending upon the context in which it binds. The role of the multifunctional transcription factor Yin Yang 1 (YY1) in tissue development is poorly understood. In the present, we investigated YY1a role in developing zebrafish on PSR-mediated apoptotic cell engulfment during organic morphogenesis.

Results: YY1a is first expressed 0.5 h post-fertilization (hpf), in the whole embryo 12 hpf, and in brain, eyes, and heart 72 hpf by in situ hybridization assay. The nucleotide sequence of zebrafish YY1a transcription factor (clone zfYY1a; HQ 166834) was found to be similar to that of zebrafish YY1a (99 % sequence identity; NM 212617). With the loss-of-function assay, YY1a knockdown by a morpholino oligonucleotide led to downregulation of the phosphatidylserine engulfing receptor zfPSR during embryonic segmentation and to the accumulation of a large number of dead apoptotic cells throughout the entire early embryo, especially in the posterior area. Up to 24 hpf, these cells interfered with embryonic cell migration and cell-cell interactions that normally occur in the brain, heart, eye, and notochord. Finally, with gain-of-function assay, defective morphants could be rescued by injecting both YY1a mRNA and PSR mRNA and trigger resumption of normal development.

Conclusions: Taken together, our results suggest that YY1a regulates PS receptor expression that linked to function of PSR-phagocyte mediated apoptotic cell engulfment during development, especially the development of organs such as the brain and heart. YY1a/PSR-mediated engulfing system may involve in diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12929-016-0248-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4770675PMC
February 2016

GSIV serine/threonine kinase can induce apoptotic cell death via p53 and pro-apoptotic gene Bax upregulation in fish cells.

Apoptosis 2016 Apr;21(4):443-58

Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, No 1. University Road, Tainan City, 701, Taiwan, ROC.

Previous studies have shown that GSIV induces apoptotic cell death through upregulation of the pro-apoptotic genes Bax and Bak in Grouper fin cells (GF-1 cells). However, the role of viral genome-encoded protein(s) in this death process remains unknown. In this study, we demonstrated that the Giant seaperch iridovirus (GSIV) genome encoded a serine/threonine kinase (ST kinase) protein, and induced apoptotic cell death via a p53-mediated Bax upregulation approach and a downregulation of Bcl-2 in fish cells. The ST kinase expression profile was identified through Western blot analyses, which indicated that expression started at day 1 h post-infection (PI), increased up to day 3, and then decreased by day 5 PI. This profile indicated the role of ST kinase expression during the early and middle phases of viral replication. We then cloned the ST kinase gene and tested its function in fish cells. The ST kinase was transiently expressed and used to investigate possible novel protein functions. The transient expression of ST kinase in GF-1 cells resulted in apoptotic cell features, as revealed with Terminal deoxynucleotidyl transferase biotin-dUTP nick-end labeling (TUNEL) assays and Hoechst 33258 staining at 24 h (37 %) and 48 h post-transfection (PT) (49 %). Then, through studies on the mechanism of cell death, we found that ST kinase overexpression could upregulate the anti-stress gene p53 and the pro-apoptotic gene Bax at 48 h PT. Interestingly, this upregulation of p53 and Bax also correlated to alterations in the mitochondria function that induced loss of mitochondrial membrane potential (MMP) and activated the initiator caspase-9 and the effector caspase-3 in the downstream. Moreover, when the p53-dependent transcriptional downstream gene was blocked by a specific transcriptional inhibitor, it was found that pifithrin-α not only reduced Bax expression, but also averted cell death in GF-1 cells during the ST kinase overexpression. Taken altogether, these results suggested that aquatic GSIV ST kinase could induce apoptosis via upregulation of p53 and Bax expression, resulting in mitochondrial disruption, which activated a downstream caspases-mediated cell death pathway.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10495-016-1219-4DOI Listing
April 2016

Transgenic expression of omega-3 PUFA synthesis genes improves zebrafish survival during Vibrio vulnificus infection.

