Publications by authors named "Jana Riehl"

3 Publications

  • Page 1 of 1

Analysis of organellar genomes in brown algae reveals an independent introduction of similar foreign sequences into the mitochondrial genome.

Genomics 2021 Mar 22;113(2):646-654. Epub 2021 Jan 22.

Institute of Biochemistry I, Faculty of Medicine, University of Cologne, Cologne, Germany.

Kelp species (Laminariales, Phaeophyceae) are globally widespread along temperate to Polar rocky coastal lines. Here we analyse the mitochondrial and chloroplast genomes of Laminaria rodriguezii, in comparison to the organellar genomes of other kelp species. We also provide the complete mitochondrial genome sequence of another endemic kelp species from a Polar habitat, the Arctic Laminaria solidungula. We compare phylogenetic trees derived from twenty complete mitochondrial and seven complete chloroplast kelp genomes. Interestingly, we found a stretch of more than 700 bp in the mitochondrial genome of L.rodriguezii, which is not present in any other yet sequenced member of the Phaeophyceae. This stretch matches a protein coding region in the mitochondrial genome from Desmarestia viridis, another brown seaweed. Their high similarity suggests that these sequences originated through independent introduction into the two species. Their origin could have been by infection by yet unknown similar mitoviruses, currently only known from fungi and plants.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ygeno.2021.01.003DOI Listing
March 2021

Functional Characterisation of the Autophagy ATG12~5/16 Complex in .

Cells 2020 05 9;9(5). Epub 2020 May 9.

Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany.

Macroautophagy, a highly conserved and complex intracellular degradative pathway, involves more than 20 core autophagy (ATG) proteins, among them the hexameric ATG12~5/16 complex, which is part of the essential ubiquitin-like conjugation systems in autophagy. single, double, and triple gene knock-out mutant strains displayed similar defects in the conjugation of ATG8 to phosphatidylethanolamine, development, and cell viability upon nitrogen starvation. This implies that ATG5, 12 and 16 act as a functional unit in canonical autophagy. Macropinocytosis of TRITC dextran and phagocytosis of yeast were significantly decreased in ATG5¯ and ATG5¯/12¯ and even further in ATG5¯/12¯/16¯ cells. In contrast, plaque growth on was about twice as fast for ATG5¯ and ATG5¯/12¯/16¯ cells in comparison to AX2, but strongly decreased for ATG5¯/12¯ cells. Along this line, phagocytic uptake of was significantly reduced in ATG5¯/12¯ cells, while no difference in uptake, but a strong increase in membrane association of was seen for ATG5¯ and ATG5¯/12¯/16¯ cells. Proteasomal activity was also disturbed in a complex fashion, consistent with an inhibitory activity of ATG16 in the absence of ATG5 and/or ATG12. Our results confirm the essential function of the ATG12~5/16 complex in canonical autophagy, and furthermore are consistent with autophagy-independent functions of the complex and its individual components. They also strongly support the placement of autophagy upstream of the ubiquitin-proteasome system (UPS), as a fully functional UPS depends on autophagy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/cells9051179DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7290328PMC
May 2020

The large GTPase Mx1 binds Kif5B for cargo transport along microtubules.

Traffic 2018 12 23;19(12):947-964. Epub 2018 Oct 23.

Department of Cell Biology and Cell Pathology, Philipps University of Marburg, Marburg, Germany.

A highly specific transport and sorting machinery directing secretory cargo to the apical or basolateral plasma membrane maintains the characteristic polarized architecture of epithelial cells. This machinery comprises a defined set of transport carriers, which are crucial for cargo delivery to the correct membrane domain. Each carrier is composed of a distinct set of proteins to verify precise routing and cargo selection. Among these components, the dynamin-related GTPase Mx1 was identified on post-Golgi vesicles destined for the apical membrane of MDCK cells. In addition to the presence on late secretory compartments, Mx1 was also detected on compartments of the early secretory pathway. Vesicular structures positive for this GTPase are highly dynamic, and we have studied the influence of the microtubule cytoskeleton on this motility. Live-cell microscopy indicated that microtubule disruption using nocodazole inhibits long-range trafficking of these structures. Mx1 directly or indirectly interacts with α-tubulin and the kinesin motor Kif5B as assessed by coimmunoprecipitation. In agreement with these observations knock out of Mx1 or a mutation in the unstructured L4 loop of Mx1 decreases the efficiency of apical cargo delivery. Interestingly, the L4 loop mutant still interacts with Kif5B; however, it causes vesicle elongation. This suggests that Mx1 aids in vesicle fission and stabilizes the interaction between Kif5B, microtubules and apical transport carriers.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/tra.12616DOI Listing
December 2018
-->