Publications by authors named "Javier Diez-Mata"

5 Publications

  • Page 1 of 1

Ivabradine Induces Cardiac Protection against Myocardial Infarction by Preventing Cyclophilin-A Secretion in Pigs under Coronary Ischemia/Reperfusion.

Int J Mol Sci 2021 Mar 12;22(6). Epub 2021 Mar 12.

Hospital Ramón y Cajal Research Unit (IRYCIS), Cardiology Department, Universidad Francisco de Vitoria, 28223 Madrid, Spain.

In response to cardiac ischemia/reperfusion, proteolysis mediated by extracellular matrix metalloproteinase inducer (EMMPRIN) and its secreted ligand cyclophilin-A (CyPA) significantly contributes to cardiac injury and necrosis. Here, we aimed to investigate if, in addition to the effect on the funny current (I(f)), Ivabradine may also play a role against cardiac necrosis by reducing EMMPRIN/CyPA-mediated cardiac inflammation. In a porcine model of cardiac ischemia/reperfusion (IR), we found that administration of 0.3 mg/kg Ivabradine significantly improved cardiac function and reduced cardiac necrosis by day 7 after IR, detecting a significant increase in cardiac CyPA in the necrotic compared to the risk areas, which was inversely correlated with the levels of circulating CyPA detected in plasma samples from the same subjects. In testing whether Ivabradine may regulate the levels of CyPA, no changes in tissue CyPA were found in healthy pigs treated with 0.3 mg/kg Ivabradine, but interestingly, when analyzing the complex EMMPRIN/CyPA, rather high glycosylated EMMPRIN, which is required for EMMPRIN-mediated matrix metalloproteinase (MMP) activation and increased CyPA bonding to low-glycosylated forms of EMMPRIN were detected by day 7 after IR in pigs treated with Ivabradine. To study the mechanism by which Ivabradine may prevent secretion of CyPA, we first found that Ivabradine was time-dependent in inhibiting co-localization of CyPA with the granule exocytosis marker vesicle-associated membrane protein 1 (VAMP1). However, Ivabradine had no effect on mRNA expression nor in the proteasome and lysosome degradation of CyPA. In conclusion, our results point toward CyPA, its ligand EMMPRIN, and the complex CyPA/EMMPRIN as important targets of Ivabradine in cardiac protection against IR.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms22062902DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8001911PMC
March 2021

Ivabradine induces cardiac protection by preventing cardiogenic shock-induced extracellular matrix degradation.

Rev Esp Cardiol (Engl Ed) 2020 Oct 29. Epub 2020 Oct 29.

Unidad de Investigación Cardiovascular, Departamento de Cardiología, Universidad Francisco de Vitoria, Hospital Ramón y Cajal (IRYCIS), Madrid, Spain; Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Spain. Electronic address:

Introduction And Objectives: Ivabradine reduces heart rate by blocking the I(f) current and preserves blood pressure and stroke volume through unknown mechanisms. Caveolin-3 protects the heart by forming protein complexes with several proteins, including extracellular matrix (ECM)-metalloproteinase-inducer (EMMPRIN) and hyperpolarization-activated cyclic nucleotide-gated channel 4 (HN4), a target of ivabradine. We hypothesized that ivabradine might also exert cardioprotective effects through inhibition of ECM degradation.

Methods: In a porcine model of cardiogenic shock, we studied the effects of ivabradine on heart integrity, the levels of MMP-9 and EMMPRIN, and the stability of caveolin-3/HCN4 protein complexes with EMMPRIN.

Results: Administration of 0.3 mg/kg ivabradine significantly reduced cardiogenic shock-induced ventricular necrosis and expression of MMP-9 without affecting EMMPRIN mRNA, protein, or protein glycosylation (required for MMP activation). However, ivabradine increased the levels of the caveolin-3/LG-EMMPRIN (low-glycosylated EMMPRIN) and caveolin-3/HCN4 protein complexes and decreased that of a new complex between HCN4 and high-glycosylated EMMPRIN formed in response to cardiogenic shock. We next tested whether caveolin-3 can bind to HCN4 and EMMPRIN and found that the HCN4/EMMPRIN complex was preserved when we silenced caveolin-3 expression, indicating a direct interaction between these 2 proteins. Similarly, EMMPRIN-silenced cells showed a significant reduction in the binding of caveolin-3/HCN4, which regulates the I(f) current, suggesting that, rather than a direct interaction, both proteins bind to EMMPRIN.

Conclusions: In addition to inhibition of the I(f) current, ivabradine may induce cardiac protection by inhibiting ECM degradation through preservation of the caveolin-3/LG-EMMPRIN complex and control heart rate by stabilizing the caveolin-3/HCN4 complex.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.rec.2020.09.012DOI Listing
October 2020

Ivabradine-Stimulated Microvesicle Release Induces Cardiac Protection against Acute Myocardial Infarction.

Int J Mol Sci 2020 Sep 8;21(18). Epub 2020 Sep 8.

Cardiology Department, Universidad Francisco de Vitoria/Hospital Ramón y Cajal Research Unit (IRYCIS), 28223 Madrid, Spain.