J Biomed Sci 2015 Nov 17;22:103. Epub 2015 Nov 17.

Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan.

Background: Highly desaturated n-3 polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are synthesized by desaturases and elongase. They exert hepatoprotective effects to prevent alcoholic fatty liver syndrome or cholestatic liver injury. However, it is unclear how n-3 PUFAs improve immune function in liver. Vibrio vulnificus, a gram-negative bacterial pathogen, causes high mortality of aquaculture fishes upon infection. Humans can become infected with V. vulnificus through open wounds or by eating raw seafood, and such infections may result in systemic septicemia. Moreover, patients with liver diseases are vulnerable to infection, and are more likely than healthy persons to present with liver inflammation following infection. This study quantified n-3 PUFAs and their anti-bacterial effects in Fadsd6 and Elvol5a transgenic zebrafish.

Results: Two transgenic zebrafish strains with strong liver specific expression of Fadsd6 and Elvol5a (driven by the zebrafish Fabp10 promoter) were established using the Tol2 system. Synthesis of n-3 PUFAs in these strains were increased by 2.5-fold as compared to wild type (Wt) fish. The survival rate in 24 h following challenge with V. vulnificus was 20 % in Wt, but 70 % in the transgenic strains. In addition, the bacteria counts in transgenic fish strains were significantly decreased. The expression levels of pro-inflammatory genes, such as TNF-α, IL-1β, and NF-κB, were suppressed between 9 and 12 h after challenge. This study confirms the anti-bacterial function of n-3 PUFAs in a transgenic zebrafish model.

Conclusions: Fadsd6 and Elvol5a transgenic zebrafish are more resistant to V. vulnificus infection, and enhance survival by diminishing the attendant inflammatory response.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12929-015-0208-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4647518PMC
November 2015

Giant seaperch iridovirus (GSIV) induces mitochondria-mediated cell death that is suppressed by bongkrekic acid and cycloheximide in a fish cell line.

Virus Res 2016 Feb 10;213:37-45. Epub 2015 Nov 10.

Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng-Kung University, Tainan 701, Taiwan. Electronic address:

Giant seaperch iridovirus (GSIV) induces cell death by an unknown mechanism. We postulated that this mechanism involves mitochondria-mediated cell death. Cell viability assays revealed a steady increase in dead grouper fin cells (GF-1) after GSIV infection, from 11% at 2 days post-infection (dpi) to 67% at 5 dpi. Annexin V/PI staining revealed GSIV infection induced apoptosis in a steadily increasing fraction of cells, from 4% at 1 dpi to 29% at 5 dpi. Furthermore, post-apoptotic necrosis was apparent at 4 and 5 dpi in the late replication stage. In the early replication stage, JC-1 dye revealed mitochondrial membrane potential (ΔΨm) loss in 42% of infected cells at 1 dpi, increasing to 98% at 3 dpi. Phosphatidylserine (PS) exposure and loss of ΔΨm from apoptosis/necrosis was attenuated by treatment with the adenine nucleotide translocase inhibitor bongkrekic acid (BKA) and the protein synthesis inhibitor cyclohexamide (CHX). These data suggest GSIV induces GF-1 apoptotic/necrotic cell death through pathways that require newly synthesized protein and involve the mitochondrial function.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.virusres.2015.11.003DOI Listing
February 2016

Aquatic viruses induce host cell death pathways and its application.

Virus Res 2016 Jan 19;211:133-44. Epub 2015 Oct 19.

