Publications by authors named "Jared B Bennett"

8 Publications

  • Page 1 of 1

MGDrivE 2: A simulation framework for gene drive systems incorporating seasonality and epidemiological dynamics.

PLoS Comput Biol 2021 May 21;17(5):e1009030. Epub 2021 May 21.

Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, California, United States of America.

Interest in gene drive technology has continued to grow as promising new drive systems have been developed in the lab and discussions are moving towards implementing field trials. The prospect of field trials requires models that incorporate a significant degree of ecological detail, including parameters that change over time in response to environmental data such as temperature and rainfall, leading to seasonal patterns in mosquito population density. Epidemiological outcomes are also of growing importance, as: i) the suitability of a gene drive construct for release will depend on its expected impact on disease transmission, and ii) initial field trials are expected to have a measured entomological outcome and a modeled epidemiological outcome. We present MGDrivE 2 (Mosquito Gene Drive Explorer 2): a significant development from the MGDrivE 1 simulation framework that investigates the population dynamics of a variety of gene drive architectures and their spread through spatially-explicit mosquito populations. Key strengths and fundamental improvements of the MGDrivE 2 framework are: i) the ability of parameters to vary with time and induce seasonal population dynamics, ii) an epidemiological module accommodating reciprocal pathogen transmission between humans and mosquitoes, and iii) an implementation framework based on stochastic Petri nets that enables efficient model formulation and flexible implementation. Example MGDrivE 2 simulations are presented to demonstrate the application of the framework to a CRISPR-based split gene drive system intended to drive a disease-refractory gene into a population in a confinable and reversible manner, incorporating time-varying temperature and rainfall data. The simulations also evaluate impact on human disease incidence and prevalence. Further documentation and use examples are provided in vignettes at the project's CRAN repository. MGDrivE 2 is freely available as an open-source R package on CRAN (https://CRAN.R-project.org/package=MGDrivE2). We intend the package to provide a flexible tool capable of modeling gene drive constructs as they move closer to field application and to infer their expected impact on disease transmission.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.pcbi.1009030DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8186770PMC
May 2021

Inherently confinable split-drive systems in Drosophila.

Nat Commun 2021 03 5;12(1):1480. Epub 2021 Mar 5.

Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA.

CRISPR-based gene-drive systems, which copy themselves via gene conversion mediated by the homology-directed repair (HDR) pathway, have the potential to revolutionize vector control. However, mutant alleles generated by the competing non-homologous end-joining (NHEJ) pathway, resistant to Cas9 cleavage, can interrupt the spread of gene-drive elements. We hypothesized that drives targeting genes essential for viability or reproduction also carrying recoded sequences that restore endogenous gene functionality should benefit from dominantly-acting maternal clearance of NHEJ alleles combined with recessive Mendelian culling processes. Here, we test split gene-drive (sGD) systems in Drosophila melanogaster that are inserted into essential genes required for viability (rab5, rab11, prosalpha2) or fertility (spo11). In single generation crosses, sGDs copy with variable efficiencies and display sex-biased transmission. In multigenerational cage trials, sGDs follow distinct drive trajectories reflecting their differential tendencies to induce target chromosome damage and/or lethal/sterile mosaic Cas9-dependent phenotypes, leading to inherently confinable drive outcomes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-021-21771-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7935863PMC
March 2021

A confinable home-and-rescue gene drive for population modification.

Elife 2021 Mar 5;10. Epub 2021 Mar 5.

Section of Cell and Developmental Biology, University of California, San Diego, San Diego, United States.