Ivabradine can reduce heart rate through inhibition of the current I() by still unexplored mechanisms. In a porcine model of ischemia reperfusion (IR), we found that treatment with 0.3 mg/kg Ivabradine increased plasma release of microvesicles (MVs) over Placebo, as detected by flow cytometry of plasma isolated from pigs 7 days after IR, in which a tenfold increase of Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) containing (both high and low-glycosylated) MVs, was detected in response to Ivabradine. The source of MVs was investigated, finding a 37% decrease of CD31+ endothelial cell derived MVs, while CD41+ platelet MVs remained unchanged. By contrast, Ivabradine induced the release of HCN4+ (mostly cardiac) MVs. While no differences respect to EMMPRIN as a cargo component were found in endothelial and platelet derived MVs, Ivabradine induced a significant release of EMMPRIN+/HCN4+ MVs by day 7 after IR. To test the role of EMMPRIN+ cardiac MVs (EMCMV), H9c2 cell monolayers were incubated for 24 h with 10 EMCMVs, reducing apoptosis, and increasing 2 times cell proliferation and 1.5 times cell migration. The in vivo contribution of Ivabradine-induced plasma MVs was also tested, in which 10 MVs isolated from the plasma of pigs treated with Ivabradine or Placebo 7 days after IR, were injected in pigs under IR, finding a significant cardiac protection by increasing left ventricle ejection fraction and a significant reduction of the necrotic area. In conclusion ivabradine induces cardiac protection by increasing at least the release of EMMPRIN containing cardiac microvesicles.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms21186566DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7555962PMC
September 2020

Targeting TLR4 with ApTOLL Improves Heart Function in Response to Coronary Ischemia Reperfusion in Pigs Undergoing Acute Myocardial Infarction.

Biomolecules 2020 08 9;10(8). Epub 2020 Aug 9.

Cardiology Department, Universidad Francisco de Vitoria/Hospital Ramón y Cajal Research Unit (IRYCIS), CIBERCV, 28223 Madrid, Spain.

Toll-like receptor 4 (TLR4) contributes to the pathogenesis of coronary ischemia/reperfusion (IR). To test whether the new TLR4 antagonist, ApTOLL, may prevent coronary IR damage, we administered 0.078 mg/kg ApTOLL or Placebo in pigs subjected to IR, analyzing the levels of cardiac troponins, matrix metalloproteinases, pro-, and anti-inflammatory cytokines, heart function, and tissue integrity over a period of 7 days after IR. Our results show that ApTOLL reduced cardiac troponin-1 24 h after administration, improving heart function, as detected by a significant recovery of the left ventricle ejection fraction (LVEF) and the shortening fraction (FS) cardiac parameters. The extension of necrotic and fibrotic areas was also reduced, as detected by Evans blue/2,3,5-triphenyltetrazolium chloride (TTC) staining, Hematoxylin/Eosine, and Masson Trichrome staining of heart sections, together with a significant reduction in the expression of the extracellular matrix-degrading, matrix metalloproteinase 9. Finally, the expression of the following cytokines, CCL1, CCL2, MIP1-A-B, CCL5, CD40L, C5/C5A, CXCL1, CXCL10, CXCL11, CXCL12, G-CSF, GM-CSF, ICAM-1, INF-g, IL1-a, ILI-b, IL-1Ra, IL2, IL4, IL5, IL6, IL8, IL10, IL12, IL13, IL16, IL17-A, IL17- E, IL18, IL21, IL27, IL32, MIF, SERPIN-E1, TNF-a, and TREM-1, were also assayed, detecting a pronounced decrease of pro-inflammatory cytokines after 7 days of treatment with ApTOLL. Altogether, our results show that ApTOLL is a promising new tool for the treatment of acute myocardial infarction (AMI).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/biom10081167DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7464507PMC
August 2020

Non-Invasive Detection of Extracellular Matrix Metalloproteinase Inducer EMMPRIN, a New Therapeutic Target against Atherosclerosis, Inhibited by Endothelial Nitric Oxide.

Int J Mol Sci 2018 Oct 19;19(10). Epub 2018 Oct 19.

Cardiology Department, University Francisco de Vitoria/Hospital Ramón y Cajal Research Unit (IRYCIS), CIBERCV, 28223 Madrid, Spain.

Lack of endothelial nitric oxide causes endothelial dysfunction and circulating monocyte infiltration, contributing to systemic atheroma plaque formation in arterial territories. Among the different inflammatory products, macrophage-derived foam cells and smooth muscle cells synthesize matrix metalloproteinases (MMPs), playing a pivotal role in early plaque formation and enlargement. We found increased levels of MMP-9 and MMP-13 in human endarterectomies with advanced atherosclerosis, together with significant amounts of extracellular matrix (ECM) metalloproteinase inducer EMMPRIN. To test whether the absence of NO may aggravate atherosclerosis through EMMPRIN activation, double NOS3/apoE knockout (KO) mice expressed high levels of EMMPRIN in carotid plaques, suggesting that targeting extracellular matrix degradation may represent a new mechanism by which endothelial NO prevents atherosclerosis. Based on our previous experience, by using gadolinium-enriched paramagnetic fluorescence micellar nanoparticles conjugated with AP9 (NAP9), an EMMPRIN-specific binding peptide, magnetic resonance sequences allowed non-invasive visualization of carotid EMMPRIN in NOS3/apoE over apoE control mice, in which atheroma plaques were significantly reduced. Taken together, these results point to EMMPRIN as a new therapeutic target of NO-mediated protection against atherosclerosis, and NAP9 as a non-invasive molecular tool to target atherosclerosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms19103248DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6214015PMC
October 2018
-->