Laboratory of Molecular Virology and Biotechnology, College of Bioscience and Biotechnology, Institute of Biotechnology, National Cheng Kung University, No 1. University Road, Tainan City 701, Taiwan, ROC. Electronic address:

Virus infections of mammalian and animal cells consist of a series of events. As intracellular parasites, viruses rely on the use of host cellular machinery. Through the use of cell culture and molecular approaches over the past decade, our knowledge of the biology of aquatic viruses has grown exponentially. The increase in aquaculture operations worldwide has provided new approaches for the transmission of aquatic viruses that include RNA and DNA viruses. Therefore, the struggle between the virus and the host for control of the cell's death machinery is crucial for survival. Viruses are obligatory intracellular parasites and, as such, must modulate apoptotic pathways to control the lifespan of their host to complete their replication cycle. This paper updates the discussion on the detailed mechanisms of action that various aquatic viruses use to induce cell death pathways in the host, such as Bad-mediated, mitochondria-mediated, ROS-mediated and Fas-mediated cell death circuits. Understanding how viruses exploit the apoptotic pathways of their hosts may provide great opportunities for the development of future potential therapeutic strategies and pathogenic insights into different aquatic viral diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.virusres.2015.10.018DOI Listing
January 2016

AMP-Activated Protein Kinase Directly Phosphorylates and Destabilizes Hedgehog Pathway Transcription Factor GLI1 in Medulloblastoma.

Cell Rep 2015 Jul 16;12(4):599-609. Epub 2015 Jul 16.

Department of Basic Medical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, IN 47907, USA; Center for Cancer Research, Purdue University College of Veterinary Medicine, West Lafayette, IN 47907, USA. Electronic address:

The Hedgehog (Hh) pathway regulates cell differentiation and proliferation during development by controlling the Gli transcription factors. Cell fate decisions and progression toward organ and tissue maturity must be coordinated, and how an energy sensor regulates the Hh pathway is not clear. AMP-activated protein kinase (AMPK) is an important sensor of energy stores and controls protein synthesis and other energy-intensive processes. AMPK is directly responsive to intracellular AMP levels, inhibiting a wide range of cell activities if ATP is low and AMP is high. Thus, AMPK can affect development by influencing protein synthesis and other processes needed for growth and differentiation. Activation of AMPK reduces GLI1 protein levels and stability, thus blocking Sonic-hedgehog-induced transcriptional activity. AMPK phosphorylates GLI1 at serines 102 and 408 and threonine 1074. Mutation of these three sites into alanine prevents phosphorylation by AMPK. This leads to increased GLI1 protein stability, transcriptional activity, and oncogenic potency.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2015.06.054DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4521589PMC
July 2015

Giant seaperch iridovirus infection upregulates Bas and Bak expression, leading to apoptotic death of fish cells.

Fish Shellfish Immunol 2015 Aug 8;45(2):848-57. Epub 2015 Jun 8.

Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng-Kung University, Tainan 701, Taiwan. Electronic address:

The giant seaperch iridovirus (GSIV) induces host cell apoptosis by a poorly-understood process. In this study, GSIV is shown to upregulate the pro-apoptotic death genes Bax and Bak at the middle replication stage, and factors in the grouper fin cell line (GF-1) are shown to modulate this process. Studying the mechanism of cell death, we found that upregulated, de novo-synthesized Bax and Bak proteins formed heterodimers. This up-regulation process correlated with mitochondrial membrane potential (MMP) loss, increased caspase-3 activity, and increased apoptotic cell death. All effects were diminished by treatment of infected GF-1 cells with the protein synthesis inhibitor cycloheximide. Interestingly, overexpression of the anti-apoptotic gene Bcl-xL also diminished GSIV-induced mitochondria-mediated cell death, increasing host cell viability and decreasing MMP loss at the early replication stage. Our data suggest that GSIV induces GF-1 apoptotic cell death through up-regulation of the pro-apoptotic genes Bax and Bak, which are regulated by Bcl-xL overexpression on mitochondria in GF-1 cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsi.2015.06.003DOI Listing
August 2015

Use of tilapia piscidin 3 (TP3) to protect against MRSA infection in mice with skin injuries.

Oncotarget 2015 May;6(15):12955-69

Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Jiaushi, Ilan, Taiwan.