Homing-based gene drives, engineered using CRISPR/Cas9, have been proposed to spread desirable genes throughout populations. However, invasion of such drives can be hindered by the accumulation of resistant alleles. To limit this obstacle, we engineer a confinable population modification home-and-rescue (HomeR) drive in targeting an essential gene. In our experiments, resistant alleles that disrupt the target gene function were recessive lethal and therefore disadvantaged. We demonstrate that HomeR can achieve an increase in frequency in population cage experiments, but that fitness costs due to the Cas9 insertion limit drive efficacy. Finally, we conduct mathematical modeling comparing HomeR to contemporary gene drive architectures for population modification over wide ranges of fitness costs, transmission rates, and release regimens. HomeR could potentially be adapted to other species, as a means for safe, confinable, modification of wild populations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.7554/eLife.65939DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7968924PMC
March 2021

Efficient population modification gene-drive rescue system in the malaria mosquito Anopheles stephensi.

Nat Commun 2020 11 3;11(1):5553. Epub 2020 Nov 3.

Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, 92697-3900, USA.

Cas9/gRNA-mediated gene-drive systems have advanced development of genetic technologies for controlling vector-borne pathogen transmission. These technologies include population suppression approaches, genetic analogs of insecticidal techniques that reduce the number of insect vectors, and population modification (replacement/alteration) approaches, which interfere with competence to transmit pathogens. Here, we develop a recoded gene-drive rescue system for population modification of the malaria vector, Anopheles stephensi, that relieves the load in females caused by integration of the drive into the kynurenine hydroxylase gene by rescuing its function. Non-functional resistant alleles are eliminated via a dominantly-acting maternal effect combined with slower-acting standard negative selection, and rare functional resistant alleles do not prevent drive invasion. Small cage trials show that single releases of gene-drive males robustly result in efficient population modification with ≥95% of mosquitoes carrying the drive within 5-11 generations over a range of initial release ratios.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-020-19426-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7609566PMC
November 2020

Active Genetic Neutralizing Elements for Halting or Deleting Gene Drives.

Mol Cell 2020 10 18;80(2):246-262.e4. Epub 2020 Sep 18.

Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA; Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA, USA. Electronic address:

CRISPR-Cas9-based gene drive systems possess the inherent capacity to spread progressively throughout target populations. Here we describe two self-copying (or active) guide RNA-only genetic elements, called e-CHACRs and ERACRs. These elements use Cas9 produced in trans by a gene drive either to inactivate the cas9 transgene (e-CHACRs) or to delete and replace the gene drive (ERACRs). e-CHACRs can be inserted at various genomic locations and carry two or more gRNAs, the first copying the e-CHACR and the second mutating and inactivating the cas9 transgene. Alternatively, ERACRs are inserted at the same genomic location as a gene drive, carrying two gRNAs that cut on either side of the gene drive to excise it. e-CHACRs efficiently inactivate Cas9 and can drive to completion in cage experiments. Similarly, ERACRs, particularly those carrying a recoded cDNA-restoring endogenous gene activity, can drive reliably to fully replace a gene drive. We compare the strengths of these two systems.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molcel.2020.09.003DOI Listing
October 2020

Modeling confinement and reversibility of threshold-dependent gene drive systems in spatially-explicit Aedes aegypti populations.

BMC Biol 2020 05 12;18(1):50. Epub 2020 May 12.

Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA, 94720, USA.

Background: The discovery of CRISPR-based gene editing and its application to homing-based gene drive systems has been greeted with excitement, for its potential to control mosquito-borne diseases on a wide scale, and concern, for the invasiveness and potential irreversibility of a release. Gene drive systems that display threshold-dependent behavior could potentially be used during the trial phase of this technology, or when localized control is otherwise desired, as simple models predict them to spread into partially isolated populations in a confineable manner, and to be reversible through releases of wild-type organisms. Here, we model hypothetical releases of two recently engineered threshold-dependent gene drive systems-reciprocal chromosomal translocations and a form of toxin-antidote-based underdominance known as UD-to explore their ability to be confined and remediated.