Antimicrobial peptides (AMPs), represent promising agents for new therapeutic approaches of infected wound treatment, on account of their antimicrobial and wound closure activities, and low potential for inducing resistance. However, therapeutic applications of these AMPs are limited by their toxicity and low stability in vivo. Previously, we reported that the 23 amino-acid designer peptide TP3 possessed antimicrobial activities. Here, we analyzed the wound closure activities of TP3 both and in vivo. TP3 at doses of up to 40 μg/ml did not affect the viability of baby hamster kidney cells. Furthermore, TP3 was found to be highly effective at combating peritonitis and wound infection caused by MRSA in mouse models, without inducing adverse behavioral effects or liver or kidney toxicity. TP3 treatment increased survival by 100% at 8 days after infection, and accelerated the progression of proliferation, remodeling, and maturation of infected wounds. Taken together, our results indicate that TP3 enhances the rate of survival of mice infected with the bacterial pathogen MRSA through both antimicrobial and immunomodulatory effects. Overall, these results suggest that TP3 may be suitable for development as a novel topical agent for treatment of infected wounds.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4536991PMC
http://dx.doi.org/10.18632/oncotarget.4102DOI Listing
May 2015

Piscidin is highly active against carbapenem-resistant Acinetobacter baumannii and NDM-1-producing Klebsiella pneumonia in a systemic Septicaemia infection mouse model.

Mar Drugs 2015 Apr 14;13(4):2287-305. Epub 2015 Apr 14.

Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Road, Jiaushi, Ilan 262, Taiwan.

This study was designed to investigate the antimicrobial activity of two synthetic antimicrobial peptides from an aquatic organism, tilapia piscidin 3 (TP3) and tilapia piscidin 4 (TP4), in vitro and in a murine sepsis model, as compared with ampicillin, tigecycline, and imipenem. Mice were infected with (NDM-1)-producing K. pneumonia and multi-drug resistant Acinetobacter baumannii, and subsequently treated with TP3, TP4, or antibiotics for different periods of time (up to 168 h). Mouse survival and bacterial colony forming units (CFU) in various organs were measured after each treatment. Toxicity was determined based on observation of behavior and measurement of biochemical parameters. TP3 and TP4 exhibited strong activity against K. pneumonia and A. baumannii in vitro. Administration of TP3 (150 μg/mouse) or TP4 (50 μg/mouse) 30 min after infection with K. pneumonia or A. baumannii significantly increased survival in mice. TP4 was more effective than tigecycline at reducing CFU counts in several organs. TP3 and TP4 were shown to be non-toxic, and did not affect mouse behavior. TP3 and TP4 are able at potentiate anti-Acinetobacter baumannii or anti-Klebsiella pneumonia drug activity, reduce bacterial load, and prevent drug resistance, indicating their potential for use in combating multidrug-resistant bacteria.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/md13042287DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4413212PMC
April 2015

RIG-I specifically mediates group II type I IFN activation in nervous necrosis virus infected zebrafish cells.

Fish Shellfish Immunol 2015 Apr 26;43(2):427-35. Epub 2015 Jan 26.

Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan. Electronic address:

The type I interferon (IFN) response has been shown to be crucial for the survival of zebrafish larvae infected with nervous necrosis virus (NNV). Teleost type I IFNs can be divided into two groups, based on their cysteine content. While teleost group I IFNs have been extensively studied in terms of their regulation and anti-viral properties, the characteristics of teleost group II IFNs have been relatively unexplored. In this study, we describe the mechanism by which group II IFNs are activated in response to NNV infection in a zebrafish cell line, by focusing on the relationship between type I IFNs and pattern recognition receptors. Expression profile analysis of infected cells by microarray and qPCR revealed signaling activation of two pattern recognition receptors (PRRs): RIG-I like receptors (RLRs) and MyD88-dependent Toll-like receptors (TLRs). Knockdown of retinoic acid-inducible gene I (RIG-I) specifically repressed induction of group II IFNs (IFNϕ2, IFNϕ3) by NNV infection. Furthermore, Ingenuity Pathway Analysis (IPA) was used to demonstrate that RIG-I knockdown results in down-regulation of the inflammatory response in NNV-infected cells. Taken together, our results indicate that RIG-I plays an essential role in zebrafish group II type I IFN induction and the inflammatory response to NNV infection.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsi.2015.01.012DOI Listing
April 2015

Modulation of p53 and met expression by Krüppel-like factor 8 regulates zebrafish cerebellar development.