Results: We simulate releases of Aedes aegypti, the mosquito vector of dengue, Zika, and other arboviruses, in Yorkeys Knob, a suburb of Cairns, Australia, where previous biological control interventions have been undertaken on this species. We monitor spread to the neighboring suburb of Trinity Park to assess confinement. Results suggest that translocations could be introduced on a suburban scale, and remediated through releases of non-disease-transmitting male mosquitoes with release sizes on the scale of what has been previously implemented. UD requires fewer releases to introduce, but more releases to remediate, including of females capable of disease transmission. Both systems are expected to be confineable to the release site; however, spillover of translocations into neighboring populations is less likely.

Conclusions: Our analysis supports the use of translocations as a threshold-dependent drive system capable of spreading disease-refractory genes into Ae. aegypti populations in a confineable and reversible manner. It also highlights increased release requirements when incorporating life history and population structure into models. As the technology nears implementation, further ecological work will be essential to enhance model predictions in preparation for field trials.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12915-020-0759-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7218562PMC
May 2020

A transcomplementing gene drive provides a flexible platform for laboratory investigation and potential field deployment.

Nat Commun 2020 01 17;11(1):352. Epub 2020 Jan 17.

Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA.

CRISPR-based gene drives can spread through wild populations by biasing their own transmission above the 50% value predicted by Mendelian inheritance. These technologies offer population-engineering solutions for combating vector-borne diseases, managing crop pests, and supporting ecosystem conservation efforts. Current technologies raise safety concerns for unintended gene propagation. Herein, we address such concerns by splitting the drive components, Cas9 and gRNAs, into separate alleles to form a trans-complementing split-gene-drive (tGD) and demonstrate its ability to promote super-Mendelian inheritance of the separate transgenes. This dual-component configuration allows for combinatorial transgene optimization and increases safety by restricting escape concerns to experimentation windows. We employ the tGD and a small-molecule-controlled version to investigate the biology of component inheritance and resistant allele formation, and to study the effects of maternal inheritance and impaired homology on efficiency. Lastly, mathematical modeling of tGD spread within populations reveals potential advantages for improving current gene-drive technologies for field population modification.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-019-13977-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6969112PMC
January 2020

Experimental population modification of the malaria vector mosquito, Anopheles stephensi.

PLoS Genet 2019 12 19;15(12):e1008440. Epub 2019 Dec 19.

Department of Microbiology & Molecular Genetics, University of California, Irvine, California, United States of America.

Small laboratory cage trials of non-drive and gene-drive strains of the Asian malaria vector mosquito, Anopheles stephensi, were used to investigate release ratios and other strain properties for their impact on transgene spread during simulated population modification. We evaluated the effects of transgenes on survival, male contributions to next-generation populations, female reproductive success and the impact of accumulation of gene drive-resistant genomic target sites resulting from nonhomologous end-joining (NHEJ) mutagenesis during Cas9, guide RNA-mediated cleavage. Experiments with a non-drive, autosomally-linked malaria-resistance gene cassette showed 'full introduction' (100% of the insects have at least one copy of the transgene) within 8 weeks (≤ 3 generations) following weekly releases of 10:1 transgenic:wild-type males in an overlapping generation trial design. Male release ratios of 1:1 resulted in cages where mosquitoes with at least one copy of the transgene fluctuated around 50%. In comparison, two of three cages in which the malaria-resistance genes were linked to a gene-drive system in an overlapping generation, single 1:1 release reached full introduction in 6-8 generations with a third cage at ~80% within the same time. Release ratios of 0.1:1 failed to establish the transgenes. A non-overlapping generation, single-release trial of the same gene-drive strain resulted in two of three cages reaching 100% introduction within 6-12 generations following a 1:1 transgenic:wild-type male release. Two of three cages with 0.33:1 transgenic:wild-type male single releases achieved full introduction in 13-16 generations. All populations exhibiting full introduction went extinct within three generations due to a significant load on females having disruptions of both copies of the target gene, kynurenine hydroxylase. While repeated releases of high-ratio (10:1) non-drive constructs could achieve full introduction, results from the 1:1 release ratios across all experimental designs favor the use of gene drive, both for efficiency and anticipated cost of the control programs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.pgen.1008440DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6922335PMC
December 2019