Dev Neurobiol 2015 Sep 24;75(9):908-26. Epub 2014 Dec 24.

Graduate Institute of Life Sciences, National Defense Medical Center, Neihu, Taipei, Taiwan, 114, Republic of China.

Krüppel-like factor 8 (Klf8) is a zinc-finger transcription factor implicated in cell proliferation, and cancer cell survival and invasion; however, little is known about its role in normal embryonic development. Here, we show that Klf8 is required for normal cerebellar development in zebrafish embryos. Morpholino knockdown of klf8 resulted in abnormal cerebellar primordium morphology and the induction of p53 in the brain region at 24 hours post-fertilization (hpf). Both p53-dependent reduction of cell proliferation and augmentation of apoptosis were observed in the cerebellar anlage of 24 hpf-klf8 morphants. In klf8 morphants, expression of ptf1a in the ventricular zone was decreased from 48 to 72 hpf; on the other hand, expression of atohla in the upper rhombic lip was unaffected. Consistent with this finding, Purkinje cell development was perturbed and granule cell number was reduced in 72 hpf-klf8 morphants; co-injection of p53 MO(sp) or klf8 mRNA substantially rescued development of cerebellar Purkinje cells in klf8 morphants. Hepatocyte growth factor/Met signaling is known to regulate cerebellar development in zebrafish and mouse. We observed decreased met expression in the tectum and rhombomere 1 of 24 hpf-klf8 morphants, which was largely rescued by co-injection with klf8 mRNA. Moreover, co-injection of met mRNA substantially rescued formation of Purkinje cells in klf8 morphants at 72 hpf. Together, these results demonstrate that Klf8 modulates expression of p53 and met to maintain ptf1a-expressing neuronal progenitors, which are required for the appropriate development of cerebellar Purkinje and granule cells in zebrafish embryos.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/dneu.22258DOI Listing
September 2015

Interferon regulatory factor-1 (IRF-1) is involved in the induction of phosphatidylserine receptor (PSR) in response to dsRNA virus infection and contributes to apoptotic cell clearance in CHSE-214 cell.

Int J Mol Sci 2014 Oct 23;15(10):19281-306. Epub 2014 Oct 23.

Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11574, Taiwan.

The phosphatidylserine receptor (PSR) recognizes a surface marker on apoptotic cells and initiates engulfment. This receptor is important for effective apoptotic cell clearance and maintains normal tissue homeostasis and regulation of the immune response. However, the regulation of PSR expression remains poorly understood. In this study, we determined that interferon regulatory factor-1 (IRF-1) was dramatically upregulated upon viral infection in the fish cell. We observed apoptosis in virus-infected cells and found that both PSR and IRF-1 increased simultaneously. Based on a bioinformatics promoter assay, IRF-1 binding sites were identified in the PSR promoter. Compared to normal viral infection, we found that PSR expression was delayed, viral replication was increased and virus-induced apoptosis was inhibited following IRF-1 suppression with morpholino oligonucleotides. A luciferase assay to analyze promoter activity revealed a decreasing trend after the deletion of the IRF-1 binding site on PSR promoter. The results of this study indicated that infectious pancreatic necrosis virus (IPNV) infection induced both the apoptotic and interferon (IFN) pathways, and IRF-1 was involved in regulating PSR expression to induce anti-viral effects. Therefore, this work suggests that PSR expression in salmonid cells during IPNV infection is activated when IRF-1 binds the PSR promoter. This is the first report to show the potential role of IRF-1 in triggering the induction of apoptotic cell clearance-related genes during viral infection and demonstrates the extensive crosstalk between the apoptotic and innate immune response pathways.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms151019281DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4227274PMC
October 2014

Molecular cloning and functional characterization of the hepcidin gene from the convict cichlid (Amatitlania nigrofasciata) and its expression pattern in response to lipopolysaccharide challenge.

Fish Physiol Biochem 2015 Apr 4;41(2):449-61. Epub 2014 Oct 4.

Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan.

The hepcidin gene is widely expressed in many fish species and functions as an antimicrobial peptide, suggesting that it plays an important role in the innate immune system of fish. In the present study, the Amatitlania nigrofasciata hepcidin gene (AN-hepc) was cloned from the liver and its expression during an immune response was characterized. The results of quantitative PCR and RT-PCR showed that the AN-hepc transcript was most abundant in the liver. The expression of AN-hepc mRNA was significantly increased in the liver, stomach, heart, intestine, gill and muscle but was not significantly altered in the spleen, kidney, brain or skin after lipopolysaccharide challenge. The synthetic AN-hepc peptide showed a wide spectrum of antimicrobial activity in vitro toward gram-positive and gram-negative bacteria. In particular, this peptide demonstrated potent antimicrobial activity against the aquatic pathogens Vibrio alginolyticus, V. parahaemolyticus, V. vulnificus, Aeromonas hydrophila and Streptococcus agalactiae. The in vivo bacterial challenge results demonstrated that the synthetic AN-hepc peptide significantly improved the survival rate of S. agalactiae- and V. vulnificus-infected zebrafish. Taken together, these data indicate an important role for AN-hepc in the innate immunity of A. nigrofasciata and suggest its potential application in aquaculture for increasing resistance to disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10695-014-9996-6DOI Listing
April 2015

Hypoxia-inducible factor 2 alpha is essential for hepatic outgrowth and functions via the regulation of leg1 transcription in the zebrafish embryo.

PLoS One 2014 7;9(7):e101980. Epub 2014 Jul 7.

Department of Life Sciences, National Taiwan Ocean University, Keelung, Taiwan.

The liver plays a vital role in metabolism, detoxification, digestion, and the maintenance of homeostasis. During development, the vertebrate embryonic liver undergoes a series of morphogenic processes known as hepatogenesis. Hepatogenesis can be separated into three interrelated processes: endoderm specification, hepatoblast differentiation, and hepatic outgrowth. Throughout this process, signaling molecules and transcription factors initiate and regulate the coordination of cell proliferation, apoptosis, differentiation, intercellular adhesion, and cell migration. Hifs are already recognized to be essential in embryonic development, but their role in hepatogenesis remains unknown. Using the zebrafish embryo as a model organism, we report that the lack of Hif2-alpha but not Hif1-alpha blocks hepatic outgrowth. While Hif2-alpha is not involved in hepatoblast specification, this transcription factor regulates hepatocyte cell proliferation during hepatic outgrowth. Furthermore, we demonstrated that the lack of Hif2-alpha can reduce the expression of liver-enriched gene 1 (leg1), which encodes a secretory protein essential for hepatic outgrowth. Additionally, exogenous mRNA expression of leg1 can rescue the small liver phenotype of hif2-alpha morphants. We also showed that Hif2-alpha directly binds to the promoter region of leg1 to control leg1 expression. Interestingly, we discovered overrepresented, high-density Hif-binding sites in the potential upstream regulatory sequences of leg1 in teleosts but not in terrestrial mammals. We concluded that hif2-alpha is a key factor required for hepatic outgrowth and regulates leg1 expression in zebrafish embryos. We also proposed that the hif2-alpha-leg1 axis in liver development may have resulted from the adaptation of teleosts to their environment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0101980PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4084947PMC
February 2015
-->